
Database Systems Journal vol. III, no. 2/2012 49

Security Aspects for Business Solution Development on Portal Technology

Ovidiu RĂDUTĂ, Adrian MUNTEANU

Institute for Doctoral Studies within Academy of Economic Studies

Bucharest, ROMANIA

ovidiu.raduta@gmail.com, adrianm21@yahoo.com

In the scope of portal development, in order to talk about security issues, concerns, and

solutions, it is necessary to define a few terms: authentication, authorization, Single Sign-On

(SSO), confidentiality, integrity, and non-repudiation. Focusing on the scope of what the

portal developer and designer need to know, below it will be explained these concepts,

considering it is important to define and make a brief analysis of these terms for

understanding of achieving the security goals.

Keywords: Role-Based Access Control, Data Encryption, Data Integrity, Non-repudiation,

Grid Computing

Introduction

In recent years, more and more

companies have been creating portals in

order to offer to their employees, partners

and customers to access critical and

sensitive information. Most portal

developers have applied high level security

challenges in this regard. Many vendors

have created particular interrelated

solutions for some of the security

requirements, trying to tie developers to a

particular product. Generally, this is a good

choice and often works well until the

product doesn’t work [11]. In this case, the

software is no longer supported, or you

need to readjust the architecture. Of course

that a developer who has been in that boat

feels his pain because he has been there. It

appears a question: How can portal

developers meet their security challenges

with a standards-based, open-source

security solution? This paper answers that

question – first, presenting some essential

security concepts, and then by highlighting

you standards, techniques and open-source

tools that it can use in order to secure your

portal solution [8].

Second, this paper will talk about Grid

portals, which are an increasingly popular

mechanism for creating customizable,

Web-based interfaces to Grid services and

resources. Due to the powerful, general-

purpose nature of Grid technology, the

security of any portal or entry point to such

resources cannot be taken lightly, in

particular if the portal is running inside of

the trusted perimeter, such as a Science

Gateway running on an SDSC machine for

access to the TeraGrid.

2. Core Security Concepts.

First, we will talk about the main concepts

regarding portal security

2.1. Authentication

Authentication is the first point in

providing access control and this involves

validating the identity of a user. Most of

cases in a portal environment,

authentication may be achieved through

user name/password login, validating a

user’s client certificate, or through

validation via smart card or biometric

device.

In order to proceed, authentication it is

necessary to develop a solution which is

usually based on a repository for validating

these identities and integrating it with the

system. Regarding it, a mutual

authentication means to provide the

identification for both of parties involved

in communication, and this is done using a

particular security protocols, such as

SSL/TLS. To ensure that the message was

sent by the expected sender, it is used a

1

mailto:ovidiu.raduta@gmail.com
mailto:adrianm21@yahoo.com

50 Security aspects for business solution development on portal technology

message origin authentication which is not

replayed. [15]

Being one of the most important aspects to

providing security, authentication at the

portal level will dictate how your

application interacts with other enterprise

applications and Web services. [7]

2.2.Authorization

When an user is validated, the next step we

have to assume is what the user has

permission to do. The access control

separation in two distinct mechanisms,

authentication and authorization, provides

a logical separation of first validating

identity, and then validating what

resources that entity has access to consume

or produce. Authorization defines the user

permissions, roles, and other useful

credentials which are used to permit access

to certain portal services. An access control

strategy – Role-Based Access Control

(RBAC) is provided – (useful because of

capability is prevalently in J2EE

architectures).

In extension, RBAC (as framework for the

authorization management of credentials)

is essentially useful in many portals,

relational databases, or commercial web-

based systems. As it can be seen in Figure

1, a key component of RBAC maps roles

to permissions, and maps users to roles.

There are also shown views of some

authorization mechanisms of the traditional

access control – using Access Control Lists

(ACLs). So far, large and complex ACLs

made links users-permissions, and

restricted access to resources by

permissions and users. Because there are

many cases when the number of

permissions is usually very high, an access

control lists for discretionary access can be

difficult to be kept (with subject -object

mappings). So, generally, abstracting the

user and the resources permissions is very

useful in authorization management. [15]

Fig. 1. Key component of RBAC

Although, in a certain organization,

mapping these permissions to never-

changing roles can happen at one time and

users can be assigned and unassigned to

these roles during the lifetime of the

individual, making the access management

control easier to keep. [9]

I consider that the most difficult part of

setting up a role-based access control is

that an organization must define its roles

based on the proper processes. They

consider that the technical part of the

solution is the easiest phase. They have to

provide an enough flexible schema in order

to be able to cope the reorganization’s

rigors. With “Introduction to Role-Based

Access Control”, NIST (see references)

provides an appropriate explanation: “With

role-based access control, access decisions

are based on the roles that individual users

have as part of an organization. Users take

on assigned roles (such as doctor, nurse,

teller, manager). The process

of defining roles should be based on a

thorough analysis of how an organization

operates and should include input from a

Database Systems Journal vol. III, no. 2/2012 51

wide spectrum of users in an

organization.” ([10], pp1)

2.3.Confidentiality

Keeping the information secret it is

mandatory when sensitive information is

sent. Confidentiality is considered the

security goal for hiding information and

encryption it is an appropriate solution to

provide it. With encryption, a plaintext

message is modified with a cryptographic

algorithm in order to produce a ciphertext

message. In the same time, it is a must to

have the possibility to decrypt the data

using a key. Many different

encryption/decryption algorithms, even if it

is about a symmetric algorithms (secret-

key) or an asymmetric algorithms (public

key), can be used to offer different

protection levels of sensitive data.

Different things like key management for

distributing keys, ciphers to use, and

cryptographic protocols that provide these

services, are needed to create solutions in

order to satisfy confidentiality

requirements. [12]

Many higher-level protocols like Transport

Layer Security (TLS) and Secure Sockets

Layer (SSL) (its later version), offer bulk

encryption between two points. At this

level, the cipher is determined and the

encryption key is known at the beginning

of the protocol in order to establish a

“shared secret” understood on both sides. It

is good to know that SSL is a point-to-

point protocol which can be used for one-

way or two-ways authentication between

two points only. Generally, it is enough

such a session for environments with a

simple client and server in order to protect

the data confidentiality in the transmission.

Encryption requirement. If you have some

encryption requirements, the portal should

be able to put it up, but the portal architect

has to foresee that the cryptographic

mechanisms will impact the performance.

[13]

Requirements. Generally, to have

requirements satisfied, it is enough to have

a simple SSL/TLS connection between the

user and the portal. If not, that means it is

necessary to be size encryption between

the user, the portal, and all nodes, web

services involved and enterprise

applications in the solution. (thereby, the

solution becoming a bit more difficult).

Secret data. If it is needed to keep some

confidential information away from web

services (the encryption needs to be

directly between the portal and the

eventual data source), you will need a

shared secret between the portal and the

data source (not just bulk encryption

between the nodes). Here, XML

Encryption, a W3C standard, being quite

useful for this. [12]

2.4.Data Integrity

In transit, ensuring a non-altered data is a

must. To validate the integrity of a

message means to use techniques in order

to prove that data integrity is kept. Because

on a TCP/IP network could occur some

message injection, packet tampering, or IP

spoofing, many applications require a

digital signatures, a MAC (Message

Authentication Codes), or hash algorithms.

The portal’s architecture offers integrity

challenges regarding users and the portal,

and also between portal, web services and

the enterprise data source. Beginning from

requirement set, SSL/TLS may provide it

(message integrity between users and

portal). In addition, other standards can be

used to achieve integrity. One example is

XML Signature (a W3C standard), which

provides message integrity in addition to

non-repudiation (see the next paragraph).

A mechanism that achieves such a solution

for Web services is provided by OASIS

Web Services Security specification.

2.5. Non-repudiation

The side effect of digitally signing a

message is called non-repudiation, which

is a security service used when a user has

sent a transaction or a message. There are

many business-to-business (B2B) systems

where non-repudiation is often an essential

requirement. Considering the digital

52 Security aspects for business solution development on portal technology

signature is based on public key

encryption, the sender of the message

cannot repudiate successfully the fact that

he signed the message. Although non-

repudiation is tied in the context of an user

signing something, we also can bring this

term when discuss about an enterprise with

portals, applications, and web services. A

portal may sign a portion of its message to

a Web service, and a Web service may sign

a portion of its messages. A side effect of

digitally signing a document is also

integrity. Because the signed message is

actually the signature of the hash of the

message used for proving integrity, many

simply view non-repudiation as very

strong integrity. XML Signature is a W3C

standard used for providing non-

repudiation, and is used in other standards,

such as the WS-Security standard. The

following section describes such standards.

[12]

2.6. Auditing

Audit is the process of verifying that

security requirements have been satisfied,

with corrections suggested where they

haven’t been met. Essential to effective

auditing is that actions are traced and

logged through all parts of the system.

With web applications, this means that

logging of significant operations must

happen in the web server, web application

and data layer, in addition to the web

application itself. Events of interest

include: errors, failures, state accesses,

authentication, access control and other

security checks, in addition to application-

specific operations and actions. Care must

be taken to protect the integrity of logging

and trace data, even (and perhaps

especially) in the case of system failures.

Logs that are tampered with or destroyed

are useless in performing an effective

audit. Auditing of log and trace data can

either be done manually or it can be

automated and often a combination of both

is used. Either way, auditing should be

done on a regular basis. Automated

systems that continually monitor, detect,

and in some cases even correct (or at least

recommend corrections for) security

problems can be particularly useful for

maintaining a secure web application.

Somewhat related to logging and auditing,

Web applications should be careful to

ensure that errors or failures somewhere in

the system do not introduce security

vulnerabilities. Attackers, for instance, are

often able to exploit the detailed error

information provided by web applications

to gain unauthorized access.

2.7. Session Management.
Web-based applications, in contrast to

desktop-based application clients, have a

challenge with regard to where client-

related state information is stored. A

desktop application would store state

locally on the client machine, but because

of the relatively stateless nature of the web

browser, client state in web applications

tends to be stored remotely on the server.

The challenge then becomes securely

managing and associating session state

with an authenticated client identity.

Unlike the other areas mentioned above,

session state management is not strictly a

security concern. However, the potential

for security vulnerabilities in this area as

well as its unique relevance to web

applications merit its discussion here.

Many web application containers include

built-in session management capabilities,

and in most cases, it is desirable to

leverage this functionality where possible.

When session state management must be

built by the web application, care must be

taken to ensure that session state can not be

tampered with and is securely (i.e.,

cryptographically) and consistently

mapped to an authentication token. From

the client perspective, session identifiers

are often included in cookies that are

automatically saved and presented by the

web browser. Such information could also

be presented elsewhere in user input data.

Care must be taken to protect the integrity

and confidentiality of these session

identifiers as attackers can use this

Database Systems Journal vol. III, no. 2/2012 53

information to gain unauthorized access to

the system (see the attack scenario below).

As much as possible web application

interfaces should be constructed such that

users can keep their session state secure

(often this means including sensible logout

procedures, among other things).

 Grid Portal Security Requirements

So far, we discussed about security

concepts (for portal). From now on, we

will present the security needs of web

applications discussed above.

To their advantage, Grid resources tend to

have their own security (authentication and

authorization in particular) mechanisms in

place, so breaking into a Grid portal, while

concerning, may not necessarily allow the

attacker access to backend Grid resources.

For instance, simply being able to submit

jobs through a portal is not useful without

proper Grid credentials to authenticate to

the actual job execution service.

Consequently, the key security challenge

of most Grid portals is that at some level,

they manage Grid credentials on behalf of

clients. Compromised Grid credentials are

an extremely serious security breach

because they allow an attacker to

effectively impersonate a valid Grid user

until the credentials are revoked or expire.

Thus, extra care must be taken in the

management of these Grid credentials,

which can effectively be viewed as a

special kind of session state. The integrity

and confidentiality of these credentials

must be maintained even in the case of

errors or failures. Accesses to the

credentials should be logged and

monitored continuously for suspicious

behavior. Further the credentials,

especially if stored on disk must be

protected from other users or applications

running on the web application server. A

compromise elsewhere in the server’s

software stack should not lead to

compromise of user’s Grid credentials.

Vulnerabilities of Web Applications

A great challenge in developing secure

web applications is that the vulnerabilities

in any component of the architecture can

often result in compromise of the web

application as a whole. For instance, even

though the code of a particular web

application might be carefully written and

free of security holes, vulnerabilities in the

web server could still be exploited, causing

the secure web application to be hijacked

or overridden with a malicious version.

Another challenge of the architectural

complexity of many web applications is

that it is often difficult to configure all of

the components correctly and securely. So,

even if the components as developed are

free of security vulnerabilities,

misconfiguration can unwittingly open the

web application to compromise.

The Open Web Application Security

Project (OWASP) compiled a list of ten of

the most common security vulnerabilities

afflicting Web applications [17] (and thus

Grid portals, which are just a specific type

of web application):

 Unvalidated Parameters – input

contained in web requests is not properly

checked (by the application) before being

acted on. Attackers can craft parameters to

hijack the application or cause it to behave

in dangerous, unexpected ways. Injection

Flaws, Buffer Overflows, and XSS Flaws

are all specific types of Unvalidated

Parameter vulnerabilities.

 Broken Access Control – access

control mechanisms work inconsistently or

incorrectly, allowing unintended access to

resources. This is particularly troublesome

for web application administrative

interfaces.

 Broken Authentication and Session

Management – authentication problems

can range from weak authentication

mechanisms that are easily broken (plain

text secrets to retrieve forgotten

passwords), to insufficient session

protection (exploiting access to one set of

session information to gain access to

someone else’s) to forged sessions or

session cookies (allowing session

impersonation).

54 Security aspects for business solution development on portal technology

 Cross-Site Scripting (XSS) Flaws –

involves exploiting an invalidated

parameter vulnerability to send a script to

the web application that is in turn delivered

to and executed by the end user’s web

browser. Buffer Overflows – specially

crafted input results in the execution of

arbitrary code on the target server. This is

particularly problematic if the server is

running as root or an administrator account

as the malicious code will also have those

privileges. In general, Java applications do

not suffer from this type of vulnerability

(although the JVM itself could).

 Injection Flaws – in contrast to the

other invalidated parameter attacks, this

refers to when injected code or command

strings are passed through the web

application directly to some backend

system. SQL injection attacks are probably

the most common.

 Improper Error Handling – this type

of vulnerability surfaces when error

messages displayed to the user in some

way reveal details about how the system or

application works (the attacker could then

exploit this knowledge). This is typically a

problem when very detailed stack traces

are displayed to the user giving some

information of the structure of the code and

its operation. Attackers can also probe for

inconsistencies in error messages returned

(“file not found” vs. “access denied”) to

gain a better understanding of the

application.

 Insecure Storage – storage of

sensitive data (passwords, account

information, etc.) without proper

encryption or access control mechanisms.

This could be on disk, in a database, or in

memory. Usually one of the other exploits

is needed to actually gain access to this

insecure data.

 Denial of Service – when the sheer

volume of requests to the web application

overwhelms the capacity, denying access

to legitimate users. This is usually an even

more troublesome problem as web server

DoS attacks (like SYN flooding), because

it’s very hard for web applications to

distinguish between legitimate and

malicious requests. The complexity of web

applications usually means a fairly low

threshold of concurrent connections needs

to be exceeded to deny access.

 Insecure Configuration Management

– problems here range from unpatched

software to unchanged insecure default

settings to outright configuration mistakes

caused by incomplete or incorrect

understanding of some very complex

software. Clearly this is a human problem

as much as a software problem, but

delivering software that’s easy to

understand, easy to configure and comes in

a secure configuration out of the box

would certainly help.

2.8. Key Security Standards

With a significant role in portal

development, we will continue with a brief

overview of security standards which a

portal developer needs to know.

2.8.1. SSL and TLS

Created by Netscape, SSL (Secure Sockets

Layer) and TLS (Transport Layer Security)

are higher-level encryption protocols that

are used to assure data integrity and

confidentiality between two points. Also,

they can be used for mutual authentication

when both parties have digital certificates.

Although, the both are very similar

(because TLS is based on SSL) and in

most cases we simply refer to both

protocols as SSL, they will not interoperate

(there are subtle differences).

In an easy-going language, SSL with

HTTP are called HTTPS Sessions (a

process providing confidential web

transmission). A portal developer consider

that a SSL session can protect

confidentiality and data integrity between

the user and the portal, but also between

the portal and its next communication

point. [12]

2.8.2. XML Encryption

Being used to encrypt elements of an XML

document, XML Encryption is a W3C

Database Systems Journal vol. III, no. 2/2012 55

standard that operates XML documents

and XML element-level confidentiality. It

can be used with key exchange algorithms

and public key encryption in order to

encrypt documents to different parties. A

great advantage of XML encryption

(unlike SSL, which is decrypted at each

point) is that it can be used in solutions

with multiple network nodes between the

portal and the data source.

2.8.3. XML Signature

XML Signature is a W3C standard that

assures the message integrity and non-

repudiation of XML documents. Any part

of an XML document can be digitally

signed – becoming self-validating when it

has a public key. XML Signature is based

on a public key technology in which the

hash of a message is cryptographically

signed; this provides integrity and non-

repudiation. When portal communicates

with Web services, XML Signature has an

important role. Because of self-validating,

user’s credentials can be put on SOAP

messages beyond the portal. [14]

2.8.4. SAML

Security Assertion Markup Language

(SAML), is an OASIS standard which is

used for pass authentication and

authorization information between

different parts. In a portal environment, a

portal can “declare” that it authenticated a

user, having in the same time some certain

security credentials. A SAML assertion

can be digitally signed using XML

Signature. It is good to know that SAML

can solve significant challenges in Web

services security, because signed SAML

can travel between different platforms and

organizations. Anyone trusting the signer

will trust the credential. SAML is an

important standard, and many open-source

toolkits are available. [12]

3. Grid construction – General

principles

This section briefly highlights some of the

general principles that underlie the

construction of the Grid. In particular, the

idealized design features that are required

by a Grid to provide users with a seamless

computing environment are discussed.

Four main aspects characterize a Grid:

 Multiple administrative domains and

autonomy. Grid resources are

geographically distributed across multiple

administrative domains and owned by

different organizations. The autonomy of

resource owners needs to be honored along

with their local resource management and

usage policies.

 Heterogeneity. A Grid involves a

multiplicity of resources that are

heterogeneous in nature and will

encompass a vast range of technologies.

 Scalability. A Grid might grow from a

few integrated resources to millions. This

raises the problem of potential

performance degradation as the size of

Grids increases. Consequently, apps. that

require a large number of geographically

located resources must be designed to be

latency and bandwidth tolerant.

 Dynamicity or adaptability. In a Grid,

resource failure is the rule rather than the

exception. In fact, with so many resources

in a Grid, the probability of some resource

failing is high. Resource managers or

applications must tailor their behavior

dynamically and use the available

resources and services efficiently and

effectively. [3]

The components that are necessary to form

a Grid are as follows:

 Grid fabric. This consists of all the

globally distributed resources that are

accessible from anywhere on the Internet.

These resources could be computers (such

as PCs or Symmetric Multi- Processors)

running a variety of operating systems

(such as UNIX or Windows), storage

devices, databases, and special scientific

instruments such as a radio telescope or

particular heat sensor.

 Core Grid middleware. This offers core

services such as remote process

management, co-allocation of resources,

56 Security aspects for business solution development on portal technology

storage access, information registration and

discovery, security, and aspects of Quality

of Service (QoS) such as resource

reservation and trading.

 User-level Grid middleware. This

includes application development

environments, programming tools, and

resource brokers for managing resources

and scheduling application tasks for

execution on global resources.

 Grid applications and portals. Grid

applications are typically developed using

Grid-enabled languages and utilities such

as HPC++ or MPI. An example

application, such as parameter simulation

or a grand-challenge problem, would

require computational power, access to

remote data sets, and may need to interact

with scientific instruments. Grid portals

offer Web-enabled application services,

where users can submit and collect results

for their jobs on remote resources through

the Web.

In attempting to facilitate the collaboration

of multiple organizations running diverse

autonomous heterogeneous resources, a

number of basic principles should be

followed so that the Grid environment:

 does not interfere with the existing site

administration or autonomy;

 does not compromise existing security of

users or remote sites;

 does not need to replace existing

operating systems, network protocols, or

services;

 allows remote sites to join or leave the

environment whenever they choose;

 does not mandate the programming

paradigms, languages, tools, or libraries

that a user wants;

 provides a reliable and fault tolerant

infrastructure with no single point of

failure;

 provides support for heterogeneous

components;

 uses standards, and existing

technologies, and is able to interact with

legacy applications;

 provides appropriate synchronization and

component program linkage. [3]

As one would expect, a Grid environment

must be able to interoperate with a whole

spectrum of current and emerging

hardware and software technologies. An

obvious analogy is the Web. Users of the

Web do not care if the server they are

accessing is on a UNIX or Windows

platform. From the client browser’s point

of view, they ‘just’ want their requests to

Web services handled quickly and

efficiently. In the same way, a user of a

Grid does not want to be bothered with

details of its underlying hardware and

software infrastructure. A user is really

only interested in submitting their

application to the appropriate resources

and getting correct results back in a timely

fashion. An ideal Grid environment will

therefore provide access to the available

resources in a seamless manner such that

physical discontinuities, such as the

differences between platforms, network

protocols, and administrative boundaries

become completely transparent. In essence,

the Grid middleware turns a radically

heterogeneous environment into a virtual

homogeneous one.

The following are the main design features

required by a Grid environment.

 Administrative hierarchy. An

administrative hierarchy is the way that

each Grid environment divides itself up to

cope with a potentially global extent. The

administrative hierarchy determines how

administrative information flows through

the Grid.

 Communication services. The

communication needs of applications using

a Grid environment are diverse, ranging

from reliable point-to-point to unreliable

multicast communications.

The communications infrastructure needs

to support protocols that are used for bulk-

data transport, streaming data, group

communications, and those used by

distributed objects.

Database Systems Journal vol. III, no. 2/2012 57

 The network services used also provide

the Grid with important QoS parameters

such as latency, bandwidth, reliability,

fault-tolerance, and jitter control.

 Information services. A Grid is a

dynamic environment where the location

and types of services available are

constantly changing. A major goal is to

make all resources accessible to any

process in the system, without regard to the

relative location of the resource user. It is

necessary to provide mechanisms to enable

a rich environment in which information is

readily obtained by requesting services.

The Grid information (registration and

directory) services components provide the

mechanisms for registering and obtaining

information about the Grid structure,

resources, services, and status.

 Naming services. In a Grid, like in any

distributed system, names are used to refer

to a wide variety of objects such as

computers, services, or data objects. The

naming service provides a uniform name

space across the complete Grid

environment. Typical naming services are

provided by the international X.500

naming scheme or DNS, the Internet’s

scheme.

 Distributed file systems and caching.

Distributed applications, more often than

not, require access to files distributed

among many servers. A distributed file

system is therefore a key component in a

distributed system. From an applications

point of view it is important that a

distributed file system can provide a

uniform global namespace, support a range

of file I/O protocols, require little or no

program modification, and provide means

that enable performance optimizations to

be implemented, such as the usage of

caches. [3]

 Security and authorization. Any

distributed system involves all four aspects

of security: confidentiality, integrity,

authentication, and accountability. Security

within a Grid environment is a complex

issue requiring diverse resources

autonomously administered to interact in a

manner that does not impact the usability

of the resources or introduces security

holes/lapses in individual systems or the

environments as a whole. A security

infrastructure is the key to the success or

failure of a Grid environment.

 System status and fault tolerance. To

provide a reliable and robust environment

it is important that a means of monitoring

resources and applications is provided. To

accomplish this task, tools that monitor

resources and application need to be

deployed.

 Resource management and scheduling.

The management of processor time,

memory, network, storage, and other

components in a Grid is clearly very

important. The overall aim is to efficiently

and effectively schedule the applications

that need to utilize the available resources

in the Grid computing environment. From

a user’s point of view, resource

management and scheduling should be

transparent; their interaction with it being

confined to a manipulating mechanism for

submitting their application. It is important

in a Grid that a resource management and

scheduling service can interact with those

that may be installed locally.

 Computational economy and resource

trading. As a Grid is constructed by

coupling resources distributed across

various organizations and administrative

domains that may be owned by different

organizations, it is essential to support

mechanisms and policies that help in

regulate resource supply and demand [1],

[2]. An economic approach is one means

of managing resources in a complex and

decentralized manner. This approach

provides incentives for resource owners,

and users to be part of the Grid and

develop and using strategies that help

maximize their objectives.

 Programming tools and paradigms. Grid

applications (multi-disciplinary apps.)

couple resources that cannot be replicated

at a single site even or may be globally

located for other practical reasons. A Grid

should include interfaces, APIs, utilities,

58 Security aspects for business solution development on portal technology

and tools to provide a rich development

environment. Common scientific

languages such as C, C++, and Fortran

should be available, as should application-

level interfaces such as MPI and PVM. A

variety of programming paradigms should

be supported, such as message passing or

distributed shared memory. In addition, a

suite of numerical and other commonly

used libraries should be available.

 User and administrative GUI. The

interfaces to the services and resources

available should be intuitive and easy to

use. In addition, they should work on a

range of different platforms and operating

systems. They also need to take advantage

of Web technologies to offer a view of

portal supercomputing. The Web-centric

approach to access supercomputing

resources should enable users to access any

resource from anywhere over any platform

at any time. That means, the users should

be allowed to submit their jobs to

computational resources through a Web

interface from any of the accessible

platforms such as PCs, laptops, or Personal

Digital Assistant, thus supporting the

ubiquitous access to the Grid. The

provision of access to scientific

applications through the Web (e.g. RWCPs

parallel protein information analysis

system [16]) leads to the creation of

science portals. [3]

4. Conclusion
Nowadays, security is a hot topic and it is

obvious that data needs to be protected.

Taking into consideration that architects,

portal administrators and, of course,

developers are faced with a variety of

factors when planning for portal

application security, it is very important do

not forget the significant role of security

aspects and required standards in portal

development.

According to the American Heritage

Dictionary, a portal is “a doorway,

entrance, or gate, especially one that is

large and imposing”. The intent behind

such structures is really one of security, to

allow the welcome visitors through, while

keeping unwelcome intruders out. From a

technological perspective, a portal is

something that provides a convenient entry

point to resources, applications or content

located elsewhere. Early Web portals were

typically web sites with search engines or

indexes to other content on the World

Wide Web.

Since all of the content accessible through

these web portals was publicly available

anyway, everyone was welcomed in and

security was barely a concern. In Grid

computing, the resources of interest are not

websites, but data and computational

resources, services and applications. Thus,

the goal of a Grid portal is to provide a

convenient entry point to these Grid

resources, typically via a Web-based front-

end. While many Grid portals expose

relatively general purpose functionality

like launching jobs for remote execution or

retrieving remotely-stored data, they can

also include application specific interfaces

customized for a particular domain.

Security gains prominence in Grid portals

largely because of the nature of the Grid

resources they expose. Many Grids link

together powerful clusters of

computational power and large scale data

stores containing confidential, classified or

proprietary information. A compromised

Grid portal could allow an attacker to

harness these powerful computational

resources to launch a large scale attack

elsewhere on the Internet or to gain user

access to probe for privilege escalation or

root compromise, for example.

Generally speaking, “We’ve done

tremendous work to secure computers but

nothing to secure the human operating

system. To change human behaviour, you

need to educate and train employees, not

just once a year but continuously. Like you

continually patch computers and

applications, you’re continually training

and patching human operating systems.”

([5], pp.1)

References

Database Systems Journal vol. III, no. 2/2012 59

[1] Buyya R, Abramson D, Giddy J.

Economy driven resource management

architecture for computational power grids.

International Conference on Parallel and

Distributed Processing Techniques and

Applications (PDPTA’2010), Las Vegas,

NV, 2010. CSREA Press: Athens, GA

[2] Buyya R. Economic-based distributed

resource management and scheduling for

Grid computing. PhD Thesis, Monash

University, Melbourne, Australia, April

2010.

[3] David Del Vecchio, Victor Hazlewood

and Marty Humphrey, “Evaluating Grid

Portal Security” Department of Computer

Science, University of Virginia, San Diego,

2009

[4] Hazen A.Weber, “Role-Based Access

Control: The NIST Solution”, SANS Inst.,

08

[5] Lance Spitzner, “Target: The Human”,

Information Security Magazine, May 2011

[6] Mark Baker, Rajkumar Buyya and

Domenico Laforenza, “Grids and Grid

technologies for wide-area distributed

computing”, School of Computer Science,

University of Portsmouth, Mercantile

House, Portsmouth, U.K. and Grid

Computing and Distributed Systems

Laboratory, Department of Computer

Science and Software Engineering, The

University of Melbourne, Melbourne,

Australia

[7] M. Velicanu, D. Litan, L. Copcea

(Teohari), M. Teohari, A.M. Mocanu

(Virgolici), I. Surugiu, O. Raduta, “Ways

to Increase the Efficiency of Information

Systems”, The Proc. of the 10
th

 WSEAS

Internat. Conf. on artificial Intelligence,

Knowledge Engineering and Databases,

Cambridge, UK, 2011.

[8] M. Velicanu, D. Litan, I. Surugiu, O.

Raduta, A.M. Mocanu (Virgolici),

“Information Technology Standards – a

Viable Solution to Reach the

Performance”, International Conference

on TECHNOLOGY POLICY and LAW

(TPL '11), Brasov, RO, 2011.

[9] D. Litan, L. Copcea (Teohari), M.

Teohari, A.M. Mocanu (Virgolici), I.

Surugiu, O. Raduta, “Information Systems

Integration, a New Trend in Business”,

APPLICATIONS of COMPUTER

ENGINEERING (ACE '11), Canary

Islands, ES, 2011.

[10] National Institute of Standards and

Technology, Computer Security Resource

Center, “An Introduction to Role-Based

Access Control, in ITL Computer Security

Bulletin., Dec. 2010.

[11] Ovidiu Raduta, Adrian Munteanu,

“Business Intelligence Solutions - Security

Components”, The 10
th

 International

Conference on Informatics in Economy,

2011

[12] W. Clay Richardson, Donald

Avondolio, Joe Vitale, Peter Len, Kevin T.

Smith, “Professional Portal Development

with Open Source Tools: Java™ Portlet

API, Lucene, James, Slide”, Wiley

Technology Publishing, 2009

[13] http://www.sans.org

[14] www.rsa.com

[15] http://csrc.nist.gov/publications

[16] http://www.rwcp.or.jp/papia/

[17]http://www.owasp.org/documentation/t

opten.html

[18]http://en.wikipedia.org/wiki/Web_port

a

Ovidiu Rădută has graduated the Academy of Economic Studies (Bucharest,

Romania), Faculty of Cybernetics, Statistics and Economic Informatics in

2006. He holds a Master diploma in Informatics Security (Master Thesis: IT

Software in banks. Security Issues) from 2008 and currently, he is a Ph.D.

Candidate in Economic Informatics with his Doctor’s Degree Thesis: Bank

System’s Process Optimizing. In present, he is ISTQB – Advanced Test

Analyst certified and he works as Senior Test Analyst with 3+ years testing

experience in Raiffeisen Bank Romania (6+ years banking projects experience). His research

http://www.sans.org/
http://www.rsa.com/
http://csrc.nist.gov/publications
http://www.rwcp.or.jp/papia/
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/topten.html
http://en.wikipedia.org/wiki/Web_portal
http://en.wikipedia.org/wiki/Web_portal

60 Security aspects for business solution development on portal technology

activity can be observed in many international proceedings (papers ISI proceedings). His

scientific fields of interest include: Test management, Test Techniques, Databases processes,

Middleware Products, Information Systems and Economics.

Adrian Munteanu has graduated the Academy of Economic Studies

(Bucharest, Romania), Cybernetics, Statistics and Economic Informatics in

2001. Currently, he is a Ph.D. Candidate in Economic Informatics with his

Doctor’s Degree Thesis: DataWarehouses - Business Support. In present, he is

Advanced Resolution Engineer with 12+ years experience in database and

Enterprise solutions field at Oracle Corporation. His research activity can be

observed in many international proceedings (papers ISI proceedings) published

by now. His scientific fields of interest include: Business Intelligence, Datawarehouse

Modelling and Enterprise Resource Planning implementation.

