Database Systems Journal vol. II, no. 4/2011

17

Problem Decomposition Method to Compute an Optimal Cover for a Set of
Functional Dependencies

Vitalie COTELEA

Academy of Economic Studies of Moldova
61 Banulescu-Bodoni Street, Chisinau, Republic of Moldova
Email: vitalie.cotelea@gmail.com

The paper proposes a problem decomposition method for building optimal cover for a set of
functional dependencies to decrease the solving time. At the beginning, the paper includes an
overview of the covers of functional dependencies. There are considered definitions and
properties of non redundant covers for sets of functional dependencies, reduced and
canonical covers as well as equivalence classes of functional dependencies, minimum and
optimal covers. Then, a theoretical tool for inference of functional dependencies is proposed,
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schema is divided into equivalence classes of attributes that will serve as the basis for
building optimal cover for a set of functional dependencies.
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Introduction

The A set of functional dependencies
may have different structures, and several
properties of the database are dictated by
structure and quality of the functional
dependencies set. In addition, a set of
functional dependencies can be modified,
simplified, while retaining its qualitative
aspect of the deduction system.
The notion of equivalent sets of functional
dependencies is a central one in database
design. This is because the design process
starts from a given schema, modifying it to
obtain a schema with desirable qualities,
but equivalent with former in terms of
integrity constraints both structural and
behavioral.
These sets of functional dependencies
usually are called covers. If the structure of
dependencies set is simple, it is more
efficient the checking of the database
consistency and the possibility of
application of integrity constraints is
facilitated.
Further, the computing of optimal cover
for a set of functional dependencies is dealt
with.

2 Covers for functional dependencies

Definition 1. ([1], p.71) Two sets of
functional dependencies ¥ and G over
scheme R are equivalent, written ' =G , if
F'=G"

It is said that in case if F|-G , then
covers G . If sets F and G are equivalent,
they are cover one for another.

If FEG, that is if F+:G+, then any
dependence X =Y that is implied by
is implied by G . So to check if F and G
are equivalent, take any dependence
X =Y in F and check if @1=X > f

some dependence X =Y does not belong

to G+, then F~ #G" Then, analog, check
if any dependence ¥ =W in G is derived
from £ . If all dependencies are derived
from these appropriate sets, the sets £ and
G are equivalent.
Consider by [F1 and 111 the cardinality
of ' and number of attributes involved by
F (including repeated), respectively. As
the complexity of the algorithm to deduct a
dependence from a given set of functional
dependencies, that is a inference of
dependence X =Y from the set F | is
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O(IEID | it is not hard to see that the
algorithm for determining whether two sets

of functional dependencies F are G are
equivalent, will consume a polynomial

time relative to the size of the input data,
O(IGII-[FI+][FI-1G]

Example 1. The sets F=14B—>C,
AC —> D AD — B C—B} .4

G={4D — C, AB—)D’ C—> B} are

equivalent, but £ is not equivalent to the
set G =14B—>C, 4C—>D ., AD> B
AC — B} '

Definition 2. ([2], p.295) A set £ of
functional dependencies is non redundant,

if 4G , so that GcF (that is, if there is no
proper subset Gof F) with G=F | If
such subset exists, then £ is redundant.
The set F is a non redundant cover for G s

if F is cover for G and F is non
redundant.

Example 2. Let ¢=14—>BC B->C}
The setF:{AﬁB,A—)C, B—Cl s a

cover for the set G, but it is a redundant

1_
cover, since F={4->B, B->C; is a
cover for G and F' = F .
There is an alternative  definition
(procedural) for notion of non redundant

Cover.

Definition 3. [3] The set / of functional
dependencies is non redundant, if there is

no functional dependency X =7 in F |
such that (F— X >YHEX->Y

Otherwise, £ is redundant.

This definition forms the basis for the
algorithm which computes a non redundant
cover. It is worth to mention that the result
from the application of the algorithm
depends on the order of examining the
functional dependencies.

It is not hard to see that a set of functional
dependencies may have more than one non
redundant cover. The result depends on the
order in which functional dependencies are
examined for removal. In [4], it is

considered the representation of all non
redundant covers of a set of functional
dependencies, and in [5] an efficient
algorithm for computing a non redundant
cover is presented.

If ' is a non redundant set of functional
dependencies, then it can not be removed
any functional dependency from £ |
without affecting the equivalence of the
obtained set with the previous one.

In contrast, functional dependencies in £
can be reduced in size by removing some
attributes from them.

Definition 4. ([1], p.74) Let £ be a set of
functional dependencies over scheme R
and let X >Y €F Attribute 4 in R is

extraneous in dependency X =Y with

respect to £, if

1. deX, Foi X >N -4 -Y i =F
or

2 Ay, po XSV 5= (4D} =

In other words, the attribute 4 is

extraneous in dependency X =Y | if it
can be removed from the left or right side
of dependency, without changing the

closure of ', The elimination process of
extraneous attributes 1S called,
respectively, left reduction or right
reduction of dependencies.

Definition 5. ([1], p.74) A set I of
functional dependencies is left-reduced
(right-reduced), if every functional
dependency in ¥ contains no extraneous
attributes in the left (right) side. If a set of
functional dependencies is left-reduced and
right-reduced then it is reduced.

Theorem 1. If a set of functional
dependencies is reduced, then it is non
redundant.

Proof. The statement is true, because if it
is assumed that the set of functional
dependencies is not non redundant, then
from the set may be removed at least one
functional dependency and therefore all the
attributes of this dependence are
extraneous, which contradicts the claim
that the set is reduced.

It's obvious that if a dependency is
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redundant, then all its attributes are
extraneous. To avoid dependencies of the

form X > 9 , 1t is assumed that the set
which must be reduced is non redundant.

It seems that reduced cover can be
calculated by finding and removing at
random  extraneous  attributes. But,
considering left and right sides of the
dependencies in a different order, it can get
different results. When the right sides are
examined first, after considering the left, it
may appear redundant attributes in right
sides. So, if the set of dependencies is not
non redundant at algorithms entry, the
eliminating of extraneous attributes must
begin with the left sides.

Definition 6. ([1], p.77) A set of functional
dependencies £ is canonical, if £ is non
redundant, left-reduced and every
functional dependency in £ is of the form
X—>4

Example 3. The set /' =4—=>8 4-cC,

B— Dj is a canonical cover for
G={A—> BC B— D}

Theorem 2. A canonical set of functional
dependencies is a reduced set of functional
dependencies.

Proof. The wvalidity of this statement
follows directly from Definition 6. Since a
canonical set of functional dependencies is
non redundant and every functional
dependency has a single attribute on the
right side, it is right-reduced. Since it is
also left reduced, it is reduced.

The reverse statement is not true. This is
shown in Example 3, where the set G is
reduced, but it is not canonical. However,
the relationship between reduced and
canonical covers can be characterized by
the following theorem.

Theorem 3. ([1], p.77) Let F be a

reduced cover. If the set G of functional
dependencies is formed by splitting each

dependency X > 4.4,
X—>4,..X—>4

in F into
n then G is a canonical
cover of £ . Conversely, if G is a

canonical cover, it is reduced. If the set ¥

is formed by aggregating all dependencies
in G with equal left sides into a single

functional dependency, then £ is also a
reduced cover.

Definition 7. ([1], p.78) Let £ be a set of
functional dependencies over scheme R

and let XY gR' Two sets of attributes
X and Y are equivalent, written X <> Y

under the set F , if FlEX =Y and
Fl=Y>X

Definition 7 suggests that the set £ can be
partitioned into equivalence classes. That
is, on I' can be defined an equivalence
relation:  dependencies X =Y  and
VoW in F belong to a class of
equivalence, if and only if X <>V under
the set £

Definition 8. Let ¥ be a set of functional
dependencies over scheme R and let
X, YR |t is defined as the set of
equivalence  classes of  functional
dependencies for the set X of attributes

with respect to £, denoted Er(X) , the set
E.(X)=(V >W| V>WeF&X oV}

So Er(X) is the set of functional
dependencies in F with left sides
equivalent to X with respect to £ .

Let Er be the set
Er={E.(X)| XgR&EF(X);t@}. In

other words, £7 is the set of all nonempty
equivalence classes, in which the set £ of
functional dependencies is partitioned.

The next lemma shows the correlation
between structures of two equivalent and
non redundant sets of functional
dependencies.

Lemma 1. ([1], p.78) Let ¥ and G be
equivalent, non redundant sets of
functional dependencies over scheme R .
Let X = Y be a functional dependency in

F | There is a functional dependency
VoW in G with X<V under F

(hence under G ).
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Lemma above can be paraphrased as
follows. In two non redundant covers £’
and G | for each dependency in F there is

a dependency in G with equivalent left
sides. Therefore, the equivalent non
redundant sets of functional dependencies
have the same number of equivalence
classes.

Definition 9. ([1], p.79) A set F of
functional dependencies is minimum if £
has as few functional dependencies as any

equivalent  set G of
dependencies, that is
VG F=G = [FKG|

functional

Theorem 4. Let £ be a minimum set of

functional dependencies. Then £ is a non
redundant set of functional dependencies.
Proof. The statement is true, because if it

is assumed that the set £ is not non
redundant, then it can be removed from at
least one functional dependency and
therefore there will be a cover with fewer
functional dependencies, which contradicts
the assumption that it is minimum.

It is obvious that the reverse statement is
not correct.

Consider by PSr(X) the set of left sides
of the dependencies forming equivalence
E(X) , that is:

PS,(X)={/| Vo>WeE(X)}
Then there is:

Lemma 2. ([1], p.81) Let ¥ be a non
redundant set of functional dependencies.

Pick X , a left side of some functional
dependency in £ and any Y equivalent to
X (thatis X <> Y under F'). There exists
a set Z in DSe(X)
(F-E,(X)|FY>Z

Lemma 3. [6] Let £ and G be
equivalent, non redundant sets of

functional dependencies over scheme R .
Let X be a left side of some functional
dependency in £ and any Y such that
XoY under F . If

class

such that

Y > Ze(F-E (X))
Y > Ze(G-Eq(X)"

Theorem 5. [6] A non redundant set £ of
functional dependencies is a minimum set,
if and only if there are no distinct

then

functional dependencies X =Y and

V=W in any equivalence class E,(X)

such that X =>Ve (F_EF(X))+.

Corollary 1. If ¥ and G are equivalent,
minimum sets of functional dependencies,
then the corresponding equivalence classes
contain the same number of functional
dependencies.

Corollary 2. If ¥ and G are equivalent
and minimum sets of functional
dependencies, then for each left side

X, e PSp(X) there is a single left side Vi
in PSe(X)

X, >V, e(F-E (X))

such that

and
Vi > X, e(F-E (X))

Proposition 1. The existence of the
bijection indicated in Corollary 2, allows
substitution of some left sides of a
minimum set of functional dependencies
by the corresponding left sides of another
minimum cover, which does not affect the
equivalence of minimal sets. In addition,
the new set of functional dependencies will
continue to be minimal.

The above theorem states that if a non

redundant set O has two dependencies
X =Y and V=>W | such that X <V

and (G-E(X)=X >V , then G is not

minimum set of functional dependencies.
These two dependencies can be substituted
with other functional

dependency V' = YW | Consequently, it is
obtained an equivalent set of functional
dependencies with one dependency less.
The algorithm to minimize a set of
functional dependencies is based on this
process.

A set F of functional dependencies can be
evaluated taking into account the number
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of attribute symbols (including repeated)
involved by the functional dependencies in
F o For  example, the set

F={4B—>C, C—>B} .ists of five

attribute symbols, that is IE =S,

Definition 10. ([1], p.86) A set I of
functional dependencies is optimal if there

1S no equivalent set G of functional
dependencies with fewer attribute symbols
than £, that is

VG F=G = || F|<G]
Theorem 6. ([1], p.86) An optimal set of
functional dependencies is reduced and

minimum.

Example 4. The set I =14BC—oE

BC—D D= BC} s not an optimal set

of functional dependencies, because the set
G={4dD—>FE BC > D D — BC}

consists of fewer symbols than £ and

F'=G 1t should be noted that the set G is
optimal.

Unfortunately, there is not known any
algorithm of polynomial complexity that
would build an optimal cover for a given
set of functional dependencies. This
problem belongs to the class of NP-
complete problems.

A size reduction technique for solving this
problem is proposed below.

Definition 11. Let X > Y€F pe a
functional dependency. The set X of
attributes is a determinant for the set ¥ of
attributes, if no proper subset X' of set X

exists such that X' =Y € F™ |

3 An inference model of functional
dependencies

To prove several assertions about
functional dependency inference, a model
called Maximal derivation is proposed.
This model deducts in a linear mode the set
of attributes functionally dependent (under
a set of functional dependencies) for a
given set of attributes.

It has the uniqueness property and it is
very easy to use in demonstrating claims

about functional dependencies structures.
In general, this model is not something else
than a sequence of sets of attributes, which
are built iteratively, involving for their
construction  groups of  functional
dependencies with left sides included in
the previous set.

Since the maximal derivation is a sequence
of sets of attributes, there can be built its
reduced version, called simply -
derivation, which effectively applies in the
inference of functional dependencies.
Some properties of the proposed model
and its inference ability have been proven.
It 1s equivalent to applying the inference
model of dependencies with Armstrong
axioms.

In [7] is presented a model called maximal
derivation (the name is taken from [8]).
The construction concept is based on the
algorithm which computes the closure of
the set of attributes under the set of
dependencies, as described in [5].

Definition 12. Let £ be a set of functional
dependencies over set R of attributes and

let X SR Maximal derivation of the set

of attributes X under the set £ of
dependencies is a sequence of sets of
<Xy X n X, >

attributes , so that:

(1. Fo =4,

). X, =Xx,Uz , i=ln ,  where
Z= Uf W/ for all dependencies
Vio>W;eF which satisfies Vi X
and 71 @ Xi‘l;

(3). Nothing else from R is a member of
X,

1

Before we show that maximal derivation is
a powerful derivation tool for functional
dependencies, two of its properties are
considered.

Lemma 4. [7] If X €Y and sequences

<Xy, X, X, > <Y, Y,..Y, > are
>

maximal derivations of the sets X and Y,

respectively, under £, then for any X
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exists a set Y such that X el and
j<i

This property tells us that if the set of
attributes is larger, then the terms of
maximal derivation converge faster and
they are closer to the beginning of the
maximal derivation.

Lemma 5. [7] If <Xor X1 X0> 4o the
maximal derivation of the set X under the
set I' of functional dependencies, then
X>X.eF" j—0n

The property represented by this lemma
states that any term of maximal derivation
is functionally determined by the set of
attributes on which this derivation is built.
Based on these two properties the next
theorem will be proven:

Theorem 7. [7] Let <Ko Xy X, > be
the maximal derivation of the set X under
the set F of functional dependencies.

Then X =Y € F" if and only if rekx,
This theorem actually proves that applying
the maximal derivation for the deduction
of functional dependencies from a given
set of dependencies is equivalent to
applying Armstrong's axioms for the
dependencies deduction process, because
this theorem's proof is based only on the
inference of these rules. But unlike other
derivation instruments, the deduction using
maximal derivation is unique, i.e. there are
no two different maximal derivations for
the deduction of a functional dependency
from a given set of dependencies.

Due to the fact that Armstrong rules are
sound and complete, the maximal
derivation has the same properties. In
addition, the derivation is a deterministic
process and not a nondeterministic one as
is the case of deduction using rules of
inference.

Definition 13. [7] Let X >Y€F" and
<X XX, > Ll e

derivation of the set X under ¥ . Let
be the first element which contains the set

Yy Then the subsequence

maximal
Xi

<X, Xypeon X > 1s considered to be the

derivation (not necessarily the maximal

one) of the functional dependency X =¥

under £,
From Theorem?7 and Definition 13 follows

Corollary 3. [7] X >Y€F" then and
only then when the derivation of X =Y
under £ exists.

Corollary 4. [7] If X > Y €F" and the
dependency V >WeF is wused for
computing the derivation of the X =7V
under £, then X—>VeF",

The correctness of this statement logically
follows from the Lemma5 and the
reflexivity and transitivity rules.

It is obvious that the last element, X", in
maximal derivation is nothing else but

X" . And Theorem 7 says that X =Y

follows logically from £, if YecXx° So,

the maximal derivation serves as a
theoretical model for algorithm to building

the closure of a set X of attributes under a

set £ of functional dependencies.
The uniqueness of derivation is explained
by the fact that every step of the algorithm
to create the next term of maximal
derivation involves all dependencies that
satisfy condition (2), respectively.

4 Redundant and non redundant
equivalence classes of attributes

In this section, we introduce the notion of
contribution graph for a set of functional
dependencies and condensed graph of the
contribution graph. Also, it is presented
that strongly connected components of a
contribution graph divide the set of
attributes of relational schema into
equivalence classes of attributes and a
strict partial order can be defined over the
nodes of condensed graph.

Mapping of functional dependencies
inference in  contribution graph is
examined and there are introduced
concepts of redundant equivalence class
and non redundant equivalence class of



Database Systems Journal vol. II, no. 4/2011

23

attributes.
Given a set I of functional dependencies

on the set R of attributes, that are part of

the relation scheme Sch(R, F) ., a

contribution graph is drawn, in order to
represent £ .

Definition  14.
G=(S,E)

Contribution  graph

of set I’ is a graph that:

o for VAER there exists in S a vertex
labeled with attribute 4 ;

o for VX > Y eF and for VA€ X and
VBe€Y there exists in £ an edge

a=(4,B ), that is directed from vertex
4 to vertex B.
Example 5. If ' =14BC>E BC D,
D—BC} .4 R={4,B,C.D,E} .,
the contribution graph of set £ of
dependencies is presented in Figure 1.

B

C
Fig. 1. A contribution graph for set £

Two vertices ABES  are strongly
connected, if and only if there exists in

graph G a path from 4 to B and
backwards, from B to 4 . It is obvious
that the relation of strong connectivity is an
equivalence relation. So, there is a partition

of set of vertices S into pairwise disjoint

S=ULS

subsets. That is, i and all vertices

in Si , 1’”, are strongly connected, and

every two vertices from different subsets
are not strongly connected.
In accordance with this partition, sub-

graphs G =S, E) , i=Ln are called
strongly connected components [9] of the

graph G | where E, represents the set of

edges that connect pairs of vertices in S .

Example 6. The set of vertices of the
graph represented in Figure 1 are split into

three equivalence classes Sy =14}

S, ={B,C,D} and S5 :{E}

The concept of the condensed graph of a
contribution graph is introduced:
Definition 15. Let G be the condensed
graph of the graph G . Set of vertices of

graph G* represents set 161G} of all
strongly connected components of graph

G and there is an edge from vertex G, to

G, : C
vertex / of graph G* | if there exists in
G at least one edge that connects one

G,
vertex from component ~‘ to one vertex

G,
from component /.

Obviously the graph G *isan acyclic one.
Example 7. The condensed graph of graph
from Figure 1 has three vertices and two
edges, as shown in Figure 2.

G‘IO—&:}I—OGE

Fig. 2. Condensed graph of the graph from
Figure 1

Over the set of vertices of graph G* a

strict partial order is defined. Vertex G;
G ..G, . .

precedes vertex /, if ~/ is accessible

from G, . Now, the equivalence classes

Si08, Wil be sorted based on the

corresponding order graph’s G* vertices.

Lemma 6. If X >Y€F" and X is a
determinant of set ¥ under ¥ , then for

every attribute Ae(X-Y) there is an
attribute B € Y so that in the contribution
graph G there exists a path from vertex 4
to vertex B and for every attribute
Be(Y-X) there exists in X an attribute
A | from which the vertex B can be
reached.

Proof. Let attribute 2 (¥ -X) and let
the subset X' of set X be determinant for
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B under F . Because X'>Berl"
according to Definition 13, there is a

o H=<X,X,.,X >
derivation (A for

dependency X '= B under F . Then,
based on Corollary 4, there exists a
sequence of dependencies

NoWinV, oW, in £, where AEV1,
BEeW, ana WiV ¢@, for I =La-1
Contribution graph has a structure, such

that for every dependency Vi=W, in £,
from each vertex labeled with an attribute

.V
in / an edge leaves to every vertex

labeled with an attribute in Wf So, there
exists a path from every vertex 4€ X' to
vertex B

It must be mentioned that, if X is
considered the union of all determinant of
attributes in ¥ —X | then XUXNY=X
Indeed, if we suppose that the set

XUXNY j5 5 proper subset of set X |
this will contradict the supposition that X
is a determinant for ¥ under F .

Corollary 5. If reduced dependency
V=W is used non redundantly in
building the derivation H for dependency
X =Y under F , then in contribution
graph G there exists a path from every
vertex labeled with an attribute in ¥V to

every vertex labeled with an attribute in ¥,
The following theorem shows a correlation
between non redundant equivalence classes
of attributes and the left and right sides of a
left-reduced dependency.

Theorem 8. Let X > Y €F" where X is

a determinant for Y under £ and

X, ycrU..Ur, . For a y , Wwhere

j=Lm , the following takes place: if
YﬂTj ;t@,then XﬂTj ;t@.
Proof. The soundness of this statement is

proven by contradiction: let YN I, 20 ,

but XNT; =@ . Evidently that
Xcrnu.Jr,_,ur,, U..UrT,

X—>(YNT)eF"

and

Let X' , where

. . T.
X'cX , 1s determinant for J under

F . According to Lemma 6, on the

contribution graph of the set F of
dependencies, from every vertex labeled

with an attribute in X' there exists a path
to a vertex labeled with an attribute in

YNT, X'cTU..UT,

/. Thereby, -1, But, in

. T. .
this case, / is redundant. Therefore,

XﬂT/;t@. Then, more so XﬂT/;t@

takes place. A contradiction has been
reached.

Below, there are shown a series of features
related to the determinants and the sets of
redundant and non redundant equivalence
classes of attributes.

Theorem 9. If X is a determinant under

F of set 5 U'"USf, where / =l,n’ then
XcS,U..Us,
Proof. Let Xas5U..Us, . Then there

exists an equivalence class S , where
£=J>" such that XNS, =@

6, in the contribution graph G | from every
Ae XN,

. By Lemma

attribute there is a path

towards B , where BESIU"'US/. But
this fact contradicts the supposition that

sets S precede the set S .
Corollary 6. If X is a determinant of set
S, U..Uus XNS =D

S|,

» under F', then
Proof. Indeed, for every attribute B in 1
or B€ X or, according to Lemma 6, there
is in X an attribute 4 from which vertex
B is accessible in contribution graph G .

But then 4 is also a member of
equivalence class Sl.

Definition 16. Equivalence class 5 is
called non redundant, if and only if for
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every attribute 4 in S , the expression
ULS,-S)—>Ae¢F holds.

Considering Lemma 6, it can be concluded
that set 5 is non redundant, if and only if

for every attribute 4 in 5 , the expression
(U{: S)—>A¢ F holds.
From the ordered sequence of sets

Sy S
" n 3 sequence of ordered non

redundant sets can be built .1, , Where
T, =S5, T,=8,-(ULT);

and for

J=2n . As a result of this process, some

T,
sets 7/ can become empty. These empty
sets can be excluded from the sequence

and a sequence of nonempty sets 1,..T,

will be obtained, keeping the precedence of
prior sets.
Proposition 2. L=5,
Proposition 3.

(1,U..UT,) > (5,U..US,) e F*

Example 8. Sequence of equivalence

S, =14}

classes of  attributes ,

S, ={B,C. D} 4nq S; =1E} turns into the
following sequence of non redundant
equivalence classes of attributes: I = {A},
T, ={B,C,D} .

Lemma 7. If X is a determinant under £’

of set s, U..Us, , then Z , where
Z:Xﬂ(SlU...US_/.) and J=L7

determinant for $;U..Us, under £ .
Proof. According to Theorem 9, the

expression XcsU.Us, takes place.
First it will be  shown  that

zZ— S U..US)eF . Lets suppose the
Z—>(S U US)eF”

1S a

contrary: . Then
there exists a set Z', where £ S X | which
is a determinant of set 5U.-U 5 and

2N 80 =@ . Considering Lemma 6,
there is a path from every vertex labeled

Z'ﬂ(U?;/H Sz)

J
vertex B in Ui:l Si . A contradiction has
been encountered. Therefore,
Z - (S, U...USj)eF+

with 4 in that leads to a

To complete the proof of this lemma, it
will be shown that Z is a determinant

$iU-US) e, if it is
considered that Z is not a determinant of

under F of set

F under F', then there must exist in Z an
attribute A , such that
(Z-{4}) — (S, U...US].) eF"

(Z-A)>ZelF" takes place, fact that
implies (X —{4) > X eF" . So, a
contradiction has been encountered, that X

s,U..US

. But then

is a determinant of set n under
X .

Theorem 10. If set X of attributes is a
determinant of set s U..Us, , then

Xcrnu.ur,

Proof. Let SJ' be the first set of attributes

. .. T.
that doesn’t coincide with ~/ and assume
that there is an attribute 4 in X , such that

A€, and A¢ T/ Lemma 7 implies that

(X NS U US)) = (S, U..US,) e F*.

Since A¢ T ,

then (Xﬂ(Sl UUS/))_)A€F+
SO(X_{A})_)XEF+, thus X is not a

determinant of set 5 U..Us, under £ .
Appealing to Theorem 10, Lemma 7 can
be paraphrased for non redundant
equivalence classes of attributes.

Lemma 8. If X is a determinant under £

of set D U..UT, , then Z , where
determinant for L U"'UTf under F.
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5 Calculation of determinants using a
scheme decomposition method

In this section, there are proposed
theoretical tools that can be the basis of
relational schemes decomposition
algorithm for computing determinants
related to the scheme, rather all
independent components from which all
determinants of scheme can be built. The
scheme is partitioned in subschema to
solve the determinants searching problem
for each subschema separately. Then, for
each  subschema will be  found
determinants with the fewest attributes
(including repeated). The groups of
attributes from the set of functional
dependencies that are determinants in some
subschema are substituted with the shortest
determinants. This happens only for
equivalence  classes of  functional
dependencies containing the determinants
in the left or right sides as subsets.

Below there are considered the functional
dependencies and non  redundant
equivalence classes of attributes. It is
examined how the determinants of a non
redundant equivalence class of attributes in
relation to a set of functional dependencies
in the projection of this set of dependencies
on the attributes of non redundant
equivalence class of attributes are
reflected.

The next theorem presents a property of
non redundant equivalence classes of
attributes if the set of functional
dependencies, on which these classes are
built, is reduced.

Theorem 11. If the

Vo>WEeF is reduced and
thenVani@,

Proof. Appealing to the definition of
contribution graph, from each vertex

dependency
WNT, =

labeled with an attribute in ¥ an edge
leaves to every vertex labeled with an
VT =2 for

VT, =2

attribute in ¥ . Then
i=j+1,m

. Assuming that

(LU..UT, ) >VeF"

then there is )
follows

From this it

(G U..UT, ) > WeF*

that . But in this

T. . .
case, “’ is redundant, fact that contradicts
the nature of this set of attributes.

Proposition 4. Let X >YEF" pe a

functional dependency. If Ycrnu..ur,

and dependency Y 2>We€F is non
redundantly wused in derivation of
dependency X =Y under F , then
VT =2 for
Veracity of this statement is based directly
on the Corollary 5.

Definition 17. Let £ be a set of functional
dependencies over the set R of attributes.
Projection of the set £ of dependencies,

labeled z (F) , on a set Z of attributes,

where £ SR , i1s the set of functional
dependencies defined by the expression

7, (F)={(XNZ)> ¥ NZ)|
Xo>YeF&XN2D) D& (YNZ) =T},
Then the following statement is true:
XcnU..UT,

i=j+1,m

Lemma 9. If X, where

. . T.
is a determinant of the set "/ under F ,

then (XﬂTf)_)Tj E”;f(F).

Proof. According to
XNT, 2D

Theorem 8§,

Since X_)TJEF ,

following Corollary 3, there is a derivation
H=<X,,X,,.,X,>

X —>T

for dependency

/ under F' .
Let H'=<2y,2,,...2, > be the maximal
L. , F .
derivation for Y underﬂrf’( ). Given

the Lemma 7, to prove the lemma, it
T cZ
suffices to show that '/ < “n |
. T.cX .
Indeed, given that "/ ", then either

X:Tf, or y is formed in H from

dependencies which contain attributes of

7 in their right side. In the first case,
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Xm} =T,
(XNT)—>T,

and the  dependency

is deducted from any set of
dependencies. In the second case, taking
account of Theorem 11, the dependencies

used in A , that have some attributes of Y
in their right sides, have also attributes of

y in the left sides. Thus, if / has used

the dependency V—2>W in F

and WAT, =2 , then H' has used the
dependency V0T —WNT) in
T (F) T.cZ

. Therefore, "/ = "™,
Further, it is established the relationship
between determinants of scheme and its
subschema determinants obtained via
projections.

Theorem 12. Let Sch(UL, S, F) be a

database schema. The set X , where

XngU---UTm, is a determinant for

LUUT, nder F ) if and only if
XnTl""’XﬂTm are determinants for
BT upder  n (F)sees 7ty (F) ’
respectively.

Proof. Necessity. Let the set X be a
determinant for 1! u..ur, under F . 1t
will be shown that XﬂTl""’XﬂTm are
determinants for LT, under

7 (E )5 77, (F) , respectively.

Will be proved this by applying
mathematical induction on the number of
non redundant equivalence classes, ! ,

where (=Lm et i=1
g XNT,

. Taking into
account Lemma is a determinant
for 1t under F . According to Lemma 9,
XNT is a determinant for 11
to 77 (F) )

It is assumed now that the assertion is fair

5,U..ur

classes less than X and will demonstrate

in relation

for k-1 namely, for a number of

that the affirmation is also true for a

number of classes equal to k.
Since XN@U..UTY) - (T U..UT)erF",

where, according to

XN U..dry
nU..Ury under F ,
then X NHU-UT) ST FT e 4
assumed that for an attribute 4 , where
A< XN, , the expression
X N@U.UT)\{4}) >T e F" holds,

then, on the basis that XN@U..UT) 1S
(4, U...Ur)

determinant for ,  where

i=Lk-1 it follows that
(XN(TU..UT )\ {4}) —

xN@U..Uryyer” takes place. But in

Lemma 8,

is a determinant for

this case, will not be

determinant for (7, U"'UTk). Thus, there
is X' X | that XNT, cX and X' is

determinant for 't under F . Whence,

XNT, = XNI, , is determinant for T

under £ and, according to Lemma 9,
XNT,

Tr, (F)

Sufficiency. Now it will be proven that if
e XNTe XN

T,,..T

is determinant for T, under

T .
m are determinants for

. under 77 (F),...,;rTm (F) ’

respectively, then the set Z , where
Z=XNLU..UXNT,

T,U..UT

, 1s determinant

m under F .
It is obvious that Z—>@U..Ur)eF ,
Z=XNT,U..UXNT,

for

where .
Assuming that for at least one attribute 4

in XNT, the expression
(Z-{4)—>@U..UT)eF holds, then,
XNT

by virtue of Lemma 9, * will not be
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determinant  for T under 7T (F)

Consequently, Z=XNT,U.UXxXNT, ,

is determinant for r,u..ur
The theorem is proved.

Let Seh(U S, F) be a relational schema,

and let ru..ur, be the set of non
redundant equivalence classes of attributes

built on the set £ of dependencies. Thus,

each determinant X of the set 11 Ul
under £ consists of the union of

m under F' .

determinants for the set T (one from each
non redundant equivalence class of
7, (F)

attributes) under , where 1=Lm

The problem of calculating the sets of
attributes that can be substituted with other
equivalent sets of attributes of smallest
cardinality for each equivalence class in

which the set £ of dependencies of the

scheme Sch(U, S, F) is  partitioned,
consists in finding all the determinants for
each Ti.

It should be noted that the set of

dependencies 77, (F) may not be

minimum, even if £ is minimum.
Moreover, it may be neither non
redundant.

Example 9. If /=28 B->C
AB—> D AD—> B }, then there are two
non redundant classes of attributes

Ii=14} gng T =1B.C. D} projection on

class 1 of the set F  will
be Fnf)={C>B p_,c B>D

D— B} Although the set £ of functional

.. ., (F
dependencies is minimum, the set r (F)

1S not minimum, because there is an
equivalent set of dependencies

F’:{C—>B’ B—>CD D — B} ith
fewer dependencies.
Example 10. 1f =128 B>C

AB—>D AD—>C} 4150 there are two

=4

non redundant classes and

I, ={B.C.D} 1y this case the projection
7, (F)={C>B p ,c BD
D — C}

b
1s not non redundant, because the

dependency B —=>C is redundant in

77, (F) . In other words, 7, (F)={C—> B,

B—D D—Cj

Therefore,  before = computing  the

determinants of each set T it is useful to

T, () of functional

minimize the set
dependencies.

It is to mention that partitioning the set of
attributes in classes of equivalence,
essentially reduces dimensions of problem

of computing the optimal cover. For this, it

suffices to consider the set I , for example,
which may include the determinant with

minimum cardinality. The set L contains
all attributes involved in the determinants

T under 7 (F). These will form all

the determinants for ry..ur, under £ .
In addition, left side of every dependency

.. (F) .
in 77 , in essence, represents a

7 (F)=0

for

determinant for I . In case

there is only one determinant, T itself.
The following is an integrator example.

Example 11. Let £ =14BC—E,
BC—D, D—BC} e 4 minimum and

reduced set of functional dependencies.
Any set of functional dependencies can be
minimized and reduced in polynomial time
[1]. It is necessary to build an optimal
cover of this set of dependencies.

The set ' of functional dependencies is
divided into equivalence classes of
dependencies. Obviously, that on the
equivalence  classes of  functional
dependencies can be defined a strict partial

order. Let Attr(F) denote the set of
attributes involved by dependencies of

. F .
equivalence class” 7. The equivalence class
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F precedes the equivalence class £ if

Attr(F,)* < Anr(F)” . In the considered

example, the set of functional
dependencies is divided into two

equivalence classes [ =HVE ,

where Fy=14BC —> E} ,

and P2 = {BC—D, D—>BC}

The contribution graph for the set of

dependencies ' has the form represented
in Figure 1. As noted already above, the set
of vertices of the graph in Figure 1 is
divided into three equivalence classes of

S,={4y _ S,={B,C.D}

attributes and

8, =1k} , and are reduced to the following
sequence of non redundant equivalent

Ty =4}

classes of  attributes ,

T, ={B,C,D}

The set £ of functional dependencies,
below, is projected on the sets of attributes

Ty and?: 2, resulting in the following sets of
functional

dependencies 7y (F) =2 ,

7, (F)={BC—>D, D—BC} o o

the non redundant classes of attributes
there were obtained the following sets of

determinants t4} , D, BC} , respectively.

Now the groups of attributes that are
determinants and part of dependencies in
F are substituted by those with the
smallest length. Substitutions occur in the
equivalence classes of dependencies which
precede corresponding class that has
generated the determinant. Therefore, the

set of attributes BC of dependencies that

are part of the equivalence class B (there
is only one dependency) is substituted by

determinant D . Thus optimal cover is

obtained as [ =t4D—>E, BC—D,

D — BC}

6 Conclusions
It is known that various types of covers

provide specific properties to database
scheme. Referring to the problem of
building optimal covers, it was found that
it is the strictest structure of functional
dependencies regarding the constituent
elements.

Because the task of obtaining the optimal
cover 1is classified as NP-complete
problem, a way of achieving a solution, in
acceptable time, is to apply a
decomposition method to dive the original
in smaller problems that could be solved,
and then to combine particular solutions in
order to construct the initial problem
solution.

It should be mentioned that the proposed
method does not change the complexity of
the problem. Its nature continues to be NP-
complete. However, it can be solved in
such a way that it will reduce the time
needed to impose constraints on database
content and to reduce the time required to
execute the algorithm for computing the
closures.
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