
Database Systems Journal vol. II, no. 4/2011 9

PL/SQL and Bind Variable: the two ways to increase the
efficiency of Network Databases

Hitesh KUMAR SHARMA
Assistant Professor, ITM University

Ranjit BISWAS
Associate Director Faculty, Manav Rachna International University Faridabad

Aditya SHASTRI
Vice-Chancellor, Banasthali University,Rajasthan-304022, India

hiteshsharma@itmindia.edu, adityashastri@yahoo.com, ranjitbiswas@yahoo.com

Modern data analysis applications are driven by the Network databases. They are pushing
traditional database and data warehousing technologies beyond their limits due to their
massively increasing data volumes and demands for low latency. There are three major
challenges in working with network databases: interoperability due to heterogeneous data
repositories, proactively due to autonomy of data sources and high efficiency to meet the
application demand. This paper provides the two ways to meet the third challenge of network
databases. This goal can be achieved by network database administrator with the usage of
PL/SQL blocks and bind variable. The paper will explain the effect of PL/SQL block and bind
variable on Network database efficiency to meet the modern data analysis application
demand.
Key Words: Network Database, Web Application, Bind Variable, PL/SQL, Middleware.

Introduction

Most Web applications of any size
involve the use of a database. They are
pushing traditional database and data
warehousing technologies beyond their
limits. [1]. Typically, a web application
allows the addition or creation of new
records (for example, when a new user
registers on the site), and the reading and
searching of many records in a database.
The most common bottleneck when
developing a Web application is in the
reading of a large number of records from
a database, or executing a particularly
complex SELECT statement against the
database. Writing to or updating a database
usually is performed on a small number of
records at a time. This is often much less
of an issue than cases that involve reading
thousands of records at a time.
By eliminating unused fields from
SELECT statements, we can reduce the
complexity of the query and reduce the
amount of data sent over the network (or at
least between the database server and the

web script). The net affect of making such
changes is a reduced database read time.
PL/SQL is the language of choice for data-
centric application development in
Network databases. In most programming
languages, database work involves
connecting to the server, mapping
datatypes and manually preparing and
processing result sets. PL/SQL is a
procedural language that is so tightly
integrated with the SQL language that
most of these tasks are either eliminated
completely or incredibly simple.
The two major costs decide the
performance of a network database.
1.1. Cost 1: Round Trips
The first basic cost of retrieving data is the
"round trip". Database programmers speak
of a "round trip" as occurring whenever
you send a request the server and retrieve
some results. Each round trip to the server
carries some overhead, as the server must
do some basic work to allocate and release
resources at the start and end of the
request. This overhead is added to the base

1

mailto:hiteshsharma@itmindia.edu
mailto:adityashastri@yahoo.com
mailto:ranjitbiswas@yahoo.com

10 PL/SQL and Bind Variable: the two ways to increase the efficiency of Network Databases

cost the server must pay to actually go out
to disk to find and retrieve your data.
If your application makes more round trips
than are necessary, then the program will
be slower than it could be.
1.2. Cost 2: Retrieval Size
An application runs code (such as a Java
servlet) that makes queries to a backend
database to customize the content,
typically based on the user's request or a
stored user profile. Overloading the work
of the application server (e.g., executing
the Java servlets) to proxy nodes is not
difficult, but the central database server
remains a performance bottle- neck [2].
Every byte that the application retrieves
from the server carries a cost at several
points. The server must go to disk and read
it, the wire must carry the load from the db
server to the web server, and the web
server must hold the result in memory. If
your web code regularly retrieves more
information than it needs, then the program
will be slower than it could be.

2. Related work
Companies across all industries are seeing
very steep increases in the amount of data
they must process. For example, one recent
study [9] has estimated that the amount of
data stored in data warehouses has been
growing by an average of 173% per year
across all industries. This rate of growth is
substantially faster than the typical 12 to
18-month doubling of hardware capacity as
dictated by Moore’s law, Shuggart’s law
and others. As a result, for data analytics
workloads hardware continues to become
slower relative to the demands being
placed on it.
The internet is a collection of millions
upon millions of local, regional, national,
and global networks. It commenced in
1969 with four supercomputers across the
U.S. networked to the Pentagon.

Very few people used the Internet for the
first 20 years. Explosive growth took place
after 1992 when the Netscape Navigator
web browser incorporated HTML

protocols to read HTML codes invented by
particle physicists in Switzerland in 1990.
This was the beginning of the "first
generation" of network computing on what
became known as the world wide web
(WWW) or simply the "web." The first
generation was mainly one way flows of
information from web server computers to
client user computers on the web. At this
same time, the first generation of database
interactive computing was confined to
local and wide area networks (LANs and
WANs). Although data files could be
transmitted across the Internet using FTP
and other protocols, databases could not
interact on the WWW or the Internet as a
whole. Most web applications are still in
the first HTML generation.
The second generation of networking and
databases followed quickly when web
servers commenced to interact in a more
formal way with remote clients on the
Internet. With special types
of middleware software, database servers
could process data transmitted back from
remote Internet client computers. For
example, customer orders and market
surveys could be processed and server-side
databases could be updated without human
intervention. Middleware CGI scripting
and later ActiveX and Java software
enabled web servers, database servers, and
remote clients on the Internet to become
more interactive. The second generation is
relatively new and growing in popularity at
this time.
The third generation is only just emerging
and is hard to put into words. It is best
described as distributed network
computing. In the second
generation, middleware links to” front
ends" of database servers on the server side
when clients transmit signals. In the third
generation, databases can be distributed
globally and can communicate with each
other with "back-end" distributed network
computing. There is virtually no difference
between having all databases on one
computer with one operator versus having

http://www.trinity.edu/~rjensen/245glosf.htm#Middleware
http://www.trinity.edu/~rjensen/245glosf.htm#Middleware
http://www.trinity.edu/~rjensen/245glosf.htm#Middleware

Database Systems Journal vol. II, no. 4/2011 11

databases on 100 computers with 100
operators residing anywhere in the world.
The third generation of network database is
using three-tier architecture, Client/Server
with Middleware layer. When business
logic is processed in a client application, it
is often necessary to pass a succession of
statements between the application and the
database server. Storing application code
in the database takes this a step further as
application logic is removed from the
client layer and precompiled in the
database, allowing modification without
the need for a redeployment of client
software. Each request and response
involves network traffic, which can greatly
affect overall performance. Running
application logic on the database server
can increase efficiency by reducing
network traffic.
This paper explains the two ways to
increase the efficiency of network
databases by reducing network traffic.

3. The First way: Placing of PL/SQL
block on Database server
PL/SQL is the language for data-centric
application development [4] in Network
databases. In most programming
languages, database work involves
connecting to the server, mapping
datatypes and manually preparing and
processing result sets. PL/SQL is a
procedural language that is so tightly
integrated with the SQL language that
most of these tasks are either eliminated
completely or incredibly simple.
The datatypes available in PL/SQL are a
superset of those available in SQL, so
datatype conversions between SQL and
PL/SQL are rarely needed. As a result
PL/SQL allows interaction with both the
data and metadata of database objects with
greater ease and efficiency than is possible
with most other languages. In addition
PL/SQL supports dynamic SQL allowing
statements to be created at runtime for
greater flexibility.
Running application logic as PL/SQL on
the database server can increase efficiency

by reducing network traffic. When
business logic is processed in a client
application, it is often necessary to pass a
succession of statements between the
application and the database server. Each
request and response involves network
traffic, which can greatly affect overall
performance.
Passing a PL/SQL block containing
multiple statements to the server can
reduce network round trips, thereby
improving performance. Storing
application code in the database takes this
a step further as application logic is
removed from the client layer and
precompiled in the database, allowing
modification without the need for a
redeployment of client software.
The PL/SQL language is available on all
platforms, making it significantly more
portable than many programming
languages. When application logic is
located within the database, changes in
client programming models have a reduced
impact, as only presentation of the data is
controlled at that level. (See Fig 1.1)

12 PL/SQL and Bind Variable: the two ways to increase the efficiency of Network Databases

 (c)
Figure 1: PL/SQL to improve performance
, Fig 1(a) shows that heavy network usage
to communicate with the server with
separate SQL statements, Fig 1(b) shows
that low network usage to communicate
with the server usig PL/SQL, Fig 1(c)
shows that very low network usage to
communicate with the server by placing
PL/SQL processing logic on Server,

Centralizing application logic enables a
higher degree of security and
productivity. The use of Application
Program Interfaces (APIs) can abstract
complex data structures and security
implementations from client application
developers, leaving them free to do what
they do best.

3.1 PL/SQL Architecture
The PL/SQL language is made up of both
procedural code and SQL
statements. When valid PL/SQL code is
executed, the PL/SQL engine executes all
procedural code and sends SQL statements
to the SQL engine of the database
server. Figure 1.2 represents this process
in action for a PL/SQL block.

Figure 1.2 – PL/SQL Architecture.

The database contains a PL/SQL engine,
which is used to execute all stored
procedures, functions, packages, objects
and triggers. This allows application logic
to be processed entirely within the
database layer.
Recently, a number of systems have been
proposed with a similar architecture for
scaling the delivery of database-backed
dynamic content [5, 7, 8, 9]. In each of
these systems users interact with proxy
servers that mimic a traditional three-tiered
architecture (containing a web server to
handle user requests, an application server
to generate dynamic content, and a
database server as a backend data
repository).
Some application development tools, such
as Oracle Forms and Oracle Reports, have
their own PL/SQL engine, allowing
procedural logic to be processed with no
reference to the database server.

PL/SQL Engin e

Web Application data request

PL/SQL Block

Database 1

SQL statement Executor

Procedural statement
Executor

Database 2 Database 3

Query

Web Layer

Middleware

Database Layer

SQL Statements

DBA

Web Application

Sends a single procedural call

Database Server

Executes procedure containing multiple
SQL statements and returns a result

PL/SQL
Block

Database Systems Journal vol. II, no. 4/2011 13

3.2 Overview of PL/SQL Elements
Blocks in PL/SQL
Blocks are the organizational unit for all
PL/SQL code, whether it is in the form of
an anonymous block, procedure, function,
trigger or type. A PL/SQL block is made
up of three sections: declaration,
executable and exception. Only the
executable section is mandatory.
[DECLARE
 -- delarations]
BEGIN
 -- statements
[EXCEPTION
 -- handlers
END;
Based on this definition, the simplest valid
block is shown below, but it does not do
anything.
BEGIN
 NULL;
END;
The optional declaration section allows
variables, types, procedures and functions
do be defined for use within the
block. The scope of these declarations is
limited to the code within the block itself,
or any nested blocks or procedure
calls. The limited scope of variable
declarations is shown by the following two
examples. In the first, a variable is declared
in the outer block and is referenced
successfully in a nested block. In the
second, a variable is declared in a nested
block and referenced from the outer block,
resulting in an error as the variable is out
of scope.
DECLARE
 l_number NUMBER;
BEGIN
 l_number := 1;
 BEGIN
 l_number := 2;
 END;
END;
/
PL/SQL procedure successfully completed.
BEGIN
 DECLARE
 l_number NUMBER;
 BEGIN

 l_number := 1;
 END; l_number := 2;
END;
/
 l_number := 2;
 *
ERROR at line 8:
ORA-06550: line 8, column 3:
PLS-00201: identifier 'L_NUMBER' must be
declared
ORA-06550: line 8, column 3:
PL/SQL: Statement ignored
SQL>
The main work is done in the mandatory
executable section of the block, while the
optional exception section is where all
error processing is placed. The following
two examples demonstrate the usage of
exception handlers for trapping error
messages. In the first, there is no
exception handler so a query returning no
rows results in an error. In the second, the
same error is trapped by the exception
handler, allowing the code to complete
successfully.
DECLARE
 l_date DATE;
BEGIN
 SELECT SYSDATE
 INTO l_date
 FROM dual
 WHERE 1=2; -- For zero rows
END;
/
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4
DECLARE
 l_date DATE;
BEGIN
 SELECT SYSDATE
 INTO l_date
 FROM dual
 WHERE 1=2; -- For zero rows
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
END;
/
PL/SQL procedure successfully completed.

14 PL/SQL and Bind Variable: the two ways to increase the efficiency of Network Databases

4. The Second way: Using Bind
Variables
For every statement issued against the
server, Oracle searches the shared pool to
see if the statement has already been
parsed. If an exact text match of the
statement is already present in the shared
pool a soft parse is performed as the
execution plan for the statement has
already been created and can be reused. If
the statement is not found in the shared
pool a hard parse must be performed to
determine the optimal execution path.
The important thing to remember from the
previous paragraph is the term “exact text
match”, as different numbers of spaces,
literal values and case will result in a
failure to find a text match, such that the
following statements are considered
different.
SELECT 1 FROM dual WHERE dummy =
‘X’;
SELECT 1 FROM dual WHERE dummy =
‘Y’;
SELECT 1 FROM DUAL WHERE
dummy = ‘X’;
SELECT 1 FROM dual WHERE dummy
= ‘X’;
The first two statements only differ by the
value of the search criteria, specified using
a literal. In these situations exact text
matches can be achieved by replacing the
literal values with bind variables that have
the correct values bound to them. Using
the previous example the statement passed
to the server might look like this.
SELECT 1 FROM dual WHERE dummy = :B1;
For every execution the bind variable may
have a different value, but the text sent to
the server is the same allowing for an exact
text, which results in a soft parse.
There are two main problems associated
with applications that do not use bind
variables:

• Parsing SQL statements is a CPU
intensive process, so reparsing similar
statements constantly represents a
waste of CPU cycles.
• Parsed statements are stored in the
shared pool until they are aged out. By

not using bind variables the shared
pool can rapidly become filled with
similar statements, which waste
memory and make the instance less
efficient.

The Script_bind.sql script illustrates the
problems associated with not using bind
variables by using dynamic SQL to
simulate an application sending insert
statements to the server.
Script_bind.sql
CREATE TABLE bind_variables (
 code VARCHAR2(10)
);
BEGIN
 -- Perform insert without bind variables.
 FOR i IN 1 .. 10 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'INSERT INTO bind_variables (code)
VALUES (''' || i || ''')';
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 END;
 END LOOP;
 -- Perform insert with bind variables.
 FOR i IN 1 .. 10 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'INSERT INTO bind_variables (code)
VALUES (:B1)' USING TO_CHAR(i);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 END;
 END LOOP;
 COMMIT;
END;
/
-- Display the associated SQL text.
COLUMN sql_text FORMAT A60
COLUMN executions FORMAT 9999
SELECT sql_text,
 executions
FROM v$sql
WHERE INSTR(sql_text, 'INSERT INTO
bind_variables') > 0
AND INSTR(sql_text, 'EXECUTE') = 0
ORDER BY sql_text;
DROP TABLE bind_variables;
The script starts by creating a test table and
executing a simple insert statement 10
times, where the insert statement
concatenates a value into the string rather
than using a bind variable. Next it repeats
this process but this time uses a bind

Database Systems Journal vol. II, no. 4/2011 15

variable rather than concatenating the
value into the string. Finally it displays the
SQL text parsed by the server and stored in
the shared pool, which requires query
access on the v$sql view. The results from
the script are displayed below
* SQL> @ Script_bind.sql
Table created.
PL/SQL procedure successfully completed.
SQL_TEXT
 EXECUTIONS
--
----- ----------
insert into bind_variables (code) values
('1') 1
insert into bind_variables (code) values
('10') 1
insert into bind_variables (code) values
('2') 1
insert into bind_variables (code) values
('3') 1
insert into bind_variables (code) values
('4') 1
insert into bind_variables (code) values
('5') 1
insert into bind_variables (code) values
('6') 1
insert into bind_variables (code) values
('7') 1
insert into bind_variables (code) values
('8') 1
insert into bind_variables (code) values
('9') 1
insert into bind_variables (code) values
(:b1) 10
11 rows selected.
Table dropped.

From this we can see that when bind
variables were not used the server parsed
and executed each query as a unique
statement, whereas the bind variable
statement was parsed once and executed 10
times. This clearly demonstrates how
applications that do not use bind variables
can result in wasted memory in the shared
pool, along with increased CPU usage.

5. Conclusion
It is not difficult to create database
applications that perform well. The basic
rules of thumb are to make a minimum
number of round trips to the server and to
retrieve precisely the values that you need
and no more. These ideas work well
because they minimize your most
expensive operation, which is disk access.
the procedures/functions are stored in the
database and are, therefore, executed on
the database server which is likely to me
more powerful than the clients which in
turn means that stored procedures should
run faster;
the code is stored in a pre-compiled form
which means that it is syntactically valid
and does not need to be compiled at run-
time, thereby saving resources; each user
of the stored procedure/function will use
exactly the same form of queries which
means the queries are reused thereby
reducing the parsing overhead and
improving the scalability of applications;
as the procedures/functions are stored in
the database there is no need to transfer the
code from the clients to the database server
or to transfer intermediate results from the
server to the clients. This results in much
less network traffic and again improves
scalability when using PL/SQL packages,
as soon as one object in the package is
accessed, the whole package is loaded into
memory which makes subsequent access to
objects in the package much faster stored
procedures/functions can be compiled into
“native” machine code making them even
faster. there is an overhead involved in
switching from SQL to PL/SQL, this may
be significant in terms of performance but
usually this overhead is outweighed by
performance advantages of using PL/SQL
more memory may be required when using
packages as the whole package is loaded
into memory as soon as any object in the
package is accessed native compilation can
take twice as long as normal compilation

References

16 PL/SQL and Bind Variable: the two ways to increase the efficiency of Network Databases

[1] Agrawal, R., et al. “The Claremont
Report on Database Research”,
http://db.cs.berkeley.edu/claremont/,
May 2008.

[2] C. Olston, A. Manjhi, C. Garrod, A.
Ailamaki, B. Maggs, and T. Mowry. A
scalability service for dynamic web
applications. In Proc. Conference on
Innovative Data Systems Research
(CIDR), 2005.

[3] K. Burleson, Donald “Creating a self-
tuning Oracle database”

[4] John Garmany “Easy Oracle PL/SQL
Programming:” Get Started Fast with
Working PL/SQL Code .

[5] K. Amiri, S. Park, R. Tewari, and S.
Padmanabhan. DBProxy: A dynamic
data cache for Web applications. In
Proc. International Conference on Data
Engineering, 2003.

[6] M. Altinel, C. Bornhovd,
S.Krishnamurthy, C. Mohan, H.
Pirahesh, and B. Reinwald. Cache
tables: Paving the way for an adaptive
database cache. In Proc. International
Conference on Very Large Data Bases,
2003.

[7] Q. Luo, S. Krishnamurthy, C. Mohan,
H. Pirahesh, H. Woo, B. G. Lindsay,
and J. F. Naughton. Middle-tier
database caching for e-business. In
Proc. ACM SIGMOD International
Conference on Management of Data,
2002.

[8] Winter, R, “Why Are Data Warehouses
Growing So Fast?”,B-eye Network,
http://www.b-eye-
network.com/view/7188,April 2008

Hitesh KUMAR SHARMA, The author is An Assistant Professor in ITM University. He has
published 8 research papers in National Journals and 1 research paper in International Journal.
Currently He is pursuing his Ph.D. in the area of database tuning.

Ranjit BISWAS, Associate Director, MIRU, Faridabad, Published about 100 research papers
in International journals/bulletins of USA/Europe, out of which more than 40 papers are
independently published papers and the rest are published jointly with other authors (with
Ph.D. scholars). Haryana, INDIA.

Aditya SHASTRI, Ph.D. MIT, Published about 200 research papers in international journals
on Graph Theory with applications in Communication, Computer Graphics and Parallel
Processing ,Vice Chancellor, Director, Banasthali University, Banasthali, INDIA

http://www.b-eye-/

