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Introduction 
The A set of functional dependencies 

may have different structures, and several 
properties of the database are dictated by 
structure and quality of the functional 
dependencies set. In addition, a set of 
functional dependencies can be modified, 
simplified, while retaining its qualitative 
aspect of the deduction system. 
The notion of equivalent sets of functional 
dependencies is a central one in database 
design. This is because the design process 
starts from a given schema, modifying it to 
obtain a schema with desirable qualities, 
but equivalent with former in terms of 
integrity constraints both structural and 
behavioral. 
These sets of functional dependencies 
usually are called covers. If the structure of 
dependencies set is simple, it is more 
efficient the checking of the database 
consistency and the possibility of 
application of integrity constraints is 
facilitated. 
Further, the computing of optimal cover 
for a set of functional dependencies is dealt 
with. 
 
2 Covers for functional dependencies 

Definition 1. ([1], p.71) Two sets of 
functional dependencies F  and G  over 
scheme R  are equivalent, written GF ≡ , if 

++ = GF . 
It is said that in case if GF −| , then F  
covers G . If sets F  and G  are equivalent, 
they are cover one for another. 
If GF ≡ , that is if 

++ = GF , then any 
dependence YX →  that is implied by F  
is implied by G . So to check if F  and G  
are equivalent, take any dependence 

YX →  in F  and check if YXG →−| . If 
some dependence YX →  does not belong 
to 

+G , then 
++ ≠ GF . Then, analog, check 

if any dependence WV →  in G  is derived 
from F . If all dependencies are derived 
from these appropriate sets, the sets F  and 
G  are equivalent.  
Consider by || F  and |||| F  the cardinality 
of F  and number of attributes involved by 
F  (including repeated), respectively. As 
the complexity of the algorithm to deduct a 
dependence from a given set of functional 
dependencies, that is a inference of 
dependence YX →  from the set F , is 

1 
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||)(|| FO , it is not hard to see that the 
algorithm for determining whether two sets 
of functional dependencies F are G  are 
equivalent, will consume a polynomial 
time relative to the size of the input data, 

|)|||||||||(|| GFFGO ⋅+⋅ . 
Example 1. The sets ,{ CABF →=  

DAC → , BAD → , }BC →  and 
,{ CADG →=  DAB → , }BC →  are 

equivalent, but F  is not equivalent to the 
set ,{ CABG →=′  DAC → , BAD → , 

}BAC → . 
Definition 2. ([2], p.295) A set F  of 
functional dependencies is non redundant, 
if G∃/ , so that FG ⊂  (that is, if there is no 
proper subset G of F ) with FG ≡ . If 
such subset exists, then F  is redundant. 
The set F  is a non redundant cover for G , 
if F  is cover for G  and F  is non 
redundant. 
Example 2. Let BCAG →= { , }CB → . 
The set BAF →={ , CA → , }CB →  is a 
cover for the set G , but it is a redundant 

cover, since },{1 CBBAF →→=  is a 
cover for G  and FF ⊂1 . 
There is an alternative definition 
(procedural) for notion of non redundant 
cover. 
Definition 3. [3] The set F  of functional 
dependencies is non redundant, if there is 
no functional dependency YX →  in F , 
such that YXYXF →=→− |}){( . 
Otherwise, F  is redundant. 
This definition forms the basis for the 
algorithm which computes a non redundant 
cover. It is worth to mention that the result 
from the application of the algorithm 
depends on the order of examining the 
functional dependencies. 
It is not hard to see that a set of functional 
dependencies may have more than one non 
redundant cover. The result depends on the 
order in which functional dependencies are 
examined for removal. In [4], it is 

considered the representation of all non 
redundant covers of a set of functional 
dependencies, and in [5] an efficient 
algorithm for computing a non redundant 
cover is presented. 
If F  is a non redundant set of functional 
dependencies, then it can not be removed 
any functional dependency from F , 
without affecting the equivalence of the 
obtained set with the previous one.  
In contrast, functional dependencies in F  
can be reduced in size by removing some 
attributes from them. 
Definition 4. ([1], p.74) Let F  be a set of 
functional dependencies over scheme R  
and let FYX ∈→ . Attribute A  in R  is 
extraneous in dependency YX →  with 
respect to F , if  
1. XA∈ , −F }}){{(}{ YAXYX →−→ U F≡  

or 
2. YA∈ , −F })}{({}{ AYXYX −→→ U F≡ . 
In other words, the attribute A  is 
extraneous in dependency YX → , if it 
can be removed from the left or right side 
of dependency, without changing the 
closure of F . The elimination process of 
extraneous attributes is called, 
respectively, left reduction or right 
reduction of dependencies. 
Definition 5. ([1], p.74) A set F  of 
functional dependencies is left-reduced 
(right-reduced), if every functional 
dependency in F  contains no extraneous 
attributes in the left (right) side. If a set of 
functional dependencies is left-reduced and 
right-reduced then it is reduced. 
Theorem 1. If a set of functional 
dependencies is reduced, then it is non 
redundant. 
Proof. The statement is true, because if it 
is assumed that the set of functional 
dependencies is not non redundant, then 
from the set may be removed at least one 
functional dependency and therefore all the 
attributes of this dependence are 
extraneous, which contradicts the claim 
that the set is reduced. 
It's obvious that if a dependency is 
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redundant, then all its attributes are 
extraneous. To avoid dependencies of the 
form ∅→X , it is assumed that the set 
which must be reduced is non redundant. 
It seems that reduced cover can be 
calculated by finding and removing at 
random extraneous attributes. But, 
considering left and right sides of the 
dependencies in a different order, it can get 
different results. When the right sides are 
examined first, after considering the left, it 
may appear redundant attributes in right 
sides. So, if the set of dependencies is not 
non redundant at algorithms entry, the 
eliminating of extraneous attributes must 
begin with the left sides. 
Definition 6. ([1], p.77) A set of functional 
dependencies F  is canonical, if F  is non 
redundant, left-reduced and every 
functional dependency in F  is of the form 

AX → . 
Example 3. The set BAF →={ , CA→ , 

}DB →  is a canonical cover for 
BCAG →= { , }DB → . 

Theorem 2. A canonical set of functional 
dependencies is a reduced set of functional 
dependencies. 
Proof. The validity of this statement 
follows directly from Definition 6. Since a 
canonical set of functional dependencies is 
non redundant and every functional 
dependency has a single attribute on the 
right side, it is right-reduced. Since it is 
also left reduced, it is reduced.  
The reverse statement is not true. This is 
shown in Example 3, where the set G is 
reduced, but it is not canonical. However, 
the relationship between reduced and 
canonical covers can be characterized by 
the following theorem. 
Theorem 3. ([1], p.77) Let F  be a 
reduced cover. If the set G  of functional 
dependencies is formed by splitting each 

dependency nAAX ...1→  in F  into 
nAXAX →→ ,...,1 , then G  is a canonical 

cover of F . Conversely, if G  is a 
canonical cover, it is reduced. If the set F  

is formed by aggregating all dependencies 
in G  with equal left sides into a single 
functional dependency, then F  is also a 
reduced cover. 
Definition 7. ([1], p.78) Let F  be a set of 
functional dependencies over scheme R  
and let RYX ⊆, . Two sets of attributes 
X  and Y  are equivalent, written YX ↔ , 
under the set F , if YXF →=|  and 

XYF →=| . 
Definition 7 suggests that the set F  can be 
partitioned into equivalence classes. That 
is, on F  can be defined an equivalence 
relation: dependencies YX →  and 

WV →  in F  belong to a class of 
equivalence, if and only if VX ↔  under 
the set F . 
Definition 8. Let F  be a set of functional 
dependencies over scheme R  and let 

RYX ⊆, . It is defined as the set of 
equivalence classes of functional 
dependencies for the set X  of attributes 
with respect to F , denoted )(XEF , the set 

}&|{)( VXFWVWVXEF ↔∈→→= . 
So )(XEF  is the set of functional 
dependencies in F  with left sides 
equivalent to X  with respect to F . 
Let FE  be the set 

})(&|)({ ∅≠⊆= XERXXEE FFF . In 
other words, FE  is the set of all nonempty 
equivalence classes, in which the set F  of 
functional dependencies is partitioned. 
The next lemma shows the correlation 
between structures of two equivalent and 
non redundant sets of functional 
dependencies. 
Lemma 1. ([1], p.78) Let F  and G  be 
equivalent, non redundant sets of 
functional dependencies over scheme R . 
Let YX → be a functional dependency in 
F . There is a functional dependency 

WV → in G  with VX ↔  under F  
(hence under G ). 
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Lemma above can be paraphrased as 
follows. In two non redundant covers F  
and G , for each dependency in F  there is 
a dependency in G  with equivalent left 
sides. Therefore, the equivalent non 
redundant sets of functional dependencies 
have the same number of equivalence 
classes. 
Definition 9. ([1], p.79) A set F of 
functional dependencies is minimum if F  
has as few functional dependencies as any 
equivalent set G of functional 
dependencies, that is 

|||| GFGFG ≤⇒≡∀ . 
Theorem 4. Let F  be a minimum set of 
functional dependencies. Then F  is a non 
redundant set of functional dependencies. 
Proof. The statement is true, because if it 
is assumed that the set F  is not non 
redundant, then it can be removed from at 
least one functional dependency and 
therefore there will be a cover with fewer 
functional dependencies, which contradicts 
the assumption that it is minimum. 
It is obvious that the reverse statement is 
not correct. 
Consider by )(XPSF  the set of left sides 
of the dependencies forming equivalence 
class )(XEF , that is: 

)}(|{)( XEWVVXPS FF ∈→= . 
Then there is: 
Lemma 2. ([1], p.81) Let F  be a non 
redundant set of functional dependencies. 
Pick X , a left side of some functional 
dependency in F  and any Y  equivalent to 
X  (that is YX ↔  under F ). There exists 
a set Z  in )(XPSF  such that 

ZYXEF F →=− |))(( . 
Lemma 3. [6] Let F  and G  be 
equivalent, non redundant sets of 
functional dependencies over scheme R . 
Let X  be a left side of some functional 
dependency in F  and any Y  such that 

YX ↔  under F . If 

+−∈→ ))(( XEFZY F , then 
+−∈→ ))(( XEGZY G . 

Theorem 5. [6] A non redundant set F  of 
functional dependencies is a minimum set, 
if and only if there are no distinct 
functional dependencies YX →  and 

WV →  in any equivalence class )(XEF  

such that 
+−∈→ ))(( XEFVX F . 

Corollary 1. If F  and G  are equivalent, 
minimum sets of functional dependencies, 
then the corresponding equivalence classes 
contain the same number of functional 
dependencies. 
Corollary 2. If F  and G  are equivalent 
and minimum sets of functional 
dependencies, then for each left side 

)(XPSX Fj ∈  there is a single left side kV  

in )(XPSG  such that 
+−∈→ ))(( XEFVX Fkj  and 
+−∈→ ))(( XEFXV Fjk . 

Proposition 1. The existence of the 
bijection indicated in Corollary 2, allows 
substitution of some left sides of a 
minimum set of functional dependencies 
by the corresponding left sides of another 
minimum cover, which does not affect the 
equivalence of minimal sets. In addition, 
the new set of functional dependencies will 
continue to be minimal. 
The above theorem states that if a non 
redundant set G  has two dependencies 

YX →  and WV → , such that VX ↔  

and VXXEG G →=− |))(( , then G  is not 
minimum set of functional dependencies. 
These two dependencies can be substituted 
with other functional 
dependency YWV → . Consequently, it is 
obtained an equivalent set of functional 
dependencies with one dependency less. 
The algorithm to minimize a set of 
functional dependencies is based on this 
process.  
A set F  of functional dependencies can be 
evaluated taking into account the number 
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of attribute symbols (including repeated) 
involved by the functional dependencies in 
F . For example, the set 

},{ BCCABF →→=  consists of five 
attribute symbols, that is 5|||| =F . 
Definition 10. ([1], p.86) A set F  of 
functional dependencies is optimal if there 
is no equivalent set G  of functional 
dependencies with fewer attribute symbols 
than F , that is 

|||||||| GFGFG ≤⇒≡∀  
Theorem 6. ([1], p.86) An optimal set of 
functional dependencies is reduced and 
minimum. 
Example 4. The set EABCF →={ , 

DBC → , }BCD →  is not an optimal set 
of functional dependencies, because the set 

EADG →={ , DBC → , }BCD →  
consists of fewer symbols than F  and 

GF ≡ . It should be noted that the set G  is 
optimal. 
Unfortunately, there is not known any 
algorithm of polynomial complexity that 
would build an optimal cover for a given 
set of functional dependencies. This 
problem belongs to the class of NP-
complete problems. 
A size reduction technique for solving this 
problem is proposed below. 
Definition 11. Let FYX ∈→  be a 
functional dependency. The set X  of 
attributes is a determinant for the set Y  of 
attributes, if no proper subset 'X  of set X  
exists such that 

+∈→ FYX ' . 
 

3 An inference model of functional 
dependencies 
To prove several assertions about 
functional dependency inference, a model 
called Maximal derivation is proposed. 
This model deducts in a linear mode the set 
of attributes functionally dependent (under 
a set of functional dependencies) for a 
given set of attributes. 
It has the uniqueness property and it is 
very easy to use in demonstrating claims 

about functional dependencies structures. 
In general, this model is not something else 
than a sequence of sets of attributes, which 
are built iteratively, involving for their 
construction groups of functional 
dependencies with left sides included in 
the previous set. 
Since the maximal derivation is a sequence 
of sets of attributes, there can be built its 
reduced version, called simply – 
derivation, which effectively applies in the 
inference of functional dependencies. 
Some properties of the proposed model 
and its inference ability have been proven. 
It is equivalent to applying the inference 
model of dependencies with Armstrong 
axioms. 
In [7] is presented a model called maximal 
derivation (the name is taken from [8]). 
The construction concept is based on the 
algorithm which computes the closure of 
the set of attributes under the set of 
dependencies, as described in [5]. 
Definition 12. Let F  be a set of functional 
dependencies over set R  of attributes and 
let RX ⊆ . Maximal derivation of the set 
of attributes X  under the set F  of 
dependencies is a sequence of sets of 

attributes >< nXXX ,...,, 10 , so that: 

(1). XX =0 ; 

(2). ZXX ii U1−= , ni 1= , where 
jjWZ U=  for all dependencies 

FWV jj ∈→  which satisfies 1−⊆ ij XV  

and 1−⊄ ij XW ;  
(3). Nothing else from R  is a member of 

iX . 
Before we show that maximal derivation is 
a powerful derivation tool for functional 
dependencies, two of its properties are 
considered. 
Lemma 4. [7] If YX ⊆  and sequences 

>< nXXX ,...,, 10 , >< mYYY ,...,, 10  are 
maximal derivations of the sets X  and Y , 

respectively, under F , then for any iX  
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exists a set jY  such that ji YX ⊆  and 
ij ≤ . 

This property tells us that if the set of 
attributes is larger, then the terms of 
maximal derivation converge faster and 
they are closer to the beginning of the 
maximal derivation.  

Lemma 5. [7] If >< nXXX ,...,, 10  is the 
maximal derivation of the set X  under the 
set F  of functional dependencies, then 

+∈→ FXX i , ni 0= . 
The property represented by this lemma 
states that any term of maximal derivation 
is functionally determined by the set of 
attributes on which this derivation is built.  
Based on these two properties the next 
theorem will be proven: 

Theorem 7. [7] Let >< nXXX ,...,, 10  be 
the maximal derivation of the set X  under 
the set F  of functional dependencies. 

Then 
+∈→ FYX  if and only if nXY ⊆ .  

This theorem actually proves that applying 
the maximal derivation for the deduction 
of functional dependencies from a given 
set of dependencies is equivalent to 
applying Armstrong's axioms for the 
dependencies deduction process, because 
this theorem's proof is based only on the 
inference of these rules. But unlike other 
derivation instruments, the deduction using 
maximal derivation is unique, i.e. there are 
no two different maximal derivations for 
the deduction of a functional dependency 
from a given set of dependencies. 
Due to the fact that Armstrong rules are 
sound and complete, the maximal 
derivation has the same properties. In 
addition, the derivation is a deterministic 
process and not a nondeterministic one as 
is the case of deduction using rules of 
inference. 
Definition 13. [7] Let 

+∈→ FYX  and 
>< nXXX ,...,, 10  be the maximal 

derivation of the set X  under F . Let iX  
be the first element which contains the set 
Y . Then the subsequence 

>< iXXX ,...,, 10  is considered to be the 
derivation (not necessarily the maximal 
one) of the functional dependency YX →  
under F . 
From Theorem7 and Definition 13 follows 
Corollary 3. [7] 

+∈→ FYX  then and 
only then when the derivation of YX →  
under F  exists. 
Corollary 4. [7] If 

+∈→ FYX  and the 
dependency FWV ∈→  is used for 
computing the derivation of the YX →  
under F , then 

+∈→ FVX . 
The correctness of this statement logically 
follows from the Lemma5 and the 
reflexivity and transitivity rules. 

It is obvious that the last element, nX , in 
maximal derivation is nothing else but 

+X .  And Theorem 7 says that YX →  
follows logically from F , if 

+⊆ XY . So, 
the maximal derivation serves as a 
theoretical model for algorithm to building 
the closure of a set X  of attributes under a 
set F  of functional dependencies. 
The uniqueness of derivation is explained 
by the fact that every step of the algorithm 
to create the next term of maximal 
derivation involves all dependencies that 
satisfy condition (2), respectively. 
 
4 Redundant and non redundant 
equivalence classes of attributes 
In this section, we introduce the notion of 
contribution graph for a set of functional 
dependencies and condensed graph of the 
contribution graph. Also, it is presented 
that strongly connected components of a 
contribution graph divide the set of 
attributes of relational schema into 
equivalence classes of attributes and a 
strict partial order can be defined over the 
nodes of condensed graph.  
Mapping of functional dependencies 
inference in contribution graph is 
examined and there are introduced 
concepts of redundant equivalence class 
and non redundant equivalence class of 
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attributes. 
Given a set F  of functional dependencies 
on the set R  of attributes, that are part of 
the relation scheme ),( FRSch , a 
contribution graph is drawn, in order to 
represent F . 
Definition 14. Contribution graph 

),( ESG =  of set F  is a graph that: 
• for RA∈∀  there exists in S  a vertex 

labeled with attribute A ; 
• for FYX ∈→∀  and for XA∈∀  and 

YB∈∀  there exists in E  an edge 
),( BAa = , that is directed from vertex 

A  to vertex B . 
Example 5. If EABCF →={ , DBC → , 

}BCD →  and },,,,{ EDCBAR = , then 
the contribution graph of set F of 
dependencies is presented in Figure 1. 
 

 
Fig. 1. A contribution graph for set F  
 
Two vertices SBA ∈,  are strongly 
connected, if and only if there exists in 
graph G  a path from A  to B  and 
backwards, from B  to A . It is obvious 
that the relation of strong connectivity is an 
equivalence relation. So, there is a partition 
of set of vertices S  into pairwise disjoint 

subsets. That is, i
n
i SS 1== U  and all vertices 

in iS , ni ,1= , are strongly connected, and 
every two vertices from different subsets 
are not strongly connected. 
In accordance with this partition, sub-

graphs ),( iii ESG = , ni ,1=  are called 
strongly connected components [9]  of the 

graph G , where iE
 represents the set of 

edges that connect pairs of vertices in iS . 

Example 6. The set of vertices of the 
graph represented in Figure 1 are split into 
three equivalence classes }{1 AS = , 

},,{2 DCBS =  and }{3 ES = . 
The concept of the condensed graph of a 
contribution graph is introduced: 
Definition 15. Let *G  be the condensed 
graph of the graph G . Set of vertices of 

graph *G  represents  set },...,{ 1 nGG  of all 
strongly connected components of graph 
G  and there is an edge from vertex iG  to 

vertex jG  of graph *G , if there exists in 
G  at least one edge that connects one 

vertex from component iG
 to one vertex 

from component jG . 
Obviously the graph *G  is an acyclic one. 
Example 7. The condensed graph of graph 
from Figure 1 has three vertices and two 
edges, as shown in Figure 2. 
 

 
Fig. 2. Condensed graph of the graph from 
Figure 1 
 
Over the set of vertices of graph *G  a 

strict partial order is defined. Vertex iG  

precedes vertex jG , if jG  is accessible 

from iG . Now, the equivalence classes 
nSS ,...,1  will be sorted based on the 

corresponding order graph’s *G  vertices. 
Lemma 6. If 

+∈→ FYX  and X  is a 
determinant of set Y  under F , then for 
every attribute )( YXA −∈  there is an 
attribute YB∈ so that in the contribution 
graph G  there exists a path from vertex A  
to vertex B  and for every attribute 

)( XYB −∈  there exists in X  an attribute 
A , from which the vertex B  can be 
reached. 
Proof. Let attribute )( XYB −∈  and let 
the subset 'X  of set X  be determinant for 
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B  under F . Because 
+∈→ FBX ' , 

according to Definition 13, there is a 

derivation >=< ''
1

'
0 ,...,, mXXXH  for 

dependency BX →'  under F . Then, 
based on Corollary 4, there exists a 
sequence of dependencies 

qq WVWV →→ ,...,11  in F , where 1VA∈ , 
qWB∈  and ∅≠−1ii VW I , for 1,1 −= qi . 

Contribution graph has a structure, such 

that for every dependency jj WV →  in F , 
from each vertex labeled with an attribute 

in jV  an edge leaves to every vertex 

labeled with an attribute in jW . So, there 
exists a path from every vertex 'XA∈  to 
vertex B .  
It must be mentioned that, if X  is 
considered the union of all determinant of 

attributes in XY − , then XYXX =IU . 
Indeed, if we suppose that the set 

YXX IU  is a proper subset of set X , 
this will contradict the supposition that X  
is a determinant for Y  under F . 
Corollary 5. If reduced dependency 

WV →  is used non redundantly in 
building the derivation H  for dependency 

YX →  under F , then in contribution 
graph G  there exists a path from every 
vertex labeled with an attribute in V  to 
every vertex labeled with an attribute in Y . 
The following theorem shows a correlation 
between non redundant equivalence classes 
of attributes and the left and right sides of a 
left-reduced dependency. 
Theorem 8. Let 

+∈→ FYX , where X  is 
a determinant for Y  under F  and 

mTTYX UU ..., 1⊆ . For a jT , where 
mj ,1= , the following takes place: if 

∅≠jTY I , then ∅≠jTX I . 
Proof. The soundness of this statement is 

proven by contradiction: let ∅≠jTY I , 

but ∅=jTX I . Evidently that 
mjj TTTTX UUUUU ...... 111 +−⊆  and 

+∈→ FTYX j )( I . Let 'X , where 
XX ⊆' , is determinant for jTY I  under 

F . According to Lemma 6, on the 
contribution graph of the set F  of 
dependencies, from every vertex labeled 
with an attribute in 'X  there exists a path 
to a vertex labeled with an attribute in 

jTY I . Thereby, 11 ...' −⊆ jTTX UU . But, in 

this case, jT  is redundant. Therefore, 
∅≠jTX I' . Then, more so ∅≠jTX I  

takes place. A contradiction has been 
reached. 
Below, there are shown a series of features 
related to the determinants and the sets of 
redundant and non redundant equivalence 
classes of attributes. 
Theorem 9. If X  is a determinant under 
F  of set jSS UU ...1 , where nj ,1= , then 

jSSX UU ...1⊆ .  

Proof. Let jSSX UU ...1⊄ . Then there 

exists an equivalence class tS , where 
njt ,= , such that ∅≠tSX I . By Lemma 

6, in the contribution graph G , from every 

attribute tSXA I∈  there is a path 

towards B , where jSSB UU ...1∈ . But 
this fact contradicts the supposition that 

sets jSS ,...,1  precede the set tS . 
Corollary 6. If X  is a determinant of set 

nSS UU ...1  under F , then ∅≠1SX I . 
Proof. Indeed, for every attribute B  in 1S  
or XB∈ , or, according to Lemma 6, there 
is in X  an attribute A  from which vertex 
B  is accessible in contribution graph G . 
But then A  is also a member of 
equivalence class 1S . 

Definition 16. Equivalence class jS  is 
called non redundant, if and only if for 
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every attribute A  in jS , the expression 
+

= ∉→− FASS ji
n
i )( 1U  holds. 

Considering Lemma 6, it can be concluded 

that set jS  is non redundant, if and only if 

for every attribute A  in jS , the expression 
+−

= ∉→ FASi
j
i )( 1

1U  holds. 
From the ordered sequence of sets 

nSS ,...,1  a sequence of ordered non 

redundant sets can be built nTT ,...,1 , where 

11 ST =  and 
+−

=−= Fi
j
ijj TST )( 1

1U  for 
nj ,2= . As a result of this process, some 

sets jT  can become empty. These empty 
sets can be excluded from the sequence 

and a sequence of nonempty sets mTT ,...,1  
will be obtained, keeping the precedence of 
prior sets. 
Proposition 2. 11 ST = . 
Proposition 3.  

→)...( 1 mTT UU +∈FSS n )...( 1 UU . 
Example 8. Sequence of equivalence 
classes of attributes }{1 AS = , 

},,{2 DCBS =  and }{3 ES =  turns into the 
following sequence of non redundant 
equivalence classes of attributes: }{1 AT = , 

},,{2 DCBT = . 
Lemma 7. If X  is a determinant under F  

of set nSS UU ...1 , then Z , where 
)...( 1 jSSXZ UUI=  and nj ,1= , is a 

determinant for jSS UU ...1  under F . 
Proof. According to Theorem 9, the 

expression nSSX UU ...1⊆  takes place. 
First it will be shown that 

+∈→ FSSZ j )...( 1 UU . Lets suppose the 

contrary: 
+∉→ FSSZ j )...( 1 UU . Then 

there exists a set 'Z , where XZ ⊆' , which 

is a determinant of set jSS UU ...1  and 

∅≠+= )(' 1 i
n

ji SZ UI . Considering Lemma 6, 
there is a path from every vertex labeled 

with A  in )(' 1 i
n

ji SZ +=UI  that leads to a 

vertex B  in i
j
i S1=U . A contradiction has 

been encountered. Therefore, 
+∈→ FSSZ j )...( 1 UU .  

To complete the proof of this lemma, it 
will be shown that Z  is a determinant 

under F  of set jSS UU ...1 . Indeed, if it is 
considered that Z  is not a determinant of 
F  under F , then there must exist in Z  an 
attribute A , such that 

+∈→− FSSAZ j )...(}){( 1 UU . But then 
+∈→− FZAZ }){(  takes place, fact that 

implies 
+∈→− FXAX }){( . So, a 

contradiction has been encountered, that X  

is a determinant of set nSS UU ...1  under 
X . 
Theorem 10. If set X of attributes is a 

determinant of set nSS UU ...1 , then 
mTTX UU ...1⊆ . 

Proof. Let jS  be the first set of attributes 

that doesn’t coincide with jT  and assume 
that there is an attribute A  in X , such that 

jSA∈  and jTA∉ . Lemma 7 implies that 
.)...())...(( 11

+∈→ FSSSSX jj UUUUI  
Since jTA∉ , 

then
+∈→ FASSX j ))...(( 1 UUI . 

So
+∈→− FXAX }){( , thus X  is not a 

determinant of set nSS UU ...1  under F . 
Appealing to Theorem 10, Lemma 7 can 
be paraphrased for non redundant 
equivalence classes of attributes. 
Lemma 8. If X  is a determinant under F  

of set mTT UU ...1 , then Z , where 
)...( 1 jTTXZ UUI=  and mj ,1= , is a 

determinant for jTT UU ...1  under F . 
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5 Calculation of determinants using a 
scheme decomposition method 
In this section, there are proposed 
theoretical tools that can be the basis of 
relational schemes decomposition 
algorithm for computing determinants 
related to the scheme, rather all 
independent components from which all 
determinants of scheme can be built. The 
scheme is partitioned in subschema to 
solve the determinants searching problem 
for each subschema separately. Then, for 
each subschema will be found 
determinants with the fewest attributes 
(including repeated). The groups of 
attributes from the set of functional 
dependencies that are determinants in some 
subschema are substituted with the shortest 
determinants. This happens only for 
equivalence classes of functional 
dependencies containing the determinants 
in the left or right sides as subsets. 
Below there are considered the functional 
dependencies and non redundant 
equivalence classes of attributes. It is 
examined how the determinants of a non 
redundant equivalence class of attributes in 
relation to a set of functional dependencies 
in the projection of this set of dependencies 
on the attributes of non redundant 
equivalence class of attributes are 
reflected. 
The next theorem presents a property of 
non redundant equivalence classes of 
attributes if the set of functional 
dependencies, on which these classes are 
built, is reduced. 
Theorem 11. If the dependency 

FWV ∈→  is reduced and ∅≠jTW I , 

then ∅≠jTV I . 
Proof. Appealing to the definition of 
contribution graph, from each vertex 
labeled with an attribute in V  an edge 
leaves to every vertex labeled with an 

attribute in W . Then ∅=iTV I  for 
mji ,1+= . Assuming that ∅=jTV I , 

then there is 
+

− ∈→ FVTT j )...( 11 UU . 
From this it follows 

that
+

− ∈→ FWTT j )...( 11 UU . But in this 

case, jT  is redundant, fact that contradicts 
the nature of this set of attributes. 
Proposition 4. Let 

+∈→ FYX  be a 

functional dependency. If jTTY UU ...1⊆  
and dependency FWV ∈→  is non 
redundantly used in derivation of 
dependency YX →  under F , then 

∅=iTV I  for mji ,1+= .  
Veracity of this statement is based directly 
on the Corollary 5. 
Definition 17. Let F  be a set of functional 
dependencies over the set R  of attributes. 
Projection of the set F  of dependencies, 
labeled )(FZπ , on a set Z  of attributes, 
where RZ ⊆ , is the set of functional 
dependencies defined by the expression 

|)(){()( ZYZXFZ II →=π
&)(& ∅≠∈→ ZXFYX I }.)( ∅≠ZY I  

Then the following statement is true: 

Lemma 9. If X , where jTTX UU ...1⊆ , 

is a determinant of the set jT  under F , 

then 
)()( FTTX

jTjj
+∈→ πI

. 
Proof. According to Theorem 8, 

∅≠jTX I . Since
+∈→ FTX j , 

following Corollary 3, there is a derivation 
>=< nXXXH ,...,, 10  for dependency 

jTX →  under F .  

Let >=< mZZZH ,...,,' 10  be the maximal 

derivation for jTX I  under
)(F

jTπ . Given 
the Lemma 7, to prove the lemma, it 

suffices to show that mj ZT ⊆ . 

Indeed, given that nj XT ⊆ , then either 
jTX = , or jT  is formed in H  from 

dependencies which contain attributes of 
jT  in their right side. In the first case, 
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jj TTX =I  and the dependency 
jj TTX →)( I  is deducted from any set of 

dependencies. In the second case, taking 
account of Theorem 11, the dependencies 

used in H , that have some attributes of jT  
in their right sides, have also attributes of 

jT  in the left sides. Thus, if H  has used 
the dependency WV →  in F  

and ∅≠jTW I , then 'H  has used the 

dependency )()( jj TWTV II →  in 
)(F

jTπ . Therefore, mj ZT ⊆ . 
Further, it is established the relationship 
between determinants of scheme and its 
subschema determinants obtained via 
projections. 

Theorem 12. Let ),( 1 FSSch i
n
i=U  be a 

database schema. The set X , where 
mTTX UU ...1⊆ , is a determinant for 

mTT UU ...1  under F , if and only if 
mTXTX II ,...,1  are determinants for 

mTT ,...,1  under )(),...,(
1

FF
mTT ππ , 

respectively. 
Proof. Necessity. Let the set X  be a 

determinant for mTT UU ...1  under F . It 

will be shown that mTXTX II ,...,1  are 

determinants for mTT ,...,1  under 
)(),...,(

1
FF

mTT ππ , respectively. 
Will be proved this by applying 
mathematical induction on the number of 
non redundant equivalence classes, i , 

where mi ,1= . Let 1=i . Taking into 
account Lemma 8, 1TX I  is a determinant 
for 1T  under F . According to Lemma 9, 

1TX I  is a determinant for 1T  in relation 

to )(
1

FTπ . 
It is assumed now that the assertion is fair 

for 11 ... −kTT UU , namely, for a number of 
classes less than k  and will demonstrate 

that the affirmation is also true  for a 
number of classes equal to k . 
Since ,)...()...( 11

+∈→ FTTTTX kk UUUUI  
where, according to Lemma 8, 

)...( 1 kTTX UUI  is a determinant for 
)...( 1 kTT UU  under F , 

then
+∈→ FTTTX kk)...( 1 UUI . If it is 

assumed that for an attribute A , where 
kTXA I∈ , the expression 

+∈→ FTATTX kk }){\)...(( 1 UUI  holds, 

then, on the basis that )...( 1 iTTX UUI  is 

determinant for )...( 1 iTT UU , where 
1,1 −= ki , it follows that 

→}){\)...(( 1 ATTX kUUI
+∈FTTX k))...(( 1 UUI  takes place. But in 

this case, )...( 1 kTTX UUI  will not be 

determinant for )...( 1 kTT UU . Thus, there 

is XX ⊆' , that 'XTX k ⊆I  and 'X  is 

determinant for kT  under F . Whence, 
kk TXTX II '= , is determinant for kT  

under F and, according to Lemma 9, 
kTX I  is determinant for kT  under 
)(F

kTπ . 
Sufficiency. Now it will be proven that if 

the mTXTX II ,...,1  are determinants for 
mTT ,...,1  under )(),...,(

1
FF

mTT ππ , 
respectively, then the set Z , where 

mTXTXZ IUUI ...1= , is determinant 

for mTT UU ...1  under F . 

It is obvious that 
+∈→ FTTZ m)...( 1 UU , 

where mTXTXZ IUUI ...1= . 
Assuming that for at least one attribute A  

in iTX I  the expression 
+∈→− FTTAZ m)...(}){( 1 UU  holds, then, 

by virtue of Lemma 9, iTX I  will not be 
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determinant for iT  under )(F
iTπ . 

Consequently, mTXTXZ IUUI ...1= , 

is determinant for mTT UU ...1  under F . 
The theorem is proved. 

Let ),( 1 FSSch i
n
i=U  be a relational schema, 

and let mTT UU ...1  be the set of non 
redundant equivalence classes of attributes 
built on the set F  of dependencies. Thus, 

each determinant X  of the set mTT UU ...1  
under F  consists of the union of 

determinants for the set iT  (one from each 
non redundant equivalence class of 

attributes) under )(F
iTπ , where mi ,1= . 

The problem of calculating the sets of 
attributes that can be substituted with other 
equivalent sets of attributes of smallest 
cardinality for each equivalence class in 
which the set F  of dependencies of the 

scheme ),( 1 FSSch i
n
i=U  is partitioned, 

consists in finding all the determinants for 

each iT . 
It should be noted that the set of 

dependencies )(F
iTπ  may not be 

minimum, even if F  is minimum. 
Moreover, it may be neither non 
redundant. 
Example 9. If BCF →={ , CB → , 

DAB → , }BAD → , then there are two 
non redundant classes of attributes 

}{1 AT =  and },,{2 DCBT = . Projection on 
class 2T  of the set F  will 

be BCFT →={)(
2

π , CB → , DB → , 
}BD → . Although the set F  of functional 

dependencies is minimum, the set )(
2

FTπ  
is not minimum, because there is an 
equivalent set of dependencies 

BCF →=′ { , CDB → , }BD →  with 
fewer dependencies. 
Example 10. If BCF →={ , CB → , 

DAB → , }CAD → , also there are two 

non redundant classes }{1 AT =  and 
},,{2 DCBT = . In this case the projection 

BCFT →≡{)(
2

π , CB → , DB → , 
}CD →  is not non redundant, because the 

dependency CB →  is redundant in 
)(

2
FTπ . In other words, BCFT →≡{)(

2
π , 

DB → , }CD → . 
Therefore, before computing the 

determinants of each set iT  it is useful to 

minimize the set )(F
iTπ  of functional 

dependencies.  
It is to mention that partitioning the set of 
attributes in classes of equivalence, 
essentially reduces dimensions of problem 
of computing the optimal cover. For this, it 

suffices to consider the set iT , for example, 
which may include the determinant with 

minimum cardinality. The set iT  contains 
all attributes involved in the determinants 

for iT  under )(F
iTπ . These will form all 

the determinants for mTT UU ...1  under F . 
In addition, left side of every dependency 

in )(F
iTπ , in essence, represents a 

determinant for iT . In case ∅=)(F
iTπ , 

there is only one determinant, iT  itself. 
The following is an integrator example. 
Example 11. Let ,{ EABCF →=  

,DBC →  }BCD →  be a minimum and 
reduced set of functional dependencies. 
Any set of functional dependencies can be 
minimized and reduced in polynomial time 
[1]. It is necessary to build an optimal 
cover of this set of dependencies.  
The set F  of functional dependencies is 
divided into equivalence classes of 
dependencies. Obviously, that on the 
equivalence classes of functional 
dependencies can be defined a strict partial 

order. Let )( iFAttr  denote the set of 
attributes involved by dependencies of 

equivalence class iF . The equivalence class 
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iF  precedes the equivalence class jF  if 
++ ⊂ )()( ij FAttrFAttr . In the considered 

example, the set of functional 
dependencies is divided into two 
equivalence classes 21 FFF ∪= , 
where }{1 EABCF →= , 
and },{2 BCDDBCF →→= . 
The contribution graph for the set of 
dependencies F  has the form represented 
in Figure 1. As noted already above, the set 
of vertices of the graph in Figure 1 is 
divided into three equivalence classes of 
attributes }{1 AS = , },,{2 DCBS =  and 

}{3 ES = , and are reduced to the following 
sequence of non redundant equivalent 
classes of attributes }{1 AT = , 

},,{2 DCBT = .  
The set F  of functional dependencies, 
below, is projected on the sets of attributes 

1T  and 2T , resulting in the following sets of 
functional 

dependencies ∅=)(
1

FTπ ,
},{)(

21
BCDDBCFT →→=π . Thus, for 

the non redundant classes of attributes 
there were obtained the following sets of 
determinants }{A , },{ BCD , respectively.  
Now the groups of attributes that are 
determinants and part of dependencies in 
F  are substituted by those with the 
smallest length. Substitutions occur in the 
equivalence classes of dependencies which 
precede corresponding class that has 
generated the determinant. Therefore, the 
set of attributes BC  of dependencies that 
are part of the equivalence class 1F  (there 
is only one dependency) is substituted by 
determinant D . Thus optimal cover is 
obtained as ,{ EADF →=  ,DBC →  

}BCD → . 
 
6 Conclusions 
It is known that various types of covers 

provide specific properties to database 
scheme. Referring to the problem of 
building optimal covers, it was found that 
it is the strictest structure of functional 
dependencies regarding the constituent 
elements. 
Because the task of obtaining the optimal 
cover is classified as NP-complete 
problem, a way of achieving a solution, in 
acceptable time, is to apply a 
decomposition method to dive the original 
in smaller problems that could be solved, 
and then to combine particular solutions  in 
order to construct the initial problem 
solution. 
It should be mentioned that the proposed 
method does not change the complexity of 
the problem. Its nature continues to be NP-
complete. However, it can be solved in 
such a way that it will reduce the time 
needed to impose constraints on database 
content and to reduce the time required to 
execute the algorithm for computing the 
closures. 
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