
THE BUCHAREST ACADEMY OF
ECONOMIC STUDIES

I S S U E

4

Database Systems
Journal

ISSN: 2069 – 3230 Volume II (June 2011)

Journal edited by Economic
Informatics Department

Database Systems Journal vol. II, no. 2/2011 1

DBJOURNAL BOARD

Director
Prof. Ion LUNGU, PhD - Academy of Economic Studies, Bucharest, Romania

Editors-in-Chief
Prof. Adela Bara, PhD - Academy of Economic Studies, Bucharest, Romania
Prof. Marinela Mircea, PhD- Academy of Economic Studies, Bucharest, Romania

Secretaries
Assist. Iuliana Botha - Academy of Economic Studies, Bucharest, Romania
Assist. Anda Velicanu Academy of Economic Studies, Bucharest, Romania

Editorial Board
Prof Ioan Andone, A. I. Cuza University, Iasi, Romania
Prof Emil Burtescu, University of Pitesti, Pitesti, Romania
Joshua Cooper, PhD, Hildebrand Technology Ltd., UK
Prof Marian Dardala, Academy of Economic Studies, Bucharest, Romania
Prof. Dorel Dusmanescu, Petrol and Gas University, Ploiesti, Romania
Prof Marin Fotache, A. I. Cuza University Iasi, Romania
Dan Garlasu, PhD, Oracle Romania
Prof Marius Guran, Polytehnic University, Bucharest, Romania
Prof. Mihaela I. Muntean, West University, Timisoara, Romania
Prof. Stefan Nithchi, Babes-Bolyai University, Cluj-Napoca, Romania
Prof. Corina Paraschiv, University of Paris Descartes, Paris, France
Davian Popescu, PhD., Milan, Italy
Prof Gheorghe Sabau, Academy of Economic Studies, Bucharest, Romania
Prof Nazaraf Shah, Coventry University, Coventry, UK
Prof Ion Smeureanu, Academy of Economic Studies, Bucharest, Romania
Prof. Traian Surcel, Academy of Economic Studies, Bucharest, Romania
Prof Ilie Tamas, Academy of Economic Studies, Bucharest, Romania
Silviu Teodoru, PhD, Oracle Romania
Prof Dumitru Todoroi, Academy of Economic Studies, Chisinau, Republic of Moldova
Prof. Manole Velicanu, PhD - Academy of Economic Studies, Bucharest, Romania
Prof Robert Wrembel, University of Technology, Poznań, Poland

Contact
Calea Dorobanţilor, no. 15-17, room 2017, Bucharest, Romania
Web: http://dbjournal.ro/
E-mail: editor@dbjournal.ro

http://dbjournal.ro/
mailto:editor@dbjournal.ro

2 Database Systems Journal vol. II, no. 2/2011

Contents

Managing XML Data to optimize Performance into Object-Relational Databases 3

Iuliana BOTHA... 3

Increasing Database Performance using Indexes .. 13

Cecilia CIOLOCA, Mihai GEORGESCU.. 13

A Grid Architecture for Manufacturing Database System... 23

Laurentiu CIOVICĂ, Constantin Daniel AVRAM... 23

Grid Database - Management, OGSA and Integration... 35

Florentina Ramona PAVEL (EL BAABOUA)... 35

Considerations Regarding Designing and Administrating SOA Solutions 45

Vlad DIACONITA.. 45

Natural versus Surrogate Keys. Performance and Usability.. 55

Dragos-Paul POP .. 55

Database Systems Journal vol. II, no. 2/2011 3

Managing XML Data to optimize Performance into Object-Relational
Databases

Iuliana BOTHA

Academy of Economic Studies, Bucharest, Romania
iuliana.botha@ie.ase.ro

This paper propose some possibilities for manage XML data in order to optimize
performance into object-relational databases. It is detailed the possibility of storing XML
data into such databases, using for exemplification an Oracle database and there are tested
some optimizing techniques of the queries over XMLType tables, like indexing and
partitioning tables.
Keywords: object-relational database, XML data, optimizing technique, index, partitioned
table.

Introduction
In the last decades, the world economy

was characterized by the transition from
industrial to information society, which is
governed by a new set of rules that use
digital technologies for accessing,
processing, storing and transferring the
information.
In all fields of activity are required
accurate and timely obtained information.
This information is obtained from primary
data collected and organized into databases
following extensive processes performed
using complex software products. Modern
information systems are currently
structured in different types and are
practically identified with the complex and
changing economic activity.
Currently, organizations are required to
store and process increasing quantities of
data, requiring recourse to modern
information technology, databases, data
warehouses, Internet and intelligent
systems.
Thus, in recent years are rapidly developed
some new ways to store and manipulate
multimedia and spatial data. Since
relational databases (RDB) have
limitations in the case of special data (like
multimedia, spatial, XML), the most
effective way proves to be the use of

object-relational databases (ORDB) [1].

2. Brief considerations about XML
technology
eXtensible Markup Language (XML) is a
platform-independent format for
representing data and was designed as a
standard for information exchange over the
Internet. XML enables easy exchange of
information, which allows interoperability
between applications due to data
encapsulation with metadata.
The studies [5], [6] and [7] present two
approaches for storing XML data: through
native XML databases or using mapping
techniques for translate XML data into a
relational or object-relational database.
Also, they propose mapping algorithms
and rules from XML Schema to object-
relational database schema.
Current paper will expose the possibility
of storing XML data into object-relational
databases, using for exemplification an
Oracle database. The main advantage of
using object-relational databases is that we
can get the benefits of both relational and
object-oriented technologies. However,
this translates into lower performances due
to XML data mapping to the relational
data, which can produce a database
schema with many relations.

1

mailto:iuliana.botha@ie.ase.ro

 Managing XML Data to optimize Performance into Object-Relational Databases 4

Storing data as XML also provides certain
facilities. First, XML is self-describing,
and applications can consume XML data
without knowing their schema or structure.
XML data are always arranged
hierarchically as a tree. XML tree structure
has a parent node, known as an XML
document. If a set of XML nodes have no
parent node, it is an XML fragment.
Second, the ordering is maintained in the
XML document. Thirdly, the scheme
declaration provides validation into the
document. XML is a language used to
define a structure for a valid XML
document or fragment. XML Schema
allows the declaration of optional sections
or types inside generic scheme that
supports any XML fragment. This means
that XML data can be used for
representing semi-structured or
unstructured data. Fourth, XML allows
searching. Due to the hierarchical
structure, multiple algorithms can be
applied to search within the tree structure.
Fifthly, XML data are extensible. XML
data can be manipulated by inserting,
modifying and deleting nodes. This means
you can create new XML instances of
existing XML structures.

3. Brief considerations about object-
relational databases
The object-relational databases are a
hybrid type of databases, which use the
best facilities of its predecessors (relational
and object-oriented databases) [3]. In other
words, they can be considered an object-
oriented extension of the relational
databases. The internal logic of storing and
retrieving data is the same like in the
relational case. The main difference
consists in new data types, some of them
user defined (like object classes), and in
the ability of manipulate them.
Multimedia, spatial and XML data are
important resources, which need to be
manipulated, in order to use them in
specific applications.
However, one can observe that, in a table

of such database, the main part of the
columns have nothing in particular, being
just standard columns. The exceptions
come from these columns that contain
complex data: large objects (LOB), object
types, spatial data, XML data [1].
The new standard for object-relational
design is SQL:1999 and provides support
for user defined abstract data types, which
can be used in the same way as the
standard data types. This allows for the
encapsulation of an object within another
object. Also, SQL:1999 added support for
XML platform for data representation
using text files.
As stated in [2], using this hybrid type of
database has its main reason for that:
• In many cases, the existing

applications are already based on a
relational data model. This calls for
coexistence with the relational model
as long as we do not want to redesign
the applications based on a common
object model to be included in a single
OODB;

• Performance and scalability are
important properties of an application,
and in this respect, OODBMS have not
yet shown advantages over RDBMS.

The main issue, in the case of object-
relational databases, is how to store objects
using tables and how to transform complex
requirements of applications into
properties stored in databases, all in a
simple and clear way, that keep the
structure of object-oriented application,
reduce programming effort and maintain a
reasonable level of performance [10].
As specified in [1], the object-relational
database management system (ORDBMS)
offer is very generous and covers a wide
scale of cost and performance, going from
the DBMS that can be used for free
(unlicensed or with public license, such as
PostgreSQL) to the commercial ones such
as Oracle 10g, DB2 UDB 8, and SQL
Server 2005. All these DBMS types extend
their relational model with abstract data
types and object-oriented properties.

Database Systems Journal vol. II, no. 2/2011 5

4. Managing XML Data in Oracle
ORDBMS
Oracle is a relational database
management system (RDBMS), but since
version 10g is included into the category
of relational DBMS extended with
facilities for defining and processing the
types of objects - ORDBMS. Thus, the
system can distinguish between types
(classes) of objects and objects (instances
of objects types) [8].
Oracle specific procedural language,
PL/SQL, supports object-oriented
programming features and objects types
(equivalent with objects classes). An
object type encapsulates a data structure
with functions and procedures for handling
data. The variables that form the object
type are called attributes. The functions
and procedures that manipulate the
attributes are called methods. The
definition of objects types and the methods
are stored in the database. Instances of
these types of objects can be stored in
tables and used as variables in PL/SQL
programs [9].
A new Oracle database functionality
consists into XML data management,
through Oracle XML DB component. It
provides high-performance storage and
retrieval of XML data.
The main components of Oracle XML DB
are shown in Figure 1 and the most
important features are highlighted in [13]
and summarized below:
• Supports XML Schema data models;
• Provides methods for navigating and

querying XML data;
• Allows DML statements over the XML

data;
• Allows standard methods for accessing

and updating XML, including W3C
XPath recommendation and the ISO-
ANSI SQL/XML standard;

• The transfer of XML data in and out of
Oracle Database can be made using
FTP, HTTP or WebDAV;

• Enables the management of the XML
hierarchy;

• Includes a XML repository that allows
XML content to be organized and
managed;

• Provides a storage-independent,
content-independent and
programming-language-independent
infrastructure for storing and managing
XML data;

• Supports standard APIs used for
programmatic access and manipulation
of XML content using Java, C, and
PL/SQL;

• Allows specific memory management
and optimizations;

• Allows Oracle Database main features,
such as reliability, availability,
scalability, and security for XML
content.

Figure 1 –Main components of Oracle XML DB

(Source: adapted from [13])

In today’s organizations, the data is
managed differently depending on their
structured or unstructured format. Thus,
unstructured data is stored into tables,
while structured data is stored into LOB
data files (Large Objects).
Oracle database allows XML data to be
stored and managed whether they are
structured, unstructured or semi-structured
data. Using Oracle it can be performed
XML operations on object-relational data,
but also SQL operations on XML
documents.
As shown in figure above, when we use
Oracle XML facilities we discuss about
XMLType data type and XML repository.

 Managing XML Data to optimize Performance into Object-Relational Databases 6

XMLType is an Oracle server data type,
similar to the native data types like DATA,
NUMBER or VARCHAR2. XMLType
allows the database to understand that a
column or table contains XML and also
provides methods that allow standard
operations such as XML Schema
validation and XSL transformations.
According to [12], the modalities to store
XMLType data are the following:

• Structured storage, in tables or views,
when we discuss about structured data;

• Large objects (LOB) storage, when we
discuss about unstructured or semi-
structured data and we need to store
XML document as a whole.

Table 1 listed below indicates the main
features of each type of storage:

Table 1 – The main features of each XMLType storage modality
(Source: adapted from [12])

CHARACTERISTIC STRUCTURED STORAGE LOB STORAGE

Database schema flexibility Limited flexibility for schema
changes

Good flexibility for schema
changes

Data integrity and accuracy Limited data integrity. Maintains
DOM fidelity.

Maintains the original XML
byte for byte - important in
some applications

Performance Good performance for the DML
statements

Medium performance for the
DML statements

SQL features
Good accessibility to existing SQL
features, such as constraints,
indexes, and so on

Medium accessibility to SQL
features

Space needed Consume less space when used
with Oracle XML DB

Can consume considerable
space

We can use XMLType as the data type of
columns in database tables or views, as
shown in the following example:

CREATE TABLE users
(
user_id NUMBER(3),
username VARCHAR2(15),
password VARCHAR2(20),
personal_data XMLTYPE
);

The structure for the XMLType data
can be visualized in the tree-
structure represented in the
Figure 2:

Figure 2 – XML hierarchy for personal data

If we choose to store XML data in an
XMLType column as a CLOB column, we
have the possibility to specify LOB
storage characteristics for that column, as
shown in the following example:

Database Systems Journal vol. II, no. 2/2011 7

CREATE TABLE users2
(
user_id NUMBER(3),
username VARCHAR2(15),
password VARCHAR2(20),
personal_data XMLTYPE
)
XMLType COLUMN personal_data
STORE AS CLOB
(
TABLESPACE lob_example
STORAGE
(
INITIAL 4096
NEXT 4096
)
CHUNK 4096
NOCACHE
LOGGING
);

In order to create an XMLType instance will
be used the XMLType() constructor applied
to a VARCHAR2 string or to a CLOB
(Character Large Object) data. The stored
data can be seen as in Figure 3.

INSERT INTO users VALUES
(100, 'User100', 'pass',
XMLType('<PersonalData user="100">
 <Name>Ionescu</Name>
 <Address>
 <City>Bucharest</City>
 <Code>012345</Code>
 </Address>
 <Phone>0211234567</Phone>
 </PersonalData>'));

Figure 3 – The modality to visualize the XML data

Another way for using this data type
allows us to create tables of XMLType.
Thus, the below example creates
the person table of XMLType. In
this case, the default type of
storage is CLOB based.

CREATE TABLE persons of XMLType;

XML type offers great search and query
facilities. The developers have the ability
to use different methods that allow

manipulation of XML data, like: extract(),
createXML(), existsNode(), getCLOBVal(),
getStringVal() or getNumberVal().
In order to query a table which
has a XMLType column, simple or
complex, will be used the method
extract() of the object type. The
result of the method will be a
VARCHAR2 value.

SELECT u.username,
u.personal_data.extract('/Personal

 Managing XML Data to optimize Performance into Object-Relational Databases 8

Data/Name/text()').getStringVal()
Name,
u.personal_data.extract('/Personal
Data/Address/City/text()').getStri
ngVal() City
FROM users u;

The above query retrieves values
of the nodes from XML structure
presented in Figure 2, by using
the path to these nodes.

Figure 4 – Result of the SELECT statement

The others DML statements (update and
delete) are no different from updating or
deleting rows containing any other
standard data type. Obviously, specific
XMLType methods can be used in order to
identify rows to update or delete, like in
the following example:

DELETE FROM users u
WHERE
upper(u.personal_data.extract('//C
ity/text()').getStringVal()) =
'BUCHAREST';

Other modalities to manipulate the
XMLType data use PL/SQL or Java
programs. In addition, for loading the
XML documents into the repository can be
used the PL/SQL standard package
DBMS_XDB, which stores under a given
path the document.

5. Optimizing database performance by
managing XML Data
Database performance can be optimized
through a severe management of XML
data and appropriate optimizing
techniques, like indexing and partitioning
tables.
When a query is executed over a table with
XMLType columns, the query optimizer
takes into consideration many factors
related to the objects referenced and the
conditions specified in the query, in order
to identify the most efficient technique.

The query optimizer estimates the cost of
the execution plan, which is an estimated
value that depends on resources used to
execute the statement (in terms of I/O,
CPU and memory) [4].
Oracle uses indexes to avoid the need for
full-table scans which are required when
the query optimizer cannot find an
efficient way to service the SQL statement.
An index is used to find data quickly,
regardless of the amount of data. The
structures used by Oracle to create and
maintain indexes are B-tree and bitmap
indexes.
The oldest and most popular type of
indexing is a classic B-tree index. A B-tree
consists of a root node that contains one
page of data, 0 or more additional pages
containing intermediate levels, and a leaf
level. Leaf level contains entries that
correspond to ordered data that are
indexed.
Oracle bitmap indexes are very different
from standard b-tree indexes. This type of
index creates a two-dimensional array with
one column for every row in the table
being indexed. Each column represents a
distinct value within the bitmapped index.
The array created represents each value
within the index multiplied by the number
of rows in the table.
An interesting and important feature in
Oracle indexing is represented by
function-based indexes. Thus, are created
indexes on expressions, internal functions,
and user-defined functions in PL/SQL or
Java. A function-based index ensures
matching any condition in a query and
replaces the unnecessary full-table scans
with super-fast index range scans.
In order to identify how database
performance can be optimized, we will
execute some queries on XMLType tables
stored into repository from Oracle
database.
First, performing a query against the
USER_XML_TABLES data dictionary
view will mark the XMLType tables from
the repository:

Database Systems Journal vol. II, no. 2/2011 9

SELECT table_name, storage_type,
xmlschema FROM user_xml_tables;

The result obtained in this case indicates
the Persons table as XMLType table, stored
with the object-relational storage option, as
we can see in table properties.
We will now execute the query below to
see if its execution plan is optimal:

SELECT
p.extract('/PersonalData/Name/text
()').getStringVal() Name,

p.extract('/PersonalData/Address/C
ity/text()').getStringVal() City
FROM persons p
WHERE
lower(p.extract('/PersonalData/Add
ress/City/text()').getStringVal())
='brasov';

As we can observe in the Figure 5, the
execution plan for the query performed
involves an inefficient TABLE ACCESS
FULL operation, with a cost of execution
estimated at 8.

Figure 5 – The execution plan before creating the index

To increase performance of query
execution, a function-based index will be
created:

CREATE INDEX city_index ON persons
p(lower(p.extract('/PersonalData/A
ddress/City/text()').getStringVal(
)));

To examine the created indexes on a table,
can be run the query shown below:

SELECT index_name, index_type,
table_name
FROM user_indexes
WHERE table_name='PERSONS';

The statistics for the execution plan are not
refreshed automatically, but at a specific
time or when this is an explicit
requirement. In this case, we collect
information about the tables in the current
scheme using a function included in the
standard package DMBS_STATS:

BEGIN
DBMS_STATS.GATHER_TABLE_STATS(user
, 'persons');
END;
/

After running the PL/SQL block above, we
will check the execution plan again, by
running the SELECT statement tested
before creating the index. The result

 Managing XML Data to optimize Performance into Object-Relational Databases 10

indicates that the query execution plan has
improved (the cost for executing the query
is now estimated at 2), as shown in the
Figure 6. Also, TABLE ACCESS FULL

operation has been replaced by more
efficient TABLE ACCESS BY INDEX
ROWID and INDEX RANGE SCAN
operations.

Figure 6 – The execution plan after creating the index

Moving forward in order to identify
optimizing techniques, we will study the
effects of partitioning against the queries
built on XMLType tables.
The main objective of the partitioning
technique is to radically decrease the
amount of disk activity and to limit the
amount of data to be retrieved.
Tables are divided into partitions using a
partitioning key. This is a set of columns
that will determine by their conditions in
which partition a given row will be stored.
Partitioning for object-relational storage
was introduced in Oracle Database 11g to
help simplify XML data life-cycle
management and performance [11].
We will create an XMLType table with
partitioned object-relational storage using
a XML Schema for identification of the
XML hierarchy elements. Then, the table
will be populated with data selected from
the Persons table.

CREATE TABLE person_part OF
XMLTYPE
XMLSCHEMA

"http://localhost:8080/orabpel/xml
lib/XMLSchema_persons.xsd"
ELEMENT "personal_data"
PARTITION BY LIST
(personal_data.address)
(PARTITION a VALUES ('Bucharest'),
PARTITION b VALUES ('Iasi'),
PARTITION c VALUES ('Oradea'),
PARTITION d VALUES ('Brasov')
);

The XML Schema which is pointed in the
CREATE TABLE statement is presented
below:

<?xml version="1.0" encoding="ISO-
8859-1" ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/X
MLSchema">
<xs:element name="personal_data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
type="xs:string"/>
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="city"
type="xs:string"/>
 <xs:element name="code"

Database Systems Journal vol. II, no. 2/2011 11

type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="phone"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

For better performance improvement of
the queries we can chose to create indexes
on the partitioned XMLType table. The
execution plan resulted will be more
efficient for large data sets.

7. Conclusion
The paper presents the object-relational
database main features and the possibilities
for integration with XML technology. We
have presented and tested two optimizing
techniques used by Oracle database for the
queries that are built on XMLType tables.

8. Acknowledgment
This paper presents some results of the
research project PN II, TE Program, Code
332: “Informatics Solutions for decision
making support in the uncertain and
unpredictable environments in order to
integrate them within a Grid network”,
financed within the framework of People
research program.

References
[1] Iuliana Botha, AndaVelicanu, Adela

Bâra, “Integrating Spatial Data with
Object Relational-Databases”, Journal
of Database Systems, no.1/2011, pp.
33-42, ISSN: 2069–3230

[2] Gheorghe Sabau, “Comparison of
RDBMS, OODBMS and ORDBMS”,
The Proceedings of the 8th
International Conference on
Informatics in Economy, Bucharest,
2007, pp. 792-796, ISBN 978-973-
594-921-1

[3] Michael Stonebraker, Dorothy Moore,
“Object-Relational DBMS - The Next
Great Wave”, Morgan-Kaufmann,
1996, ISBN: 155-860-397-2

[4] Adela Bâra, Ion Lungu, Manole
Velicanu, Vlad Diaconiţa, Iuliana
Botha, „Extracting data from virtual
data warehouses – a practical
approach of how to improve query
performance”, The Proceedings of the
7th WSEAS International Conference
on Artificial Intelligence, Knowledge
Engineering and Data Bases, 2008,
pp. 509-514, ISBN: 978-960-6766-41-
1, ISSN: 1790-5109

[5] Laila Alami Kasri, Noureddine
Chenfour, “Model of Storage XML
Database based on the Relational-
Object Model”, International Journal
of Engineering Science and
Technology, Vol. 2(11), 2010, ISSN
0975–5462

[6] Irena Mlynkova, Jaroslav Pokorny,
“From XML Schema to Object-
Relational Database – an XML
Schema-driven mapping Algorithm”,
Proceedings of the 3rd IADIS
International Conference
WWW/Internet, Madrid, Spain, 2004,
pp 115 - 122, ISBN 972-99353-0-0

[7] Irena Mlynkova, Jaroslav Pokorny,
“XML in the World of (Object-)
Relational Database Systems”,
Information Systems Development:
Advances in Theory, Practice, and
Education, Vilnius, Lithuania, 2004,
pp. 63 - 76, ISBN 978-0-387-25026-7

[8] Manole Velicanu, Dicţionar explicativ
al sistemelor de baze de date,
Economica Publishing House,
Bucharest, 2005, ISBN 709-114-0

[9] Manole Velicanu, Ion Lungu, Iuliana
Botha, Adela Bâra, Anda Velicanu,
Emanuil Rednic, Advanced Database
Systems, AES Publishing House,
Bucharest, 2009, ISBN: 978-606-505-
217-8

[10] Oracle Database, Application
Developer’s Guide: Object-Relational

 Managing XML Data to optimize Performance into Object-Relational Databases 12

Features, Oracle tutorial, December
2003

[11] Using Oracle XML DB to Optimize
Performance and Manage Structured
XML Data, Oracle tutorial,
http://www.oracle.com/webfolder/technetwor
k/tutorials/obe/db/11g/r2/prod/appdev/xmldb/

xmldb_structured/optimizeandmanageXMLda
ta_v3.htm

[12] http://download.oracle.com/docs/cd/B10501_
01/appdev.920/a96620/xdb04cre.htm

[13] Oracle XML DB Developer's Guide,
Oracle tutorial,
http://download.oracle.com/docs/cd/B19306_
01/appdev.102/b14259/toc.htm

Iuliana BOTHA is an Assistant Lecturer at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. She has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics

in 2006 and the Databases for Business Support master program organized by the Academy of
Economic Studies of Bucharest in 2008. Currently, she is a PhD student in the field of
Economic Informatics at the Academy of Economic Studies. She is co-author of 4 books, 8
published articles (2 articles ISI indexed and the other 6 included in international databases),
16 scientific papers published in conferences proceedings (among which 4 paper ISI indexed).
She participated as team member in 4 research projects that have been financed from national
research programs. From 2007, she is the scientific secretary of the master program
Databases for Business Support and she is also a member of INFOREC professional
association. Her scientific fields of interest include: Databases, Database Management
Systems, Design of Economic Information Systems, Business Intelligence.

Database Systems Journal vol. II, no. 2/2011 13

Increasing Database Performance using Indexes

Cecilia CIOLOCA, Mihai GEORGESCU
 Economic Informatics Department, Academy of Economic Studies

Bucharest, ROMANIA
cecilia_cioloca@yahoo.com, mihai.georgescu@europe.com

The performance issues are presented. The process of performance tuning is described. The
indexing concept is introduced. The two types of defining an index are identified. The paper
presents and explains the way a clustered and nonclustered index works. A compared analysis
between clustered and nonclustered indexes is created. The benefits of using indexes on
databases are identified and explained. A demonstration of using SEEK and SCAN indexes is
presented, showing the logic behind these two types of indexes. Cases when an index must be
used and how this index is created, are presented along with the performance improvement
that is obtained after successfully creating the index.
Keywords: Clustered index, Nonclustered index, Optimization, Database, Performance

Introduction
Pe

impor
rformance is one of the most
tant metric that describes if a

project is a success or a mistake. It is also
one of the most common problems the
programmers are dealing with. Either if
we are taking into consideration a new
starting project or an application that is
already running on production we should
always keep in mind the performance
aspects. This means that the design for
performance process should start early in
the development of an application. The
architecture of the system should be
design in a manner to meet the
performance requirements and to allow
performance tuning. The book [1]
presents techniques to improve or fine
tune a database to achieve maximum
performance.
There is no recipe of designing perfect
databases, but there are techniques and
tips that can improve the quality of the
design. Improving the database
performance is a cycling activity that
should be including in each of
development stage.
The performance tuning process includes
three steps:
• Time response measurement before

tuning;
• Tuning performed;

• Time response measurement after
tuning.

The database designer should focus on those
techniques that provide the most benefits.
Among all the techniques of improving the
database performance, indexing and query
optimization stand up as they provide visible
results. On the other hand, abusing indexes
and inappropriate indexes might harm the
performance of the system.

The structure of the database used for
this demonstration is described in figure 1.

Fig. 1 – Structure of test database

In order to define the index concept we

will take a look at how the data is retrieved
from database with no indexes.

SELECT * FROM Client WHERE

LastName = ’LastName4’

In the above query the SQL Server will

look in all the rows from the beginning of
the table to the end of it searching for those
rows that are meeting the condition in the

1

mailto:cecilia_cioloca@yahoo.com
mailto:mihai.georgescu@europe.com

 Increasing Database Performance using Indexes 14

WHERE clause. If the searched table
contains few rows the response of the
above query might be very prompt, but in
case of tables that contain millions of
rows the query might take a while. For
this reason creating an index on the table
allows SQL Server to get the result
without searching the whole data in the
table. Indexing is the best way to reduce
the logical read and disk input/output as it
provides a mechanism of structured
search instead of row by row search [8].
Basically an index is a copy of the data in
the table, sorted in a certain logical
manner. There are two different ways of
defining an index:
• Like a dictionary: a dictionary is a

list of words ordered alphabetically.
An index defined like a dictionary
is a set of data ordered in a
lexicographic manner. For this
reason the search on the index will
not include all the rows but will
position easier based on the ordered
data.

• Like a book index: this approach of
creating an index will not alter the
layout of the data in the table, but
just like the index of a book will
position the data in the table to the
corresponding position in the table.
An index defined in this manner
will contain the data in the indexed
column and the corresponding row
number of the data.

An example of how to design a spatial
database is presented in detail in [3].

2 Clustered indexes
A clustered index is an index that
contains the table data ordered in a
physical manner. When creating a
clustered index on a table, the data rows
are reordered on the disk based on the
index key sequence so that it meets the
indexed ordering. For this reason only
one clustered index is allowed to be
created on one single table.
For the Client table, when creating a
clustered index on FirstName column,

the data in the table is physically
alphabetically sorted based on FirstName
value. When inserting a new row into the
database, it will be inserted in a certain
position so that the sorting is still kept.
Figure 2 schematically presents the tree
structure of the clustered index on Client
table column FirstName.

 Fig. 2 – The structure of the clustered
index

As shown in the figure above the leaf nodes
represent the actual data pages while the
intermediate nodes of the tree structure are
index pages. All the pages in the structure
are linked. The top node in the structure is
the root index page, while the middle level
nodes are intermediate index pages. Each
row in an index page refers either another
index page or a data page. This reference is
a pointer to a page number. The root index
page contains a row with the value
Munteanu which points to the intermediate
index page number 98, while the index page
98 contains a row with the value Danila
which points to the data page 78. The data
page 78 contains two rows with the
corresponding values.
When searching using the clustered index,
the row to row search will be avoided. For
the following query

SELECT * FROM Client WHERE

LastName=’Cioloca’

SQL Server will first get the root index page
from the sysindexes table, and then it will
search in the rows of it to find the highest
key value not greater then Cioloca, and will

Database Systems Journal vol. II, no. 2/2011 15

find the value Arsene. The pointer
corresponding to the key value Arsene
refers to the index page 22. Now, SQL
Server will move to index page 22, where
it looks again for the highest key value
not greater than the searched value. This
value is Craciun and it points to the data
page 66. SQL Server moves to the data
page 66, where it finds the two rows:
Craciun Ciprian and Cioloca Cecilia. It
finds the value that meats the search
criteria and returns it.
A table that has no clustered index is
called heap table. The data in this type of
table is not stored in any particular order.
Each row in a nonclustered index has a
pointer that refers to the location of that
particular data row. This pointer is called
raw locator, and it can point to a row in
the heap or to a clustered index key
value, depending if the table has or not a
clustered index. If the table has no
clustered index then the row located will
point to a data row in the heap. In case
the table has a clustered index, the row
locator will point to a index key value
into the clustered index. In the figure 3
the relationship between clustered and
nonclustered indexes is presented.

Fig. 3 – Relationship clustered-

nonclustered indexes

When using clustered indexes there are

few aspects that should be taken into
consideration:

• The clustered index should be created

prior the nonclustered index. The
reason why this is recommended is
that the nonclustered index row
locators should point to a
corresponding key value in the
clustered index. If the nonclustered
index is created first then the row
locators will point into the heap and
the relationship between the clustered
and nonclustered indexes will be
compromised;

• The reordering of the index occurs
every time the index is changed. The
dependency between the clustered and
nonclustered indexes should be kept in
mind when changing the clustered
index. For this reason the index should
be dropped and then recreated so that
the nonclustered are rebuilt correctly;

• The clustered index is not
recommended to be used when
working with columns that are
frequently updated as each time the
column is updated the clustered and
nonclustered indexes must be rebuild;

• The clustered index is efficient when
retrieving presorted data and when
retrieving range of data.

As recommended in [2], a clustered index
should be used when: Consider using a
clustered index when the following occur:

• The physical ordering supports the
range retrievals of important queries, or
equality returns many duplicates;

• The clustered index key is used in the
ORDER BY clause or GROUP BY clause of
critical queries;

• The clustered index key is used in
important joins to relate the tables—that is,
it supports the foreign key;

• The clustered index columns are not
changed regularly.

 Increasing Database Performance using Indexes 16

3 Nonclustered indexes
Similar to the clustered indexes,
nonclustered indexes are balanced tree
structures that start from a root index
node, and include intermediate index
nodes and leaf nodes. The main
differences between clustered and
nonclustered indexes is that in case of
nonclustered indexes the key values are
not ordered in any specific way and that
the leaf nodes from nonclustered indexes
are not data pages but index pages that
point to either a index node into a
clustered index or to a data row into the
heap. Figure 3 describes the tree structure
of a nonclustere node. The dotted line
suggests that the leaf nodes point to data
rows into the heap table.

Fig. 3 – Structure of nonclustered

index

Due to its properties, a nonclustered
index does not physically change the
order of the rows into the table. The
figure above also shows that each data
row is pointed by an index node, which
was not the case for clustered index. The
nonclustered index is larger than its
counterpart, as a supplementary index
level is introduced and it has to contain
the pointers to the data rows.
Even when the clustered index rows have
physically changed the nonclustered row
locaters continue to point to the same
clustered index nodes. Instead of
updating each row locator for each
nonclustered index node, SQL Server
adds a pointer to the old data page in

order to point to the new datapage. This
involves a new level of indirection. The leaf
index nodes from the nonclustered index
still point to the old data page, while these
old data pages are pointing to the new ones.
This way the user is transferred to the new
location of the data pages.
While there can be only one single clustered
index for each table, there can be a bunch of
nonclustered indexes on the same table. The
reason of that is that this type of index does
not change the physical order of the data
into the table.
When using nonclustered indexes it is useful
to keep in mind the following aspects:
• Nonclustered indexes might be find

very usefull when retrieving a small
set of data from a large amount of data.
The nonclustered indexes is also
recommended when using wide keys
and when the table columns are
frequently updated;

• Nonclustered indexes are not the best
when retrieving large sets of data, as
by using this type of index there still
must be read a large amount of data
pages. In this case the use of clustered
indexes is recommended.

Using noncluster indexes should be used

when:
• Once or more rows will be retrieved—

that is, the query is highly selective.
• The nonclustered index key is used in

the ORDER BY clause or GROUP BY
clause of critical queries.

• The nonclustered index key is used in
important joins to relate the tables.

• A covered query is required.

4 Index SEEK versus Index SCAN
In order to evaluate the performance of an
sql query, one of the most common tool is
SQL Server trace which provides
information about the “logical reads”
counter.
As shown in [7], the logical and physical
reads are explained: “The I/O from an
instance of SQL Server is divided into
logical and physical I/O. A logical read

Database Systems Journal vol. II, no. 2/2011 17

occurs every time the database engine
requests a page from the buffer cache. If
the page is not currently in the buffer
cache, a physical read is then performed
to read the page into the buffer cache. If
the page is currently in the cache, no
physical read is generated; the buffer
cache simply uses the page already in
memory.”
Physical and logical reads are available in
SQL Server 2008 by using the following
command:

SET STATISTICS IO ON

After successfully running this command,
all future queries will show the operations
performed.
First we will create a nonclustered index
on column LastName:

CREATE NONCLUSTERED INDEX
LastNameIndex on Client(LastName)

By using the system procedure
sp_helpindex we can check what indexes
are defined on a table:

sp_helpindex Client

In figure 4, we can see that we have 2
indexes defined on our Client table,
PK_Client index is generated
automatically when we specified the
primary key for the table.

Fig. 4 – Current indexes on table Client

To understand how index seek and index
scan works, the execution plan is turned
on and the following queries are
executed:

Query 1:
select * from Client where
LastName = 'LastName4'

Query 2:
select * from Client where
FirstName = 'FirstName4'

We observe for the first query that SQL
Server requested a page from the buffer
cache only 15 times. Also in figure 5, by
examining the execution plan, the database
engine used an Index Seek to fetch the
information that was already sorted using
the LastNameIndex that we created earlier.
The second query used an Index Scan which
means that the entire Client table was
scanned to find the Clients that have
LastName = ‘LastName4’ and requested
data from cache 19458 times, a lot more
than the first query which used the index.
Another information that the execution plan
provides is the query cost. For the first query
is almost 0% compared to the second query
which scanned the entire table.

Query 1:
(4 row(s) affected)
Table 'Client'. Scan count 1, logical reads
15, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob
read-ahead reads 0.

Query 2:
(4 row(s) affected)
Table 'Client'. Scan count 1, logical reads
19458, physical reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

Fig. 5 – Execution plan of Query 1 and

Query 2

An index scan either clustered or
nonclustered will do a complete scan in a

 Increasing Database Performance using Indexes 18

clustered or nonclustered index. Neither
index uses the b-tree structure of the
index but only reads the leaf pages in
order using each page’s reference to the
next in the chain.
An index seek is a seek through the b-tree
structure of a nonclustered index, from
the root down to the leaf. A clustered
index seek is looking in the structure of a
clustered index from the root down to the
leaf.
Index seek is preferred for the highly
selective queries, when the query is
returning a fewer number of rows, less
than 15% of total rows in the table.
If there is an index on a table and if the
query is fetching a large amount of data,
more than 70% of total rows in a table,
then the database engine will scan all the
data pages to retrieve the data rows.

5 Clustered indexes compared to
nonclustered indexs
Clustered and Non Clustered indexes
have the following common
characteristics as presented in [5]:
Both clustered and nonclustered indexes
are created based on one or more
columns. The columns are put in the
index in the order you specify them in the
CREATE INDEX statement. They are
also sorted in this order as well. Indexes
are first sorted on the first column in the
index, then any duplicates of the first
column and sorted by the second column,
etc;
Neither clustered or nonclustered indexes
will guarantee the sort order of the data
when it is being returned to you. If the
order of the data matters to you, you
should always sort the data with the
ORDER BY clause in your select
statement.
Both clustered indexes and nonclustered
indexes take up additional disk space.
The amount of space that they require
will depend on the columns in the index,
and the number of rows in the table. The
clustered index will also grow as you add
columns to the table;

Adding indexes (both clustered and
nonclusterd) will increase the amount of
execution time that the INSERT, UPDATE
and DELETE statement take, as the data has
to be updated in the table an also in each
index;
Columns of the IMAGE data type cannot be
indexed using normal indexes;

Clustered Indexes
SQL Server supports only one clustered
index for each database table. This index
should be the most common column that is
in the WHERE clause for queries against
this table. In most cases the search is by
primary key and this index is automatically
created.
The reordering of the data occurs every time
the index changes;
Reorders the way records are physically
stored;

Nonclustered Indexes
Nonclustered indexes, also called “indexes”
are the normal indexes that are created on
your tables. SQL Server supports 999
nonclustered indexes per table.
Each nonclustered index can contain upto
1023 included columns. Columns of the
TEXT, NTEXT and IMAGE data types
cannot be included either.
Nonclustered indexes are not copies of the
table but a sorting of the columns that reffer
to the data pages in the clustered index.
Because of this, the clustered index affects
all other indexes.
There are two modes for the nonclustered
index: non-unique and unique.The non-
unique type specifies that the index allows
identical rows to be inserted, compared to
the unique type which does not allow any
identical rows.
As presented in [6], the nonclustered index
does not re-order the actual table data. If the
clustered index is missing, then the
nonclustered index will point to the actual
data in table.
Logical order of the index is not identical
with the physical order of the rows stored on
disk.

Database Systems Journal vol. II, no. 2/2011 19

Nonclustered indexes should be used for
queries that return small amount of data
and to columns used in WHERE clauses
that return exact matches. Large result
sets are reading more tables pages
anyway so they will not benefit from a
nonclustered index.

6 Index fragmentation
When the user performs operations like
INSERT, UPDATE or DELETE on the
database, table fragmentation may occur.
Also when changes affect the data that is
covered by the index, then index
fragmentation occurs and the information
in the index is scattered over the
database. Due to this, when a query is
performed against a heavy fragmented
table, the operation will take longer time.
Index fragmentation comes in two
different forms: external fragmentation
and internal fragmentation. In each of
these forms, the pages within the index
are used inefficiently. External
fragmentation means that the logical
order of the pages are wrong and internal
fragmentation represents that the amount
of data stored within each page is less
than the data page.
Each leaf page of an index must be in a
logical order otherwise external
fragmentation occurs. When an index is
created, the index keys are sorted in a
logical order on a set of index pages.
Each time new data is inserted in the
index, there could be the possibility that
the new keys are inserted between
existing keys. This may lead to the
creation of new index pages to
accommodate the existing keys that were
moved so that new keys can be inserted
in correct order.
Let’s assume the current index structure
presented in figure 6.

Fig. 6 – Current index structure

When an INSERT statement is executed,

new data is added to the index. In our
example we will add 5 and automatically a
new page will be created and the 7 and 8
will be moved to the new page in order to
make room for the 5 on the original page.
Due to this, the index will be out of logical
order as seen in figure 7.

Fig. 7 – New index structure

This type of fragmentation will affect the
performance of queries that do not have
specific searches or that return unordered
result sets, but will affect queries that
returned ordered sets. An example of an
ordered result set is a query that is returning
everything from page 4 to 12. This query
has to complete an extra page switch in
order to return the 7 and 8 pages. If the
fragmentation affects tables with hundreds
of pages the amount of extra page switches
will be significantly greater.

In order to determine the level of
fragmentation the following command can
be used:

DBCC SHOWCONTIG (TableName)

The syntax of this command is:

DBCC SHOWCONTIG
[({ table_name
 | table_id
 | view_name
 | view_id }
 [, index_name | index_id]
)
]
[WITH { ALL_INDEXES
| FAST [, ALL_INDEXES]
| TABLERESULTS [, { ALL_INDEXES }]
[, { FAST | ALL_LEVELS }]
 }
]

After running this command on a table or
view, the results are presented below:

DBCC SHOWCONTIG scanning 'Person' table...
Table: 'Person' (839842950); index ID: 1,
database ID: 5

 Increasing Database Performance using Indexes 20

TABLE level scan performed.
- Pages Scanned...................: 53600
- Extents Scanned.................: 6712
- Extent Switches.................: 8579
- Avg. Pages per Extent...........: 8.0
- Scan Density [Best Count:Actual
Count].......: 78.09% [6700:8580]
- Logical Scan Fragmentation: 5.31%
- Extent Scan Fragmentation: 43.19%
- Avg. Bytes Free per Page........: 753.2
- Avg. Page Density (full)........: 90.69%
DBCC execution completed. If DBCC printed
error messages, contact your system
administrator.

The command returns the number of
pages scanned, the number of extents
scanned the number of times the DBCC
statement moved from one extent to
another while parsing the pages of the
table or index, the average number of
pages per extent, the scan density.

Pages Scanned: If the number of rows
contained in the table or index divided by
the approximate row size is significantly
greater than the number of pages scanned
then there could be internal fragmentation
of the index.
Extents Scanned: Take the number of
pages scanned and divide that number by
8, rounded to the next highest interval.
This figure should match the number of
extents scanned returned by DBCC
SHOWCONTIG. If the number returned
by DBCC SHOWCONTIG is higher,
then you have some external
fragmentation. The seriousness of the
fragmentation depends on just how high
the shown value is from the estimated
value.
Extent Switches: This number should be
equal to (Extents Scanned – 1). Higher
numbers indicate external fragmentation.
Extent Scan Fragmentation: Shows any
gaps between extents. This percentage
should be 0% and higher percentages
indicate external fragmentation.

By analyzing the results provided by
DBCC SHOWCINTIG on our “Person”
table we can see that the number of extent
switches is much greater than the number
of extents scanned. In this case there is
external fragmentation.

The fragmentation can be reduced and the
performance improved by using the
following methods:
• Dropping and recreating the index;
• Rebuilding the index using the DBCC

DBREINDEX statement;
• Defragmenting an index by using the

DBCC INDEXDEFRAG statement.

Dropping and rebuilding an index has the
advantage of completely rebuilding an index
and does reorder the index pages,
compacting the pages, and dropping any
unneeded pages. This operation should be
done on indexes that show high levels of
both internal and external fragmentation.

DROP INDEX and CREATE INDEX

Rebuilding the index can reduce
fragmentation and it is done by using the
following statement:

DBCC DBREINDEX

This operation is similar to dropping and
creating the index, except that it will rebuild
the index physically allowing the SQL
Server to assign new pages to the index and
reduce both internal and external
fragmentation. This statement also recreates
indexes with existing constraints.
Defragmenting an index by using the DBCC
INDEXDEFRAG statement reduces the
external fragmentation by rearranging the
existing leaf pages of an index to the logical
order of the index key and internal
fragmentation by compacting the rows
within index pages then discarding
unnecessary pages. The time needed to
execute this statement is longer than
recreating an index if the amount of
fragmentation is high. DBCC
INDEXDEFRAG can defragment an index
while other processes are accessing the
index, eliminating the blocking restrictions.

7 Conclusions

Database Systems Journal vol. II, no. 2/2011 21

Using indexes on the database improves
the performance of the whole system.
These indexes are of different type and
should be used in an intelligent way in
order to achieve the whished behavior.
Clustered indexes should be used for
queries that return a large amount of data.
The clustered index is recommended to
be created on the primary key of the
table. For all other columns nonclustered
indexes should be created.
A noncluster index is better to be used
when running queries that return a
smaller amount of data. By using this
type of indexes large amount of data will
have to read in lot of data pages, and the
performance of the system will decrease.
Choosing the number and type of indexes
can dramatically affect the performance
and can mean the difference between data
being retrieved in seconds, with few disk
I/Os or minutes, even hours, with many
disk I/Os. Choosing the optimum number
of indexes to support the critical queries
is therefore an extremely important task.
Before creating a new index one must
make sure that there aren’t any unused
indexes. Also remove the minimally
useful or redundant/duplicate indexes like
subsets of other indexes.
Combine existing indexes to create a
consolidated index:

Index1:
(LastName, FirstName) INCLUDE
(phone)

Index2:
(LastName, FirstName, MiddleName)
INCLUDE (PIN)

Combined Index:
(LastName, FirstName, MiddleName)
INCLUDE (phone, PIN)

Verify the health of the existing indexes
periodically for:
• Splits using

sys.dm_db_index_operational_stats
• Fragmentation using

sys.dm_db_index_physical_stats

• Contention using
sys.dm_db_index_operational_stats

The database performance can be improved
by reducing the table or index
fragmentation. This is achieved by dropping
and recreating the index, rebuild the index
by using DBCC DBREINDEX statement or
by defragmenting the index using DBCC
INDEXDEFRAG statement.

8 Acknowledgment
This work was cofinaced from the European
Social Fund through Sectoral Operational
Programme Human Resources Development
2007-2013, project number
POSDRU/107/1.5/S/77213 „Ph.D. for a
career in interdisciplinary economic
research at the European standards”.

References
[1] G. Fritchey, S. Dam, SQL Server 2008

Query Performance Tuning Distilled,
Apress, 2009, ISBN 978-1-4302-1903-3,
560 pages

[2] K. England, Microsoft SQL Server 2000
Performance Optimisation and Tuning
Handbook, Digital Press, 2001, ISBN
978-1555582418, 320 pages

[3] A. Mocanu, M. Velicanu, Building a
Spatial Database for Romanian
Archaeological Sites, Database Systems
Journal, Vol. II, ISSN: 2069 – 323, p. 3-
12.

[4] http://www.sql-server-
performance.com/2010/logical-reads/

[5] http://itknowledgeexchange.techtarget.
com/sql-server/back-to-basics-clustered-
vs-nonclustered-indexes-whats-the-
difference/

[6] http://www.devtoolshed.com/content/clu
stered-index-vs-non-clustered-index-sql-
server

[7] http://blogs.msdn.com/b/craigfr/ archiar/
2006/06/30/652639.aspx

[8] C. Churcher, Beginning Database
Design. From novice to professional,
Appress, 2007, ISBN 1-59059- 69- 9,
267 pages

 Increasing Database Performance using Indexes 22

Cecilia CIOLOCA has graduated the Faculty of Economic
Cybernetics, Statistics and Informatics from the Bucharest Academy

of Economic Studies in 2008. She is currently conducting doctoral research in Economic
Informatics at the Academy of Economic Studies. She is experienced in software
development using open source technologies. She has successfully completed several projects
using various programming languages and open source frameworks. She is proficient in using
Java Enterprise Edition.

Mihai GEORGESCU has graduated the Faculty of Electronics,
Telecommunications and Information Technology – Politehnica University Bucharest in 2005
and also completed a master program at the Faculty of Economic Cybernetics, Statistics and
Informatics from the Bucharest Academy of Economic Studies in 2007. He has experience in
the development of software products using various programming languages like C/C++, C#
both Windows Forms and Web.

Database Systems Journal vol. II, no. 2/2011 23

A Grid Architecture for Manufacturing Database System

Laurentiu CIOVICĂ, Constantin Daniel AVRAM
Economic Informatics Department, Academy of Economic Studies Bucharest, ROMANIA

laurentiu.ciovica@gmail.com, costin.avram@gmail.com

Before the Enterprise Resource Planning concepts business functions within enterprises were
supported by small and isolated applications, most of them developed internally. Yet today
ERP platforms are not by themselves the answer to all organizations needs especially in times
of differentiated and diversified demands among end customers. ERP platforms were
integrated with specialized systems for the management of clients, Customer Relationship
Management and vendors, Supplier Relationship Management. They were integrated with
Manufacturing Execution Systems for better planning and control of production lines. In
order to offer real time, efficient answers to the management level, ERP systems were
integrated with Business Intelligence systems. This paper analyses the advantages of grid
computing at this level of integration, communication and interoperability between complex
specialized informatics systems with a focus on the system architecture and data base
systems.
Keywords: enterprise resource planning, architecture, grid computing, data base systems.

Introduction
Th

busin
e first attempts to computerize the

ess functions within an enterprise
have been materialized in the 60s, in
small and isolated applications,
developed internally. These applications
were specifically designed to provide
support for financial-accounting
operations and for stock management in
order to streamline the production
process.
Due to rapid changes inside companies
and to new requirements, existing
software products continuously needed
adaptive and progressive maintenance.
Their advantages allowed expansion in
other business areas, where they
interacted with other applications even
though these where not designed to
interact and work together. The evolution
process continued and the software
products required more maintenance,
expansion of functionalities and
integration. Application packages have
emerged being added to existing software
collections. On this background, in the
late '80s the ERP - Enterprise Resource
Planning - systems were born.
The offered solutions were integrated into

a single package. The request of such
software products was huge and soon the
ERP's were everywhere. In [1] and [2] are
described the most important advantages of
ERP systems. With a single and centralized
database system the organization has access
to high quality information obtained from
consistent, accurate and elementary data.
Databases' normalization within ERP
systems and the usage of a single and central
database, minimize data redundancy.
The ERP systems provide small response
times. They can be easily reconfigurable
and they allow adaptation to permanent
changes in today's volatile economic
environment. Process flows, applications,
solutions and functional modules are
integrated in the EPR system.
Being module oriented the systems allow to
add new functionalities and their integration
and configuration are possible with
acceptable efforts. This gives to ERP
systems the advantage of scalability. The
complexity of ERP applications but also the
need of a continuous improvement led to the
integration of the maintenance service,
offered by suppliers, inside the development
process. The result is an improved
maintenance and support system.

1

24 A grid architecture for manufacturing database system

The evolution of ERP products to “ERP-
extended" concept, gives them a
collaborative dimension by integrating
applications such as Advanced Planning
and Scheduling - APS, Customer
Relationship Management - CRM,
Supply Chain Management - SCM,
Product Lifecycle Management - PLM,
Supplier Relationship Management -
SRM.
Inside manufacturing organizations the
ERP systems are integrated with the
production systems, known as
Manufacturing Execution Systems. The
objective is to better plan and control the
production unit.
In today's ERP systems there is a MRP,
Material Requirement Planning module
that is managing the production cycle, but
is not a production dedicated systems.
Manufacturing Resource Planning
systems represents the foundation of

today's ERP systems. As described in Fig. 1,
the development of MRP and ERP systems
started almost in the same time.
There have also been developed and
integrated decision support applications at
the top level management known as
Business Intelligence, BI. Through the
development and integration of web-
oriented components, the ERP systems offer
the advantage of openness to e-business.
This level of integration and communication
is possible because of Service Oriented
Architectures, SOA, which are focused on
the entire enterprise life cycle.
The concept is called Enterprise Service
Oriented Architecture or simpler ESA,
Enterprise Service Architecture. Enterprise
Service Oriented Architectures allow
manufacturing organizations to optimize the
production lines and to develop new
products personalized and adapted to their
customers' needs.

Fig. 1. Enterprise software evolution

According to Fig. 1, standard, isolated
software applications that were using the
power of mainframe computers were
integrated in unique software systems for
better communication and

interoperability, giving life to the ERP
systems.
The ERP systems became an imperative
requirement especially for the
manufacturing enterprises were specialized

Database Systems Journal vol. II, no. 2/2011 25

systems for production management were
being developed - Manufacturing
Resource Planning. This phase of
software integration in single platforms
was supported from the technical point of
view by client-server architectures as
described in Fig. 2. The evolution of
software integration didn't stop here as
ERP concept was evolved in extended
ERP by integrating it with specialized
systems for the management of customers
and vendors in order to optimize even
more the product life cycle management
by eliminating delays caused by stock
failure or raw material failure.
The final stage of software integration
was born thanks to web service
technologies and is represented by
Service Oriented Architectures and
Enterprise Service Oriented
Architectures.
Grid computing and cloud computing
technologies are already empowering
these architectures in ways that will allow
production industries to become capable
of real-time equipments configuration
and transformation in order to execute
differentiated and personalized products.

2 Grid computing inside ERP
architecture
The ERP systems are transactional
applications, client-server and distributed.
Servers are often centralized, but the
customers are spread throughout the
organization. Multinational organizations
consolidate their servers into a single
point, e.g. the headquarters of the
organization, and can access this point
from around the world. A general ERP
architecture includes three functional
entities. The database component is the
central repository of transactional data
both within and outside the organization.
The second component consists in the
applications client from where queries on
database are initiated and where the
processed results from these queries are
sent. The third component is an
intermediate zone between clients and

database and is represented by the ERP
internal applications. The ERP systems can
be implemented as a two-tier architecture
meaning that there is a single level which
handles and manages the database and the
applications, or a three-tier architecture can
be implemented where, in addition to the
client level, there are two more levels, one
for database and a separate one for
applications. Inside two-tier architecture, the
database server and applications server are
physically installed on the same equipment
but remain logically different entities. Fig. 2
describes three-tire architecture.
The techniques of grid computing are a
higher growing concern in the informatics
systems world and especially in the case of
integrated ERP systems. In [3] we find an
ERP architecture based on the model Open
Grid Service Architecture, OGSA. The
author states that this architecture solves the
inefficiency problems of sharing the
distributed resources through the benefits of
the OGSA model, through the web services,
by using the grid computing techniques and
through the use of XML and SOAP
protocols, in order to integrate core business
services of the organization.
The grid computing techniques are found in
the components of ERP systems and also at
the level of ERP platform itself. The
databases used by ERP systems are scalable
and allow the storage and retrieval of any
type of data in a grid environment. Data are
saved in a single virtual group that is shared
and made available depending of the
competing demands of users, ensuring also
the optimization of memory used and
avoiding locking the requests between them.
Databases are distributed in several physical
servers and grouped at logical level into
clusters, providing scalability without
affecting applications that use the database
system. The organization of database servers
into clusters enables the possibility to extend
the server capacities, by adding new nodes
in high demand areas and eliminates the risk
of a single point of failure. User applications
have permanent access at the fair and
efficient level of resources and computing

26 A grid architecture for manufacturing database system

power through management functions in
terms of work load. Not only can the
database of ERP systems be distributed

on multiple physical servers, but also the
application level.

Fig. 2 ERP Architectures

The application server is accessed by the
end user as a single point, but planning
systems and optimizing of end-user
access to ERP system resources,
optimally redirects the requests on
multiple applications servers. At the
programming level, it can be transmitted
on which application server will run a
particular query. In retrieving data from
ERP databases, the authors experienced
interfaces that extracted in a work session
tens of millions of records in order to
transfer them to data warehouses. The
interfaces were running during the night,
but in many cases, the amount of data

was so big that twelve hours were not
sufficient to complete the execution, which
was unacceptable because during the day the
system should have been as free as possible
for the key users. The problem was solved
by applying grid computing techniques.
Assessments and estimations of the volume
of data were made and regarding their
homogeneity, so that the final result to be
divided into partial results.
The advantage of this technique allowed the
execution of multiple partial jobs, each one
using the resources of a different application
server. In Fig. 2 the existence of an
intermediate level between the database

Database Systems Journal vol. II, no. 2/2011 27

server and the applications server can be
observed.
Due to the database distribution and of
the applications on multiple servers, an
intermediate level is necessary to ensure
optimal communication between the two
levels. The end user is not involved in
this phase. His requests, launched from
clients all over the world, are taken over
and managed with maximum efficiency
by the grid architecture in a non
transparent way for the end user.

3 A grid software architecture for
manufacturing organizations
The authors think that customers today
are more and more oriented on
personalized products and they want to
participate in an active way during the
phase of product design.
In particular, fashion industry shows an
increased interest in customers' opinion
and the trend is to design and develop
personalized fashion products matching
perfectly clients' demands.
Personalized demands can be limited to
some characteristics such as measure, or
can even include personalized product
design.
Pomarfin Company, a Finland leading
manufacturer for casual footwear is
known for its "left foot" concept. The
idea is to have 3D scanners available
inside their stores in order to obtain the
perfect measure for each customer.
Clients will choose the model and thanks
to the 3D scanners the shoe model they
like most will come in perfect size,
especially for them.
This paper is extending the "left foot"
concept by assuming that very soon 3D
scanners will be a technology available
for everybody.
Customers will design, from their home,
the perfect show model, they will obtain
their exactly measure using personal 3D
scanners and they will order via internet
their products. Software architecture for
the development and implementation of

such business model is described in Fig. 3.
It's a grid architecture because different
software components with dedicated data
base systems are working together to serve a
specific customer request. The grid is
controlled by a central element, a Service
Proxy containing:
• a message service used for sending

messages between the production grid
components

• a web service mediation used to
convert different messages from
different components into a general
language; it can be associated with a
common protocol or a communication
standard

• an enterprise service bus used to
receive data from third parties
components and systems using
different types of protocols

The grid architecture contains a web portal
which helps end customers to design their
personalized products and place the order
inside the manufacturing system.
It contains ERP systems with all its
components and applications. The data base
system used for the ERP system is using a
grid model as described in Fig. 2.
The ERP system is integrated with Customer
Relationship Management Systems and
Supplier Relationship Management Systems.
Different data from different data base
systems are grouped in data warehouses.
The ERP system in connected to the
production systems used at shop floor lever.
Between the two systems there is a
middleware component, the manufacturing
execution system.
As described in [4] the manufacturing
execution system is responsible with the
management of production. It represents a
communication layer between the ERP as
transactional system and the systems
dedicated to production lines.
The Business Process Management inside
our grid architecture enables the
organization to define executable processes
using visual flow steps.
It allows process adaptation to new market
requirements and ensures a competitive

28 A grid architecture for manufacturing database system

advantage for the enterprise.
This component is essential for our grid
architecture as the main purpose of this
platform is to offer real time
transformation and configuration of the
business model due to the products'

differentiation.
The Enterprise Decision Management
component represents a tool for managing
business rules which management of the
business model inside the software
architecture.

Fig. 3 A grid software architecture for manufacturing organizations

A detailed analysis of the database
systems must be undertaken considering
the complexity and the number of
specialized software applications
integrated in a single software
architecture, in order to allow more
interoperability.

Each component described in Fig. 4 works
with a specific data base model and a
database system must be designed for the
entire architecture in order to ensure its
stability and efficiency.

Database Systems Journal vol. II, no. 2/2011 29

Fig. 4 Components of grid software architecture for manufacturing organizations

4 Data Base Systems Architecture – An
overall view
As mentioned earlier in article, the
customers will order their desired product
through a web application capable in
interacting with 3D scanners.
Beside the scanning functionality the
application will expose functionalities
like: getting all available products along
with their models directly from
manufacturers, getting all applicable
colors, shapes, sizes, etc – basically
everything that can be customized and is
supported by the manufacturer, the
possibility to see the order status in every
moment, the possibility to assign
notifications channels through which the
system will notify the user about any
problems that may occur with their order,
etc.
The user will interact with a highly
usable interface through which in matter
of minutes he can choose and customize
his desired product and place the order.
From architectural point of view the
application itself interacts with third-

party applications, services, systems in a
transparent manner for the user.
Basically the portal – the web application
with which the user interacts – is just a
client for the main application server which
coordinates the entire order flow and
interacts with all necessary third-parties
systems.
From database system architectural point of
view the system communicates with
multiple database servers, as shown in Fig. 5
– one server per a major functionality
domain: e.g customer’s database server,
product information system database server,
orders database server, etc.
In order to handle the huge number of
customers the database servers are
distributed and a load balancing router is
implemented.
In order to avoid data looses and corruption
the distributed systems are in sync by using
native DBMS replication and specialized
data sync applications.
As shown in Fig. 5 the application server
uses the CDB – Customers DB, ODB –

30 A grid architecture for manufacturing database system

Orders DB and PDB – Product
Information System DB as primary data
sources.

These sources are shared within the E-ERP
itself.

Fig. 5 DB System architecture - overall view

As shown in Fig. 6 where a database
system design is described – a system is
composed from one master database
along with its mirror database and slave
databases.
The idea behind this design is that all the
update requests are redirected by a router
to the master database and all those read

requests to the slave’s databases. In order to
keep the data in sync inside the system,
native replication processes are used. For
backup purposes the mirror database is a
clone of the master database. The cloning
process can be done once or multiple times
per day.

Fig. 6 Database system architecture

Database Systems Journal vol. II, no. 2/2011 31

For our system beside the customer’s
databases the most important and vital
data source is the one from the Product
Information System. This data source

contains all those information related to
products, their models, sizes and other ways
of customization.

Fig. 7 Product Information System Database Server

As show in Fig. 7 the data is imported
from third-party vendor’s database
servers. The data importing and
synchronization process is done by a
specialized application capable in
extracting, transforming and storing the
necessary and required data.
This application translates the data
acquired from vendors in a format
understood by our application server and
its modules.

5 E-ERP Database System
Architecture
As presented earlier in article the
proposed ERP - Extended has in its
structure specialized modules like:
Customer Relationship Management -
CRM, Supply Chain Management -
SCM, Business Intelligence and
Knowledge Management – BI & KM,
Manufacturing execution system – MES,
and others.
Each module has its own customized
database system. The required data is

acquired from other data sources inside the
entire application system.
We are presenting in Fig. 8 the main
modules and their interactions. Thereby the
MES DB contains data acquired by
extracting and transforming data from
database systems such as: PDB and CDB.
The CRM DB contains data from systems
such as ODB and CDB.
The BI & KM module uses data from almost
all the existing systems – as show in Fig. 8 –
from systems such as ODB, CDB, PDB,
MES DB, CRM DB and so on.
Each module uses specialized application
capable in extracting and transforming all
the necessary and required data from other
internal / external database systems.
The proposed architectural design allows a
big database server distribution factor. Thus
each database server can be hosted on a
single machine, everywhere. Besides this
feature, the proposed architectural design
eases the use of grid computing design in
order to increase performance and speed.

32 A grid architecture for manufacturing database system

Fig. 8 E-ERP Database System Architecture

6 Conclusions
Grid technologies allow a full integration
and information partitioning by providing
access to several applications to the IT
infrastructure of the organization instead
of requiring dedicated servers to be
installed for a sole application with a well
defined purpose.
By using grid computing the software
architecture proposed for the
manufacturing organizations, allows
dynamic grouping in computer sets,
application servers and databases in order
to ensure an efficient support to volatile
needs in the business environment. ERP
platforms become simultaneously more
flexible, scalable, with an increased
performance level and high availability.
Grid technologies allow resource
allocation and efficient use of processing
power by optimizing the IT
infrastructure.
An organization can overcome the critical
moments in an IT infrastructure zone
using other resources available at that
time. Registering an additional cost is

avoided in this way by improving IT
performances in an area only to overcome a
crisis by splitting processing power to
different sources.
This kind of split permits replacing
components of the IT infrastructure without
affecting functionalities of the system. A
better organizational management is
obtained by the access to a better image of
the IT infrastructure and through and a
unique resource focused management
process is achieved. ERP systems offer
today complete grid computing solutions by
allowing access to the system using the
internet and sharing application servers and
databases.

7 Acknowledgments
This work was co-financed from the
European Social Fund through Sectoral
Operational Programme Human Resources
Development 2007-2013; project number
POSDRU/107/1.5/S/77213„ Ph.D. for a
career in interdisciplinary economic research
at the European standards”

Database Systems Journal vol. II, no. 2/2011 33

References
[1] I. Lungu, A.R. Bologa, V. Diaconita,

A. Bara and I. Botha, Integration of
Informatics Systems. Buchares,
Romania: ASE Publishing House,
2007, pp. 1-297.

[2] L. Hurbean and D. Fotache,
Integrated software solutions for
business management-ERP.
Bucharest, Romania: Economics
Publishing House, 2007, pp. 1-264.

[3] Development of a Grid ERP
Architecture: Integration of Grid
Computing and Enterprise Resource
Planning Application, accessed on

29/05/2011,

http://ieeexplore.ieee.org/search/freesrch
abstract.jsp?tp=&arnumber=4681186&q
ueryText%3Derp+grid+computing%26o
penedRefinements%3D*%26searchField
%3DSearch+All

[4] A. Dashchenko, Reconfigurable
Manufacturing Systems and Transformable
Factories. New York, SUA: Springer
Publishing House, 2010, pp. 1-759

Laurentiu CIOVICĂ has graduated the Faculty of Science, in 2008
gaining a Bachelor of Science degree in Information Technology with a

thesis on Translators and Interpreters for Code Generation and Software Optimization. In
2010 he gained a Master of Management degree in the field of Cybernetics, Statistics and
Economic Informatics with a thesis on Intelligent Agents. He is currently a PhD student at
Academy of Economic Studies in Bucharest. He is the author and co-author of more than 12
scientific articles in the field of software quality and optimization, code generation
techniques, collaborative systems, data bases, programming environments and techniques,
mobile platforms and economic informatics systems. Besides the scientific activity he is also
an active software developer, being the author of few applications. His area of interests
includes among others: software quality, optimization techniques and algorithms, code
generation techniques, economic informatics systems, intelligent and collaborative systems,
mobile platforms.

Constantin-Daniel AVRAM has graduated the Faculty of Economic
Cybernetics, Statistics and Informatics in 2005. He holds a master degree in

Computerized Project Management. He is the author and co-author of several scientific
articles in the field of ERP systems, manufacturing-oriented informatics systems, software
recognition, risk management, software and projects quality assurance, project management.
He is currently attending a PhD Program in Economic Informatics. He has more than six

34 A grid architecture for manufacturing database system

years of experience in ERP implementations. He was involved in large and very large
international ERP projects.

Database Systems Journal vol. II, no. 2/2011 35

Grid Database - Management, OGSA and Integration

Florentina Ramona PAVEL (EL BAABOUA)
Academy of Economic Studies ROMANIA, Bucharest

pav_florentina@yahoo.com

The problem description of data models and types of databases has generated and gives rise to
extensive controversy generated by their complexity, the many factors involved in the actual
process of implementation. Grids encourage and promote the publication, sharing and
integration of scientific data, distributed across Virtual Organizations. Scientists and researchers
work on huge, complex and growing datasets. The complexity of data management within a grid
environment comes from the distribution, heterogeneity and number of data sources.
Early Grid applications focused principally on the storage, replication and movement of file-
based data.. Many Grid applications already use databases for managing metadata, but
increasingly many are associated with large databases of domain-specific information. In this
paper we will talk about the fundamental concepts related to grid-database access, management,
OGSA and integration.
Keywords: grid, data grid, grid computing, database, management, integration.

1 Introduction

A data grid is a grid computing system that
deals with the controlled sharing and
management of large amounts of distributed
data. Data grids should provide a low level
framework for data management activities.
The size and number of data collections has
been growing rapidly (petabytes), the costs
of computation and data storage decrease
and performances increase.
Data grids allow to store, manage and share
large data collections, huge amount of files,
geographically distributed databases across
virtual organizations.
Data management represents the real
challenge for the next generation petascale
grid environments. In the last few years,
there was an increasing interest in fine
grained (database related) grid data
management activities and services
connected with database access, metadata
management, data integration, data
transformation, data flow. Grid Services for
database access and integration play a

strategic role and provide added value to a
production grid environment since they
allow to aggregate data, join datasets stored
at different sites, infer new knowledge by
analyzing structured and distributed data,
manage monitoring and accounting
information.[4]
Research and development activities relating
to the Grid have generally focused on
applications where data is stored in files.
Grid Services for database access and
integration play a strategic role and provide
added value to a production grid
environment since they allow to aggregate
data, join datasets stored at different sites,
infer new knowledge by analyzing structured
and distributed data, manage monitoring and
accounting information.

2 Grid Computing and Common Benefits

Grid computing is a term that has been
applied to various architectures designed to

36 Grid database - management, OGSA and integration

deliver the benefits of an IT grid. It is an
approach to computing that detaches the
software functionality from the specifics of
hardware deployment by blending system
and storage resources into a continuum of
resources that can be allocated to, and
deallocated from a particular function or
functional locus, in this case, a database.
It enables administrators to assign
computing tasks to computing resources, and
it assigns data to storage resources in a way
that enables such resources to be easily
added or removed or tasks and data to be
moved as needed.
In the case of database workloads, grid
computing contrasts with the classic model
that involves dedicated servers associated
with dedicated storage in that the servers and
storage are fluid. They can be assigned,
added, and reassigned as necessary without
upsetting the overall topology of the
database server environment.

The key benefits of grid computing come in
the form of resource flexibility, scalability,
and optimization of operations through
parallel processing. These benefits are
expressed through an architecture that gives
users the following capabilities:
• To avoid unnecessary hardware, power,
and staffing costs of overprovisioning
IT systems, commonly done to avoid
capacity upgrades.
• When capacity upgrades are necessary, to
scale incrementally by adding (or in some
cases, redeploying) system and storage
resources without expensive "forklift
upgrades" or time-consuming and error-
prone upgrade procedures.
• To ensure continuous availability through
the provisioning of redundant resources,
ensuring automatic failover when necessary.
• To increase transaction throughput through
parallelization of tasks.
All these benefits combine to enable better
business agility in responding to changes
in load or business priorities.

3 Metadata – importance in Grid

The use of metadata in Grid applications
tends to be quite simple it is mainly for
mapping the logical names for datasets into
the physical locations where they can be
accessed.
Metadata will be important for many Grid
applications, in the following activities:

• Management or scheduling through
provision of system and administrative
information.
• Data discovery or interpretation through
provision of data structure and content
information.
• Resource or access method selection,
through indexes or summaries.
• Data selection or evaluation, to inform
human judgements about the data. [13]

Almost all aspects of metadata can have
components that are application specific.
[13]
Many applications involve portals,
workflows or bespoke code that first
examines metadata according to user
requirements and then uses these metadata to
locate the data, describe which data are
accessed, determine what transformations
are necessary, to steer analyses and
visualizations, and to carry forward
information into automatically generated
metadata associated with result sets.
As users and developers develop more
sophisticated applications, more
sophisticated metadata systems and tools
will be required.
The use of metadata to locate data has
important implications for integrating
databases into the Grid because it promotes a
two-step access to data . [13]
In step one, a search of metadata catalogues
is used to locate the databases containing the
data required by the application. Those data
are then accessed in the second step. A

Database Systems Journal vol. II, no. 2/2011 37

consequence of two-step access is that the
application writer does not know the specific
resource that will be accessed in the second
step. The application must be general
enough to connect and interface to any of the
possible resources returned in step one. [13]
Ideally the two-step approach requires that
all resources should provide the same
interfaces, but variation in facilities,
interfaces and representations is inevitable.
[13]
OGSA-DAI services provide metadata about
the DBMS, e.g. whether it is an Oracle, DB2
or MySQL, DBMS (Database Management
System), system that are being exposed to
the Grid. Also metadata are provided about
the capabilities of the DBMSs that are being
exposed to the Grid through the service
interfaces as well as any inherent capabilities
of the services themselves. The connection
technology that is employed to connect to
the databases is also exposed for clients
capable of using such information.
The metadata may be provided statically,
that is when the service is configured, or
dynamically, which may require additional
coding. On the whole the static metadata
model is extensible so that communities that
employ OGSA-DAI to access databases
within a Grid context can provide
community-specific metadata for the
databases they expose to the Grid.

4 The need for databases in Grid
environments

Early Grid applications were often closely
associated with devices or tools that read
and/or generated flat files. Consequently,
support for files rather than for the
management of structured data had the
highest profile in the early Grid toolkits.
However, over time, the file management
systems and registries associated with Grid

toolkits themselves became complex, and
database management systems (DBMSs)
were increasingly used to store Grid
metadata. Contemporaneously, the
requirements of the scientific computing
community have become more sophisticated
with, for example, biological and
astronomical communities generating large
quantities of data that increasingly use
databases for storage and retrieval.
Similarly, engineering, medical research,
healthcare and many governmental systems
can also take advantage of Grids that access
and integrate multiple and distributed
collections
of structured data. [13]
Researchers, initially led by Globus and
IBM, began in 2001 developing new Grid
standards and technology. The result was the
Open Grid Services Architecture (OGSA).
OGSA presents a picture of the Grid where
Grid resources and services are represented
by instances of Grid services.
Grid services, are stateful service instances
supporting reliable and secure invocation,
lifetime management, notification, policy
management, credential management, and
virtualization. The OGSA-DAI project is
developing Grid services that represent data
resources, where, by a data resource, we
mean any physical or logical entity that is
able to source or sink data. These underlying
data sources and sinks, together with any
associated management infrastructure, are
referred to as physical data resources. The
term data resource is then used to represent
the aspects and capabilities that are exposed
to the Grid.
 If the OGSA is to support a wide range of
communities, then database integration is
vital. As the Grid becomes commercially
important, database vendors will embed the
middleware functionality directly into their
products to provide support for OGSA Grid
integration.
Similarly, it is vital that those designing
standards for Grid middleware take into

38 Grid database - management, OGSA and integration

account the special requirements to easily
integrate databases across a Grid. One of the
motivations for OGSA-DAI is to expose and
formulate such requirements. Together,
these converging developments will reduce
the amount of middleware required to
integrate databases into the OGSA Grid.
OGSA-DAI has designed, developed and
released a collection of services for
integrating database access and description
with the core capabilities of OGSA, this
allowing structured data resources to be
seamlessly integrated into OGSA Grid
applications.
Relational database vendors support the
integration of their products with Web
Services from within SQL queries, the
creation of Web Services from stored
procedures, and the publication of Web
Services based on database requests.
The European Data Grid has developed
Spitfire, in a Grid settings, a Web Service
interface to relational databases for metadata
management. Spitfire has developed an
infrastructure that allows a client to query a
relational database over GSI-enabled
HTTP(S). An XML-based protocol is used
to represent the query, and its result. Provide
a number of facilities for automating the
management of data and its referential
integrity.
OGSA-DAI currently only provides
interfaces to relational and XML database
management systems. [3]
OGSA-DAI allows developers to define
their own activities and make them available
to consumers. This feature has been
exploited by a number of research groups
and could, for example, be used to expose
specialist functionality such as local data
mining capability to database consumers.
There is clearly also a relationship between
OGSA-DAI and other data Grid
functionalities. [3]

The prime goals of OGSA-DAI were:

• Provide controlled exposure of physical
data resources to the Grid.
• Support access to heterogeneous physical
data resources through a common interface
style.
• Provide base services that allow higher-
level data integration services to be
constructed.
• Leverage emerging Grid infrastructure for
security, management, accounting etc.
• Standardise data access interfaces through
the GGF DAIS WG.
• Provide a reference implementation of the
DAIS specification.
OGSA-DAI should be seen as one of a range
of components that together support access,
sharing, management and coordinated use of
data on the Grid. [3]

5 Operations on a Data Resource

Managing the interaction between a data
resource and the Grid involves defining the
operations that may be performed on a
physical data resource and the data
requirements for these operations.
• Update operation, data must be delivered to
the data source.
• Query operation, data may be transported
away, via a delivery mechanism, from the
data resource.
OGSA-DAI is not defining any new query
languages; the GDS is acting as a conduit
through which existing query languages may
be directed to the physical data resource.
Figure 1 presents primary mode of operation
employed by OGSA-DAI: a Grid service
presents some view of a data resource, a
query document is submitted to the Grid
service, and is evaluated to produce a result
document, usually returned to the client. The
nature of the query document submitted to
the Grid service and the subsequent result
document depends on the type of the data
resource that the Grid service is configured
to represent. For example, a relational
database may accept SQL queries. [3]

Database Systems Journal vol. II, no. 2/2011 39

 Grid Data
Service

FTP Server
File System

Grid Data
Service Factory

DBMS

Exposes

Grid Service
Data
Resource

Query
Document

Result
Document

Fig.1. GDS mode of operation

If the data in question is transported
somewhere else in the Grid then a GDSF
may be used to represent the data at the
destination point. Alternatively, the data may
be represented in some other non-Grid-
enabled storage system in which case it may
be referenced using out-of-band techniques.
GDSF (Grid Data Service) is defined to
represent the point of presence of a physical
data resource on the Grid. It is through the
GDSF service instances that a physical data
resource’s capabilities and meta-data are
exposed.

Consider the case where a GDS is used to
request data from a physical data resource:

• If the results are anticipated to be small
then the client may request that the data is
returned synchronously, i.e. in-lined in the
response to the original query.
• Out-of-band delivery mechanisms might be
used to transfer data resulting from a query.
A new GDSF could then be created against
the physical data resource to which results
have been delivered - see Figure 2. [3]

Fig.2. GDS delivery to file system.

• Delivery from one GDS to another may be
used as a mechanism for transferring data.
The results could then be served by a new
GDS.
 It is not the intention of OGSA-DAI to build
delivery technology or indeed Grid services
that represent the data that is being
delivered. The interface to delivery and the
specification of what is to be delivered
across a particular interface is of interest to
OGSA-DAI.

6 Grid-DBMS: Key Issues
A grid database management system should
provide transparent, secure and efficient
management of data sources in a grid
environment. Since the beginning of the grid
era many efforts were directed towards
computational access and storage
management. Grid database management
was addressed starting from the year 2000
(EDG-Spitfire (Bell et al. 2002), GRelC
(Aloisio et al. 2005), and OGSA-DAI
(Antonioletti et al. 2005)). In the following
we describe some basic elements connected
with database management in distributed
environments, highlighting how they impact
on the application domains and why they are
so relevant for end users.
Next subsections will be devoted to the
discussion of data representation, data
organization, data models, query languages,
data access, data integration, access control
and data flow. [4]

40 Grid database - management, OGSA and integration

Data Representation
To be domain-independent, data grids must
provide support (in terms of access and
management) to every type of data format,
structure and representation.
Data can be both structured and
unstructured,
characterized by different formats, coding,
precision, accuracy and semantics.
Some examples concern bioinformatics (i.e.
textual files, relational data sources),
astrophysics (i.e. relational DBMS with
postGIS extensions), climate scientists (i.e.
XML) data banks. [4]

Data Organization, Data Models and
Query Languages
Data can be organized following several data
models such as relational and hierarchical.
Support in terms of relational or XML
engines is widely provided by existing
systems: Postgres, MySQL, IBM/DB2, as
well as XIndice, eXist. Such DBMSs
provide full support in terms of database
access and management functionalities.
Different data models adopt different query
languages such as SQL (for the relational
one) and XPath and XQuery (for the
hierarchical one). Data grids must provide
support to all of them. [4]

Data Access
Even if DBMSs provide a lot of
functionalities for the management of data
sources, they are not fully compatible with
existing grid middleware. They can be
accessed in grid by using a “grid-DBMS”
interface. This grid interface must provide
full support to all of the query languages
(SQL, XQuery, XPath, etc.) concerning the
target data resources (transparency
requirement with regard to the query
language). The specific part of the grid-
DBMS that makes a data resource accessible
in grid (or “grid enabled”) is called Grid
Database Access Service (Grid DAS).

It must provide secure, transparent, robust
and efficient access to heterogeneous and
distributed databases exposing standard
interfaces to enable interoperability with
other grid components and/or services.
Several research projects exploit the service-
in-themiddle or front-end approach to
provide such kind of functionalities, that is,
they focus on the development of a
transparent, secure and robust grid interface
to existing DBMSs. On the contrary, vendor-
specific products (i.e. Oracle 11g) generally
exploit an embedded approach providing
within the product, software modules to run
on a grid environment. [4]

Data Integration
While the Grid DAS is a basic service to
expose databases in grid (it provides a first
level of virtualization), the Grid Data
Integration Service (Grid DIS) is a further
necessary building block if we want to
provide aggregation capabilities (second
level of virtualization).
A Grid DIS can be centralized or distributed
and in some cases it is integrated into the
related Grid DAS providing what we call a
Grid DAIS.
Data integration is strongly challenging
since it allows both to integrate data within
several application-level domains
(bioinformatics, astrophysics, financial, etc.)
and system-level distributed environments
for monitoring and accounting purposes. [4]

Data Access Control
Data access control is more important to
ensure that the confidentiality of the data is
preserved/maintained against unauthorized
accesses.
The facilities that the Grid provides to
control access must be very flexible in terms
of the combinations of restrictions, available
policies, etc. User-centric and VO-centric
(Virtual Organization), data access control
allow managing policies

Database Systems Journal vol. II, no. 2/2011 41

at each level of granularity addressing local
site autonomy and user-level policies
management (in the first case) and
flexibility, scalability and manageability in
the VO-level policies management (in the
second case).
A combined User-VO data access control
allows mixing the benefits related to the two
approaches (any combination of insert,
update, and delete privileges can be defined
with the right level of granularity).
The Grid must provide the ability to control
access based on user role (as it usually
happens for DBMSs). Role based access
control is fundamental for collaborative
working, when several individuals may
perform the same role at the same time and
provides a scalable and manageable way to
split users in subclasses with specific and
well-known privileges.
Granting and revoking activities must be
dynamically performed by administrators
and should be easily carried out by using
high level interfaces such as data grid
portals.
Data access policies should be managed at
the Grid- DBMS layer, without entirely
relying on the back-end framework. This
could enable data access control for trivial
data resources such as text files and prevent
the access attempts to the back-end systems
for unauthorized users. [4]

7 Transparency, Efficiency and
Interoperability
Transparency is a common requirement for
grid services and fundamental to make
virtualization a reality. There are various
possible types of transparency in a
distributed environment.
• Physical data location: the physical
location of a database in the grid must be
hidden/virtualized by the grid service.
• Naming: an application must be able to
access a data source without knowing its
name or location.

These kind of information must be managed
by means of mapping, alias, which conceal
data that are not relevant to the end-user,
such as connection string for the databases,
DBMS port, login and password.
• Data replication: replication of data
improves performance, availability and fault
tolerance. The user must not be aware of the
existence/management of multiple physical
copies of the same data source, has just to
deal with the logical (virtualized) data
source name.
• DBMSs heterogeneity: many different
RDBMSs exist, such as ORACLE,
IBM/DB2, MySQL, SQLite. An increasing
number of applications interact with not
relational databases such as flat files and
XMLbased documents in the bioinformatics
and climate change domains. This kind of
heterogeneity must be properly handled in
order to provide a uniform access interface
to different data sources and a grid database
access service independent of the back-end
systems. [4]

Efficiency
Performance plays a fundamental role in the
data grid environment. High throughput,
concurrent accesses, fault tolerance, reduced
communication overhead, are important
goals that must be achieved by exploiting
among the others data localization and query
parallelism. Efficient data delivery
mechanisms can reduce the connection time
and the amount of transferred data. [4]

Security is crucial for the management of a
database in data grid environment. Data
security aims at protecting data against
unauthorized accesses by preventing
unauthorized users from accessing data and
protecting information exchanged in the data
grid network. Authentication is strongly
required to check user’s identity,
authorization concerns privileges and
read/write permissions. Users must be able
to "log on" (authenticate) just once and then

42 Grid database - management, OGSA and integration

have access to any resource in the Grid that
they are authorized to use, without further
user intervention.
Most important production/research grids
adopt the de-facto standard for security
Globus Grid Security Infrastructure (GSI).
It provides full security support concerning
data encryption, data integrity, protection
against replay attacks and detection of out of
sequence packets. GSI is widely used both in
gLite and Globus based grid environments.
The Spitfire (European DataGrid Work
Package 2, Project Spitfire) has
implemented a security architecture based on
transport-level SSL security and mapping of
Grid credentials to database roles. [4]

Interoperability can be achieved by
standard adoption. To achieve
interoperability, using the method of
defining and adopting common open
standards and architectures is a common
approach, which relies heavily on
standardization and implementation
processes. Because comprehensive
implementations and roll-outs spanning
different Grid communities are difficult,
costly and often politically charged, in
certain scenarios a coupling of the
architectures is a reasonable alternative.
The loss of interoperability in a Grid of
middlewares may lead to problems in the
Grid’s operation. [4]

8 Grid Integration
The full integration of database technologies
with Grid middleware is widely recognized.
There are two main dimensions of
complexity to the problem: reconciling
implementation differences between server
products within a single database paradigm
(IBM, Oracle, Microsoft, etc.) and the
variety of database paradigms (object,
relational, XML, etc.). Each DBMS is the
result of many hundreds of person-years of
effort to provide a wide range of
functionality, valuable programming

interfaces and tools, and important
properties such as security, performance and
dependability.
Grid Data Integration service (GDI), this
service provides XML schema mapping
utilities for semantically connected XML
data sources. To this aim the GDI extends
the OGSA-DAI by introducing a new
activity devoted to the reformulation of an
XPath query by using the XMAP
reformulation algorithm.
There is a considerable history in database
research of semantic data modelling and data
integration techniques, both being
dimensions of the problem outlined above
for Grid data services required in the earth
sciences.
Data modelling has evolved from Codd's
relational model through the ER model of
Chen to semantic and fully object-oriented
models incorporating inheritance,
aggregation, and behaviour.
The databases literature also contains a
considerable history of data integration
methods. These have been developed for a
rich range of problems including reverse and
re-engineering, schema translation, and
database integration.
Proven approaches for DBMS integration
that might be examined for their
applicability in a file-based data Grid
include: data warehousing where data is
imported enmasse from legacy databases and
transformed into a common data model, and
wrapper/mediator architectures where
heterogeneous local sources are mapped to a
global schema and integrated through
middleware.
For integration of heterogeneous file-stores
in a data Grid, the warehousing and
federation models are impractical. Instead, a
wrapper/mediator approach is required, with
a common data model exposed through
semantic data services.
The requirement for data integration on the
Grid has led to a significant amount of
activity in the GGF DAISWG, with

Database Systems Journal vol. II, no. 2/2011 43

specifications developed for relational and
XML Grid Database Services.
What is really needed in a data Grid is a
semantic data integration framework that
allows the request on this global geographic
dataset.

9 Conclusions
Data services for the Grid have focussed so
far primarily on encapsulating data syntax
(distributed relational databases, file format
and location).
The elements of a generic framework would
include:
• A meta-model for constructing
semantically-rich domain specific data
models independent of storage concerns
• A data storage description language for
describing the construction of semantic data
object instances.
• A canonical process for serialising
semantic data instances in service
workflows.
Both implicit and explicit knowledge-bases
or ontologies are supported by the general
framework.

Data access services may be built on top of a
data model constructed according to the
framework. These could be exposed through
Activity extensions in OGSA-DAI.

10 Acknowledgement

The language used to convey requests to a
database service, the database can be SQL
for relational database services and XQuery
for XML database services.
A single database system may support
multiple paradigms.
With Grid Control can be manage a lot of
things than just the database. For example, if
you run Siebel, PeopleSoft, E-Business
Suite, BI-EE, or custom Java application
along with Oracle database you can manage
them together with Grid Control.
Data grids provide what we need to can
manage distributed data, the logical name
spaces needed to assemble collections, a
common infrastructure base upon which
multiple types of data management
environments may be implemented.

References
[1] Andrew Borley, Neil Hardman, Alan

Knox, Simon Laws , James Magowan,
Manfred Oevers, Ed Zaluska, “Grid Data
Services – Relational Database
Management Systems”, Version 1.0 , In:
5th Global Grid Forum, July (2002),
Edinburgh, Scotland. pp. 1-22

[2] Carl W. Olofson, “Grid Computing
with Oracle Database 11g” ,Sponsored
by: Oracle Corporation, March (2008)

[3] Ali Anjomshoaa, Mario Antonioletti,
Malcolm Atkinson, Rob Baxter, Andrew
Borley, Neil P Chue Hong, Brian
Collins, Neil Hardman, George Hicken,
Ally Hume, Alan Knox, Mike Jackson,
Amrey Krause, Simon Laws, James
Magowan, Charaka Palansuriya, Norman
W Paton, Dave Pearson, Tom Sugden,
Paul Watson and Martin Westhead, “The
Design and Implementation of Grid

Database Services in OGSA-DAI” -
Proceedings of UK e-Science All Hands
Meeting (2003) 2-4th September,
Nottingham, UK pg 795

[4] Sandro Fiore, Salvatore Vadacca,
Alessandro Negro and Giovanni Aloisio,
“Grid database management: issues,
requirements and future directions”,
University of Salento & SPACI
Consortium Euro Mediterranean Centre
for Climate Change viale Gallipoli, 49 –
73100 Lecce – Italy, February (2004)

[5] Tuecke, S. ,“Grid Security Infrastructure
(GSI) Roadmap”, (2001) , Internet Draft

[6] Timo Baur , Rebecca Breu, Tibor
Kálmán, Tobias Lindinger, Anne
Milbert, Gevorg Poghosyan , Helmut
Reiser, Mathilde Romberg, “An
Interoperable Grid Information System
for Integrated Resource Monitoring
Based on Virtual Organizations”, J Grid

44 Grid database - management, OGSA and integration

Computing (2009) 7:319–333, DOI
10.1007/s10723-009-9134-3

[7] AndrewWoolf, Ray Cramer, Marta
Gutierrez, Kerstin Kleese van Dam, Siva
Kondapalli, Susan Latham, Bryan
Lawrence, Roy Lowry, Kevin O'Neill,
“Semantic Integration of File-based Data
for Grid Services”, Conference: Cluster
Computing and the Grid - CCGRID , pp.
182-188, (2005) DOI:
10.1109/CCGRID,1558552

[8] John Wiley & Sons, Ltd. Concurrency
Computat.: IBM Systems Journal Pract.
Exper. (2005); 17:357–376

[9] Amy Krause (EPCC, University of
Edinburgh, James Clerk Maxwell
Building, Mayfield Road, Edinburgh
EH9 3JZ, UK), Susan Malaika (IBM
Corporation, Silicon Valley Laboratory,
555 Bailey Avenue, San Jose, CA 95141,
USA), Gavin McCance (Department of
Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, UK),
James Magowan (IBM United Kingdom
Ltd, Hursley Park, Winchester S021
2JN, UK), Norman W. Paton
(Department of Computer Science,
University of Manchester, Oxford Road,
Manchester M134 9PL, UK), Greg
Riccardi (Department of Computer
Science, Florida State University,
Tallahassee, FL 32306-4530, USA. +
National e-Science Centre, 15 South
College Street, Edinburgh EH8 9AA,
UK), “Grid Database Service
Specification”, GDSS-0.2 4th October
(2002)

[10] Moore, R., A. Rajasekar, “Common
Consistency Requirements for Data
Grids,Digital Libraries, and Persistent
Archives”, Grid Protocol Architecture
Research Group draft, Global Grid
Forum, April (2003)

[11] “Open Grid Services Architecture Data
Access and Integration”,
http://www.ogsadai.org.uk

[12] Parent, C. and S. Spaccapietra,
“Database Integration: The Key to Data
Interoperability”, In Advances in Object-
Oriented Data Modeling, ed. M.P.
Papazoglou et. al., The MIT Press
(2000).

[13] Mario Antonioletti, Malcolm Atkinson,
Rob Baxter, Andrew Borley, Neil P.
Chue Hong1, Brian Collins, Neil
Hardman, Alastair C. Hume, Alan Knox,
Mike Jackson, Amy Krause, Simon
Laws, James Magowan, NormanW.
Paton, Dave Pearson, Tom Sugden1,
PaulWatson and Martin Westhead, “The
design and implementation of Grid
database services in OGSA-DAI”,
Concurrency Computat.: Pract. Exper.
2005, 17:357–376, Published online in
WileyInterScience(www.interscience.wil
ey.com). DOI: 10.1002/cpe.93

Florentina Ramona Pavel (El Baaboua) graduated from the Computer Science for
Business Management, of the Romanian – American University in 2005. At
present she is a PhD candidate at the Academy of Economic Studies and PhD
assistant at the Romanian – American University of Bucharest. She is co-author
of two books and articles in informatic fields.

http://www.ogsadai.org.uk/

Database Systems Journal vol. II, no. 2/2011 45

Considerations Regarding Designing and Administrating SOA Solutions

Vlad DIACONITA
The Bucharest Academy of Economic Studies

diaconita.vlad@ie.ase.ro

Solutions like SOA, Cloud, SaaS, Iaas or PaaS are not only buzzwords, they became a
business reality because they are relative cheap and easy to use. SOA and Cloud are tightly
linked because most cloud solutions are being defined using SOA making them feasible from
the business perspective, because it’s hard to move to cloud when you are using a tightly
coupled architecture. Big companies such as Oracle, Microsoft, IBM or Amazon offer many
commercial solutions providing software as a service, as well as hosted and managed
alternatives to classical deployment. For firms that are building private clouds and for
service providers that are building public clouds, diverse solutions are offered by the big
players for platform as a service and infrastructure as a service.
Keywords: SOA, web services, modeling, cloud

Introduction
From an evolution perspective, some
authors say ([1], [4]) that the last decade is
marked by the development of SOA and
cloud computing. The main characteristic
of SOA is the ability to be reused in
various applications, using service
communication by sending information in
a loose coupled environment [5]. The idea
of exposing resources as web services,
making them accessible is older but
building the components, tools and
infrastructure to accomplish this was the
problem. Development of virtualization in
organizational environment allowed
hooking up applications with various
operating systems, enhancing the
portability. Like shown in [6], moving
towards implementing Web applications
that consume a large variety of Web
services is the current hype in application
space and the mobile application market is
searching for solutions to empower mobile
devices with Web services integration
while minimizing the existing performance
issues. By using service-oriented
strategies, companies even starting with
few resources can run their businesses
entirely using cloud. For example, as part
of Amazon’s AWS Relational Database

Service (RDS) someone can rent an Oracle
database license if they don’t have it on
their own. This starts at 16 cents an hour
for a small instance going up to $3.96 for a
quadruple extra large. The price includes
the software, the hardware resources and
Amazon's RDS management capabilities
[9].

Cloud and SOA
Researchers are trying to bring

SOA, web services and cloud services
under a common terminology and
approach.

Gartner defines cloud computing as
a style of computing in which scalable and
elastic IT-enabled capabilities are
delivered as a service to external customers
using Internet technologies. This is a slight
revision of Gartner's original definition
published in 2008. Gartner has removed
massively scalable and replaced it with
scalable and elastic as an indicator that the
important characteristic of scale is the
ability to scale up and down, not just to
massive size. The five attributes of cloud
computing are: service-based, scalable and
elastic, shared, metered by used, uses
internet technology [16].

46 Considerations regarding designing and administrating SOA solutions

SOA is providing the architecture,
governance and orchestration for services
to be delivered using cloud mechanisms,
both internally and externally across the
Internet.

An author that wrote many books
on SOA, Dave Linthicum has shown that
cloud computing should be a logical
extension of SOA best practices [14].

As explained in Thomas ERL’
latest book [13], the rise of cloud
computing put SOA back in the spotlight,
even organizations that shunned SOA now
have one. It’s called the cloud. He also
renamed his online publication, formerly
called SOA Magazine, as Service
Technology Magazine:

 The SOA Magazine has been
renamed to the Service Technology
Magazine. Articles will of course continue
to be focused on service-oriented
architecture and service-orientation, but
will also address topics related to service
technology innovations, such as those
fostered by the on-going emergence of
cloud computing platforms. I’d like to
invite you all to contribute your expertise
as we continue to explore how this new
generation of architectural models,
paradigms, and technologies is changing
the way we view and leverage IT [15].

So, we can consider service
technology as the common identifier.

Defining SOA
There are many definitions of SOA

targeted to different audiences (managers,
designers, programmers, sales persons etc).

When an enterprise level SOA
application is being developed, many
people are involved, some of whom are
end-user developers. For example,
business process experts know about the
business context but may not necessarily
be professional programmers, and are often
responsible for identifying and selecting
which services will be used ([2],[3]).

Executives are increasingly
frustrated with their inability to quickly
access the information needed to make

better decisions and to optimize their
business [10]. To them, SOA can be
showed as a set of services that can be
exposed to customers, partners, and
between the different departments of the
enterprise. These services can be combined
and recombined to serve the needs of the
business. Applications serve the business
because they are composed of services that
can be quickly modified or redeployed in
new business contexts, allowing the
business to quickly respond to changing
customer needs, business opportunities,
and market conditions.

To an IT designer, SOA is the
architectural solution for integrating
diverse systems by providing an
architectural style that promotes loose
coupling and reuse.

To a programmer, SOA is a model
where web services and contracts are used
for interoperability. The web services, used
as part of SOA, facilitate communication
using messages, without detailed
knowledge of each other’s IT systems.

The term service orientation is
often seen as identical to SOA but some
authors [1] consider it broader and
represent a way of thinking about services
in the context of business and IT.

Like shown in [7] and [8], web
services are self contained, modular
business applications that have open,
Internet-oriented, standards-based
interfaces. They allow flexible and
dynamic software integration that is often
referred to as the Find-Bind-Execute
paradigm. Using standard Internet
technology, Web services facilitate cross-
organizational transactions and thus
outsourcing of software functionality to
external service providers. Thus, service-
oriented computing requires an
infrastructure that provides a mechanism
for coordination between service
requesters and providers. Three main
technologies are currently used to
implement Web services: SOAP, WSDL
and UDDI.

Database Systems Journal vol. II, no. 2/2011 47

Everware-CBDI, a global
technology consulting company sees
Service Oriented Architecture (SOA) as
the principles, patterns and policies that
enable application functionality to be
provided and requested as services
published at a granularity relevant to the
Service Consumer, which are abstracted
away from the implementation using a
single, standards-based form of interface.
The evolution of the implementation
strategies is offering services in SOA in the
CLOUD. SOA should provide reference

architecture for service classification,
policy implementation and governance,
contracts, determining sharing and
generalization at many levels.

SOA can also be seen as a
collection of services, classified into types,
arranged into layers and governed by
architectural patterns and policies as shown
in figure 1.

Figure 7. The service arhitecture, source: http://everware-cbdi.com/cbdi-forum

Modeling SOA Infrastructure
A SOA infrastructure can be

divided into three categories: consumer,
functional, and operational to provide an
abstraction that can be used and reused
across an organization. Infrastructure
architects can use this model as a basis for
determining the necessary software
products or technologies necessary to
provision that building block.

The consumer access component
includes the infrastructure needed by the

people to access the services, including:
browsers, data channels and portals.

Internet browsers are used to
expose functionality using a Web interface
rendered on a user’s browser.

A data channel is where consumers
can provide or consume large amounts of
data. The movement of bulk data over
networks addresses raw unstructured data,
structured data, images, and any large data
that requires high performance. The
infrastructure provides a software-based
mechanism designed to move large data
files using compression, blocking, and

48 Considerations regarding designing and administrating SOA solutions

buffering methods to optimize transfer
times. Infrastructure architectures need to
determine whether there are business needs
for such a bulk data transfer component
and provision accordingly.

A Web portal presents information
from diverse sources in a unified way. The
ESB makes possible the communication
between service requestors and service
providers. It enables the substitution of
service providers or implementations
transparent to service requesters. The ESB
usually many ways to attach requesters and
providers, and it allows intermediary
services to be sequenced between them.
The ESB can also supply an extensive set
of capabilities dependent on business needs
and implementation in areas like
integration, communications, security,
signal processing, QOS and service
management.

In SOA, the integrations are pushed
outward, toward the applications
themselves, leaving the bus to speak a
standardized language [11]. Like modeled

in figure 2, an ESB is a connectivity
infrastructure for integrating applications
and services, while EAI focuses on the
applications integration. ESB infrastructure
does more than integration because it
performs routing of messages between
services, converts transport protocols
between consumers and providers,
transforms message formats between
requesters and providers, and distributes
business events from disparate sources.
ESB is the central integration backbone
fulfilling the various integration patterns.
Enterprise service bus, being the essential
and core infrastructure for application
integration, ought to be versatile, adaptive,
high-performing and assuring, highly
available and scalable. In order to
accomplish the much-acclaimed process
integration, service orchestration capability
has to be bestowed with ESBs. The
importance of orchestration as a shared
component gives ESBs the flexibility and
the power towards the success demanded
and desired.

Figure 8. ESB communication

Although EAI solutions can address

all of these aspects, integration
technologies are usually much more
narrowly focused. ESB handles a variety of

Database Systems Journal vol. II, no. 2/2011 49

interaction patterns, including events. ESB
requires management such that the status
of a business transaction can be assessed.
Although the ESB will not be the only
technology to assist in business activity
management, it will be a part. ESB product
technologies will be federated such that
various technologies (e.g., gateways and
appliances) can be used to fulfill a single
purpose and provide a single interface to
applications. Diverse platforms can be
supported allowing different ESB
technologies to operate as a single logical
one. Even if both EAI and ESB can use
web services, the latter takes more
advantage of the technology and also
promotes greater levels of modularity and
decoupling of the infrastructure using
services. ESBs use registries to assist with
locating services, while EAI infrastructures
often couple the requester and provider.

From a physical point of view,
SOA architecture is very similar to the
3tier web one, the logic is on a server

where it is divided into several units.
Differences arise from the criteria for
sharing the logic, the place where logical
units exist and how they interact. In Web
architecture there are components that are
designed with different levels of
functionality and granularity and some
emphasis is put on reusing them.

SOA is based on components,
modeling takes account of the creation of
services that will encapsulate some of the
components or all components. The
encapsulation of service logic is used to
provide interface functions using an open,
independent of the technologies used to
implement logic. Properly designed,
loosely coupled services can easily be
combined, aggregated and reused, hence
resulting in high scalability SOA solutions.
In figure 3 it’s presented an endpoint from
which 3 different web services can be
called, separately or they can be
aggregated [17].

Figure 9. Calling web services

50 Considerations regarding designing and administrating SOA solutions

The result of calling a web service,
inregAnlOca in this case, is in the form of
a XML document.

<?xml version="1.0"
encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://schemas.xmlsoa
p.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/200
1/XMLSchema"
xmlns:xsi="http://www.w3.org/200
1/XMLSchema-instance"
xmlns:ns0="http://dbconnection1/
OrdinNou.wsdl/types/"><env:Body
><ns0:inregAnlOcaResponseElem
ent><ns0:result>I-It is confirmed
the anulment of the 4328884 order,
quantity
500</ns0:result></ns0:inregAnlO
caResponseElement></env:Body>
</env:Envelope>

SOA projects are of different sizes

and not all of them require service
modeling. SOA projects whose goals
include engineering business applications
that are built to change service modeling
requirements. Some say that new modeling
techniques are not required because
nothing fundamental is changed. Others
say that classic Agile methods or object
development methods provide insufficient
guidance for SOA projects [1]. Agile
methods focus on iterative development,
allowing requirements and the solution to
grow by collaboration using cross-
functional teams including various
stakeholders. Object methodologies focus
on object modeling and object
technologies. In both methods, which
represent best practices in system
development methods, the focus on service
development is absent, mainly because this

wasn’t popular at the time of these
methods development. Organizations
developing SOA will need to improve
these methods to identify and build
reusable, reconfigurable, and flexible
services by identification, specification,
and realization of these constructs:
business processes, services, components,
information, rules and policies.

Models help people to deal with
complexity by representing complex things
at a higher level of abstraction. SOA can
help to elevate the level of abstraction by
separating the provider from the consumer
of the service. The service model identifies
the business processes that uses services or
identifies the services and the components
that recognize the business functionality.
Service modeling, as an iterative and
business centric process, should focuses on
the set of business capabilities and related
IT functionality as a set of services, the
components that implement them, and the
processes that invoke them or put the
services together into a composite service
or application, should be seen as a whole
and address the modeling of activities or
flows, services, and their components.
Modeling is an iterative and business
centric process. A service needs to be
modeled from a business and a runtime
perspective such that the service fulfills a
part of a business process that can be
shared and reused.

Like shown in [12], services should
be defined and described top-down at
enterprise level in Service Oriented
Enterprise (SOE). From a functional
decomposition of well defined business
functionality the business functions can be
identified. These business functions can be
decomposed in lower level services. As
shown in [18], business logic is the
defining element for a business being in
the process of modeling and automation,
and it includes both business rules and
workflow (process), which describes the
transfer of documents or data from one
participant (person or software system) to
another. Business Rules refers to the

Database Systems Journal vol. II, no. 2/2011 51

multitude of policies, procedures or
definitions that govern how an
organization works together with its
interaction with customers or partners.
These may be external rules, coming from
legal regulations that must be observed by
all organizations acting in a certain field,
or internal rules which define the
organization’s business politics and aim to
ensure competitive advantages in the
market. Starting from the previous
observations, it is obvious the important
role that business rules play within the
development process of a software system.
Top-down domain decomposition using
process modeling and decomposition,
variation-oriented analysis, policy and
business rules analysis, and domain
specific behavior modeling should be done
in parallel with a bottom-up analysis of
existing legacy assets that are candidates
for componentization (modularization) and
service exposure [12].

In SOA, the system operates as a
collection of services and each service may
interact with various other services to
accomplish a certain task. The operation of
one service might be a combination of
several low level functions. In that case,
these low level functions are not
considered services.

Most web services are based on
document type messages that are designed
to be as independent as possible. Using
SOAP headers, the actual messages may
be accompanied by a wide range of
metadata, and general processing
instructions.

Processing is distributed; each
service has a specific functional border and
specific resource requirements.
Communication between the supplier and
the consumer of services can be
synchronous or asynchronous, can use
templates and a large part of the business
logic is contained in the messages.

Information processing is
accomplished at the application server
and/or database level. Communication in
classical architecture is achieved using

protocols such as TCP/IP, DCOM
(Distributed Component Object Model) or
CORBA (Common Object Request Broker
Architecture), protocols which have
reached maturity. The first service-oriented
architecture for many people in the past
was with the use DCOM or Object Request
Brokers (ORBs) based on the CORBA
specification. Nowadays SOA is based on
communications using services which
imply: serialization, de-serialization and
transmission of SOAP messages
containing XML documents. Operations
that are executed include: conversion of
data from relational databases in XML,
XML document validation, document
transmission and retrieval of information
needed by the recipient. Although progress
has been made for SOAP classical
communications, Remote Procedure Call
(RPC) are faster. A SOAP-based
communications network facilitates the
creation of services that can communicate
according to various templates. Even if the
synchronous communications is well
implemented, asynchronous
communications is encouraged to optimize
processing and communications. WS-*
specifications can be used, especially WS-
BPEL.

The technologies used on the
Internet have undergone many changes and
improvements but remained basically the
same: HTTP, HTML or XML. If in
traditional web architectures, web services
use XML messages are optional, if modern
implementations of SOA are almost
mandatory.

When the logic of a system is
divided and distributed, the
implementation of security measures such
as authentication and authorization is not
as straightforward as it was in client-server
architecture. Information travels through
multiple servers (bumps) and it is often
necessary at least to encrypt it or at least
the sensitive information: password, bank
account, etc. SOA brings some changes to
this model, being based on the WS-
Security which puts the logic of security-

52 Considerations regarding designing and administrating SOA solutions

related messages. In SOAP messages, the
header may store security related
information will be accompany the
messages. This approach is necessary to
maintain autonomy and loose coupling
between services.

Conclusion
Although at first glance SOA

administration may seem simple, things
usually develop to a point where services
are highly aggregated and reused and the
administration becomes difficult. Then it is
necessary to use stronger service agents or
private service agents. When we have an
application that includes various
components, management is not easy, the
following have to be monitored: the
connections, the instances, the problems
with the connections, the resources

employed and the tasks related to database
administration. The clients connect at first
at first to the web server which interacts
with the application server, so it is
important to carefully administer it to
ensure scalability. Most application servers
and database management systems provide
mature interfaces that can be accessed with
a web browser. In SOA solutions,
additional problems may arise with regard
to communications using SOAP messages.
Management errors can be done using the
exception mechanism provided by
different WS-* extensions. A good strategy
to encourage the reuse and aggregation of
an internal solution is to create a private
agent service. UDDI can be used to
standardize the interface of the agent
services and so the system services can be
easily discovered.

References

[1] Kerrie Holley, Dr. Ali Arsanjani, 100
SOA Questions Asked and Answered,
Prentice Hall, ISBN 978-0-137-08020-5,
2010
[2] S.Y. Jeong, Y. Xie, J. Beaton, B.A.
Myers, J. Stylos, R. Ehret, J. Karstens, A.
Efeoglu, and D.K. Busse, Improving
Documentation for eSOA APIs through
User Studies, in Proc. IS-EUD, 2009,
pp.86-105.
[3] Thomas Erl, Service-Oriented
Architecture: Concepts, Technology, and
Design, Prentice Hall PTR, 2005, ISBN: 0-
13-185858-0
[4] Marinela Mircea, Marian Stoica, Cloud
Computing Solutions For Service Oriented
Organizations Management, Proceedings
of The Tenth International Conference on
Informatics in Economy IE 2011
[5] Mircea, M. ,Andreescu, A.I., Extending
SOA to Cloud Computing in Higher
Education, The 15th IBIMA conference on
Knowledge Management and Innovation:
A Business Competitive Edge Perspective,
Cairo, Egypt 6-7 November 2010.
Norristown: International Business
Information Management Association

[6] Alin COBÂRZAN, Consuming Web
Services on Mobile Platforms, Informatica
Economică vol. 14, no. 3/2010, ISSN
1453-1305
[7] S. Agarwal, S. Lamparter and R.
Studer, Making Web services tradable: A
policy-based approach for specifying
preferences on Web service properties,
Web Semantics: Science, Services and
Agents on the World Wide Web, Vol. 7,
No. 1, January 2009, pp. 11-20.
[8] Vlad DIACONIŢA, Hybrid Solution
for Integrated Trading, Informatica
Economică vol. 14, no. 2/2010, ISSN
1453-1305
[9] Maureen O'Gara, Oracle Goes to
Amazon, .NET Delopers Journal, Mai 2011
[10] Mario Godinez, Eberhard Hechler,
Klaus Koenig, Steve Lockwood, Martin
Oberhofer, Michael Schroeck The Art of
Enterprise Information Architecture: A
Systems-Based Approach for Unlocking
Business Insight, IBM Press, ISBN: 978-
0137035717, aprilie 2010
[11] Vlad Diaconita, Ion Lungu, Adela
Bara, Technical solutions for integrated
trading on spot, futures and bonds stock
markets (extended version), WSEAS
Transactions on Information Science and

Database Systems Journal vol. II, no. 2/2011 53

Applications Volume 6, Issue 5, 2009,
Pages 798-808 , ISSN: 1790-0832,
Indexed by Scopus, ACM
[12] http://www.enterprise-
architecture.info/EA_Services-Oriented-
Enterprise.htm
[13] Stephen Bennett, Thomas Erl, Clive
Gee, Robert Laird, Anne Thomas Manes,
Robert Schneider, Leo Shuster, Andre
Tost, Chris Venable, SOA Governance:
Governing Shared Services On-Premise &
in the Cloud, Prentice Hall/PearsonPTR,
Aprilie 2011
[14] David S. Linthicum, Cloud
Computing and SOA Convergence in Your
Enterprise: A Step-by-Step Guide,
Addison-Wesley Professional; 1 edition,
October 2009
[15] http://www.servicetechmag.com/,
ISSUE June 2011, Editorial
[16] Daryl C. Plummer, David Mitchell
Smith, Thomas J. Bittman, David W.
Cearley, David J. Cappuccio, Donna Scott,
Rakesh Kumar, Bruce Robertson, Five
Refining Attributes of Public and Private
Cloud Computing, May 2009

[17] Pethuru Cheliah, Empowering the
Discipline of Cloud Integration – Part II,
Service Technology Magazine Issue LI,
June 17, 2011
[18] Alexandra FLOREA, Anca
ANDREESCU, Vlad DIACONITA, Adina
UTA, Using SOA for achieving enterprise
interoperability, Proceedings of The Tenth
International Conference on Informatics in
Economy IE 2011

Vlad DIACONIŢA is an Assistant Lecturer at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from the Academy of Economic
Studies of Bucharest. He has graduated the faculty at which he is now teaching in 2005 and
since 2010 holds a PhD in the field of Cybernetics and Statistics. He is the co-author of 2
books in the domain of economic informatics, 3 articles in ISI journals, 4 articles in Scopus
journals, 4 articles in ISI proceedings, 6 papers in B+ journals and 8 papers in the proceedings
of international conferences. He participated as team member in 3 research projects that have
been financed from national research programs. He is a member of the IEEE Computer

http://www.servicetechmag.com/

54 Considerations regarding designing and administrating SOA solutions

Society and the INFOREC professional association. Domains of competence: Database
systems, Data warehouses, OLAP and Business Intelligence, Integrated Systems, SOA.

Database Systems Journal vol. II, no. 2/2011 55

Natural versus Surrogate Keys. Performance and Usability

Dragos-Paul POP

Academy of Economic Studies, Bucharest, ROMANIA
dragos_paul_pop@yahoo.com

Choosing the primary key for a table proves to be one of the most important steps in database
design. But what happens when we have to pick between a natural or a surrogate key? Is
there any performance issue that we must have in mind? Does the literature have a preferred
pick? Is usability a concern? We’ll have a look at the advantages and disadvantages of both
natural and surrogate keys and the performance and usability issues they address.
Keywords: primary keys, natural keys, surrogate keys, superkey, candidate key, unique key,
performance, usability.

Introduction
Ch

impor
oosing a primary key is really
tant because it affects the database

at the performance and usability levels.
The literature speaks of both natural and
surrogate keys and gives reasons for
choosing one over the other.
Before we get to talk about natural and
surrogate keys in a relational
transactional table, we must define a few
other key concepts used in the relational
database model architecture. The
concepts to be defined are the superkey,
the candidate key, the unique key and the
primary key.
2 Key concepts
The superkey is defined as being a set of
attributes of a given table that verifies
one main condition. The condition in
question is that there are no two distinct
tuples in that table with an identical value
for the superkey set. Also, the attributes
comprising the superkey set are said to be
functionally dependent. This makes true
the following statement: if S is a
superkey for the relation R, than the
cardinality of the projection of R over S
is the same as the cardinality of R. After
a table has gone through normalization,
we can say that all its attributes form a
superkey, because there are no two tuples
that are identical for all the values of the
set.
From the superkey concept, we can
define the candidate key. This is

sometimes called a minimal superkey,
because a candidate key is, in fact, a
minimal set of attributes necessary to
uniquely identify a tuple. In other words, a
set of attributes is said to be a candidate key
if there are no two tuples with the same
value for the key and there is no other subset
of these attributes that can form a candidate
key. This is where the “minimal” property of
the candidate key derives from. A table can
have multiple candidate keys.
Another concept related to the superkey is
the unique key. Again, just like a superkey
and a candidate key, the unique key can
uniquely identify each row in a table.
Although this is not a rule, unique keys tend
to only comprise a single column. The
difference between candidate keys and
unique keys is that, in practice, unique keys
do not enforce the NOT NULL constraint.
This means they can contain the NULL
value and still uniquely identify table rows.
Why? Because of the way NULL is treated
by the database management systems.
NULL is not a value, but the absence of a
value, so the unique key concept holds true
even for rows with NULL for the unique
key. This is because identification of two
equal keys is done based on their values, and
since NULL is not a value, two keys
containing NULL are not considered to be
equal. This is by no means to be taken as a
rule, because it differs in implementation
across database management systems. A
better definition of a unique key is that two

1

56 Natural Versus Surrogate Keys. Performance and Usability

tuples cannot have the same value for the
unique key if NULL values are not used.
So, a unique key only uniquely identifies
rows that contain a value other than
NULL for the key. As for the candidate
key, a table can have multiple unique
keys.
The primary key is probably the most
important concept in database design. A
primary key is, basically, one of the
candidate keys in a table. It is a unique
key that does not contain (and never will)
NULL values can also be made a primary
key. For some tables, even a superkey
can be a primary key (but that is a little
odd). So how and why is a primary key
different form all the others? A table can
only have one primary key and this key is
the preferred way of identifying
individual tuples.
3 Natural and surrogate keys
Choosing the primary key has proven to
be the difficult part in database design.
This is because there are two types of
primary keys: natural and surrogate.
The natural key, also called a domain key
or an intelligent key, is a candidate key
that is logically related to the table. That
is, it has business meaning, or business
value. It is something that can be found in
nature, it makes sense.
A natural key is a single column or set of
columns that uniquely identifies a single
record in a table, where the key columns
are made up of real data. When I say
“real data” I mean data that has meaning
and occurs naturally in the world of data.
A natural key is a column value that has a
relationship with the rest of the column
values in a given data record. Here are
some examples of natural keys values:
Social Security Number, ISBN, and
TaxId.
On the other hand, the surrogate key is
not derived from real data; it does not
have any business meaning or logic. It is
a key most often generated by the
database or made up using an algorithm.
A surrogate key like a natural key is a
column that uniquely identifies a single

record in a table. But this is where the
similarity stops. They are keys that don’t
have a natural relationship with the rest of
the columns in a table. The surrogate key is
just a value that is generated and then stored
with the rest of the columns in a record. The
key value is typically generated at run time
right before the record is inserted into a
table. It is sometimes also referred to as a
dumb key, because there is no meaning
associated with the value. Surrogate keys
are commonly a numeric number.
An important distinction between a
surrogate and a primary key depends on
whether the database is a current database or
a temporal database. Since a current
database stores only currently valid data,
there is a one-to-one correspondence
between a surrogate in the modeled world
and the primary key of some object in the
database. In this case the surrogate may be
used as a primary key, resulting in the term
surrogate key. In a temporal database,
however, there is a many-to-one relationship
between primary keys and the surrogate.
Since there may be several objects in the
database corresponding to a single surrogate,
we cannot use the surrogate as a primary
key; another attribute is required, in addition
to the surrogate, to uniquely identify each
object.
Authors have argued that a surrogate should
have the following characteristics:
• the value is unique system‐wide,

hence never reused
• the value is system generated
• the value is not modifiable by the user

or application
• the value contains no semantic

meaning
• the value is not visible to the user or

application
• the value is not composed of several

values from different domains
In practice, the surrogate key is frequently a
number generated by the database
management system. For example, Oracle
uses sequences to accomplish this task,
while SQL server gives the “identity

Database Systems Journal vol. II, no. 2/2011 57

column” option. PostgreSQL users have
the “serial” option, and MySQL ones use
an auto_increment attribute. Having the
key independent of all other columns
insulates the database relationships from
changes in data values or database design
(making the database more agile) and
guarantees uniqueness.
4 Surrogate Key Implementation
Strategies
There are several common options for
implementing surrogate keys:
• Key values assigned by the

database. Most of the leading
database vendors – companies
such as Oracle, Microsoft and IBM
– implement a surrogate key
strategy called incremental keys.
The basic idea is that they maintain
a counter within the database
server, writing the current value to
a hidden system table to maintain
consistency, which they use to
assign a value to newly created
table rows. Every time a row is
created the counter is incremented
and that value is assigned as the
key value for that row. The
implementation strategies vary
from vendor to vendor, sometimes
the values assigned are unique
across all tables whereas
sometimes values are unique only
within a single table, but the
general concept is the same.

• MAX() + 1. A common strategy is
to use an integer column, start the
value for the first record at 1, then
for a new row set the value to the
maximum value in this column plus
one using the SQL MAX function.
Although this approach is simple it
suffers from performance problems
with large tables and only
guarantees a unique key value
within the table.

• Universally unique identifiers
(UUIDs). UUIDs are 128‐bit values

that are created from a hash of the ID
of your Ethernet card, or an
equivalent software representation,
and the current datetime of your
computer system. The algorithm for
doing this is defined by the Open
Software Foundation
(www.opengroup.org).

• Globally unique identifiers (GUIDs).
GUIDs are a Microsoft standard that
extend UUIDs, following the same
strategy if an Ethernet card exists and
if not then they hash a software ID
and the current datetime to produce a
value that is guaranteed unique to the
machine that creates it.

• High‐low strategy. The basic idea is
that your key value, often called a
persistent object identifier (POID) or
simply an object identified (OID), is in
two logical parts: A unique HIGH value
that you obtain from a defined source
and an N‐digit LOW value that your
application assigns itself. Each time
that a HIGH value is obtained the LOW
value will be set to zero. For example,
if the application that you’re running
requests a value for HIGH it will be
assigned the value 1701. Assuming
that N, the number of digits for LOW,
is four then all persistent object
identifiers that the application assigns
to objects will be combination of
17010000,17010001, 17010002, and
so on until 17019999. At this point a
new value for HIGH is obtained, LOW
is reset to zero, and you continue
again. If another application requests
a value for HIGH immediately after
you it will be given the value of 1702,
and the OIDs that will be assigned to
objects that it creates will be
17020000, 17020001, and so on. As
you can see, as long as HIGH is unique
then all POID values will be unique.

The fundamental issue is that keys are a
significant source of coupling within a

58 Natural Versus Surrogate Keys. Performance and Usability

relational schema, and as a result they
prove difficult to refactor. The
implication is that you want to avoid keys
with business meaning because business
meaning changes. However, at the same
time you need to remember that some
data is commonly accessed by unique
identifiers, for example customer via
their customer number and American
employees via their Social Security
Number (SSN). In these cases you may
want to use the natural key instead of a
surrogate key such as a UUID or
POID. [3]
5 Tips for Effective Keys
How can you be effective at assigning
keys? Consider the following tips, by
Scott W. Ambler [3]:
• Avoid “smart” keys. A “smart” key

is one that contains one or more
subparts which provide meaning.
For example the first two digits of
an U.S. zip code indicate the state
that the zip code is in. The first
problem with smart keys is that
have business meaning. The
second problem is that their use
often becomes convoluted over
time. For example some large
states have several codes,
California has zip codes beginning
with 90 and 91, making queries
based on state codes more
complex. Third, they often
increase the chance that the
strategy will need to be expanded.
Considering that zip codes are nine
digits in length (the following four
digits are used at the discretion of
owners of buildings uniquely
identified by zip codes) it’s far less
likely that you’d run out of nine‐
digit numbers before running out
of two digit codes assigned to
individual states.

• Consider assigning natural keys for
simple “look up” tables. A “look
up” table is one that is used to

relate codes to detailed information.
For example, you might have a look up
table listing color codes to the names
of colors. For example the code 127
represents “Tulip Yellow”. Simple look
up tables typically consist of a code
column and a description/name
column whereas complex look up
tables consist of a code column and
several informational columns.

• Natural keys don’t always work for
“look up” tables. Another example of
a look up table is one that contains a
row for each state, province, or
territory in North America. For
example there would be a row for
California, a US state, and for Ontario,
a Canadian province. The primary
goal of this table is to provide an
official list of these geographical
entities, a list that is reasonably static
over time (the last change to it would
have been in the late 1990s when the
Northwest Territories, a territory of
Canada, was split into Nunavut and
Northwest Territories). A valid natural
key for this table would be the state
code, a unique two character code –
e.g. CA for California and ON for
Ontario. Unfortunately this approach
doesn’t work because Canadian
government decided to keep the same
state code, NW, for the two
territories.

• Your applications must still support
“natural key searches”. If you choose
to take a surrogate key approach to
your database design you mustn’t
forget that your applications must still
support searches on the domain
columns that still uniquely identify
rows. For example, your Customer
table may have a Customer_POID
column used as a surrogate key as well
as a Customer_Number column and a
Social_Security_Number column. You
would likely need to support searches

Database Systems Journal vol. II, no. 2/2011 59

based on both the customer
number and the social security
number. Searching is discussed in
detail in Best Practices for
Retrieving Objects from a
Relational Database.

• Don't naturalize surrogate keys. As
soon as you display the value of a
surrogate key to your end users, or
worse yet allow them to work with
the value (perhaps to search), you
have effectively given the key
business meaning. This in effect
naturalizes the key and thereby
negates some of the advantages of
surrogate keys. [3]

6 Advantages and disadvantages
Of course, there are a lot of advantages
and disadvantages of using natural or
surrogate keys. Authors are divided
between the two strategies. Below there
is a listing of pros and cons of using both
natural and surrogate keys, as Gregory A.
Larsen list them:
6.1 Surrogate Key Pros and Cons
A definite design and programming
aspect of working with databases is built
on the concept that all keys will be
supported by the use surrogate keys. To
understand these programming aspects
better, review these pros and cons of
using surrogate keys. [4]
Pros:
• The primary key has no business

intelligence built into it. Meaning
you cannot derive any meaning, or
relationship between the surrogate
key and the rest of the data
columns in a row.

• If your business rules change,
which would require you to update
your natural key this can be done
easily without causing a cascade
effect across all foreign key
relationships. By using a surrogate
key instead of a natural key the
surrogate key is used in all foreign

key relationships. Surrogate keys will
not be updated over time.

• Surrogate keys are typically integers,
which only require 4 bytes to store, so
the primary key index structure will be
smaller in size than their natural key
counter parts. Having a small index
structure means better performance
for JOIN operations.

• It’s easy to create a naming system for
surrogate keys, so that remembering
the primary key of a table can be
made a lot easier. [4]

Cons:
• If foreign key tables use surrogate

keys then you will be required to have
a join to retrieve the real foreign key
value. Whereas if the foreign key
table used a natural key then the
natural key would be already be
included in your table and no join
would be required. Of course this I
only true if you only needed the
natural key column returned in your
query

• Surrogate keys are typically not useful
when searching for data since they
have no meaning.

• Surrogate keys have no knowledge
level value. The most important
function of the PK is as an interaction
element between the real‐world and
the database. It is thorough the
primary key that we usually query the
database. The primary key is of
fundamental importance if we are to
"usefully" relate the concepts of the
database to the real world. [4]

6.2 Natural Key Pros and Cons
Having natural keys as indexes on your
tables mean you will have different
programming considerations when building
your applications. You will find that pros
and cons for natural keys to be just the
opposite as the pros and cons for surrogate
keys. [4]
Pros:

60 Natural Versus Surrogate Keys. Performance and Usability

• They already exist in the schema.
There is no need for additional
columns that would load the
tables.

• Will require less joins when you
only need to return the key value
of a foreign key table. This is
because the natural key will
already be imbedded in your table.

• Easier to search because natural
keys have meaning and will be
stored in your table. Without the
natural key in your table, a search
for records based on a natural key
would require a join to the foreign
key table to get the natural key. [4]

Cons:
• Requires much more work to

change a natural key, especially
when foreign relationship have
been built off the natural key.

• Your primary key index will be
larger because natural keys are
typically larger in size then
surrogate keys.

• Since natural keys are typically
larger in size then surrogate keys
and are strings instead of integers
joins between two tables on a
natural key will take more time.

• Kind of hard to remember the
name of the key for every table in
the database [4]

7 Performance issue
The next scenario is built to test the
performance of natural and surrogate
keys. We will see when and if one is
better than the other.
The test business logic is simple and it is
about the commercial activity of a
company that sells goods. The test
entities are described as follows:

Fig 10. Database logical entities
After undergoing normalization, we get the
following database structure:
• Customers
o This table will hold all the

information related to the
customers, such as first and last
names, email address, telephone
number, address and so on

• Products
o Here we will have details about the

products that are being sold: name,
price, stock etc.

• Categories
o This table stores information about

different categories of products
• Orders
o This is the main table that holds

information about customer orders,
such as order date, serial number,
total value

• OrderDetalis
o The last table is used to store

information about individual lines in
a customer order: product, quantity,
price at buying time

There are two test cases: one in which we
will chose a natural key for the primary key
of every table and one in which a surrogate
key will be used. The tables will be loaded
with data and will be tested to see the
response times of simple selects and joins.
The test database management systems is
Oracle 10g Express Edition. The test
computer is equipped with an Intel Core i5
750 processor, 4 GB of RAM and two 500

Database Systems Journal vol. II, no. 2/2011 61

GB hard-disks at 7200 rpm connected in
RAID level 0.
The test scenario uses the following table
descriptions:

Fig. 11. Natural keys database

62 Natural Versus Surrogate Keys. Performance and Usability

SQL Query Executi
on time

select * from customers2,
products2, categories2,
orders2, orderdetails2
where customers2.id =
orders2.customer_id and
products2.category_id =
categories2.id and
orders2.id =
orderdetails2.order_id and
orderdetails2.product_id =
products2.id

18 ms

select * from customers,
products, categories,
orders, orderdetails where
customers.email =
orders.customer_email
and products.category_name
= categories.name and
orders.serial_number =
orderdetails.order_serial_n
umber and
orderdetails.product_maker
= products.maker and
orderdetails.product_name =
products.name

20 ms

select * from orderdetails2 15 ms
select * from orders2 15 ms
select * from categories2 15 ms
select * from products2 18 ms
select * from customers2 14 ms
select * from orderdetails 17 ms
select * from orders 18 ms
select * from categories 28 ms
select * from products 18 ms
select * from customers 15 ms

8 Conclusions
As we can see from the results above,
choosing surrogate keys as primary keys
does not always mean adding columns to
tables. Also, query times are improved,
because primary indexes are smaller. This is
due to the fact that surrogate keys use an
integer data type, while the natural keys they
replaced used a variable length character
data type.
In the end, although surrogate keys tend to
be better for performance, people still use
natural keys just because they feel better.
Generally, database designers are inclined to
use surrogate keys, because making things
abstract is their main issue, while application
developers go with natural keys, because
they have more business logic.

Fig. 12. Surrogate keys database

Table 1. Query results

Database Systems Journal vol. II, no. 2/2011 63

9
Acknowledgements
This work was cofinaced from the
European Social Fund through Sectoral
Operational Programme Human
Resources Development 2007-2013,
project number POSDRU/107/1.5/S/77213
„Ph.D. for a career in interdisciplinary
economic research at the European
standards”.

References
[1] Breck Carter, “Intelligent Versus

Surrogate Keys”. Internet:
http://www.bcarter.com/intsurr1.ht
m, October 6, 1997 [Mar 18, 2011]

[2] Michelle A. Poolet, “SQL by Design:
How to Choose a Primary Key”.
Internet:
http://www.sqlmag.com/article/syst
ems‐administrator/sql‐by‐design‐
how‐to‐choose‐a‐primary‐key, April

01, 1999 [March 18, 2011]
[3] Scott W. Ambler, “Choosing a

Primary Key: Natural or Surrogate?”.
Internet:
http://www.agiledata.org/essays/ke
ys.html, 2005 [Mar 18, 2011]

[4] Gregory A. Larsen, “SQL Server:
Natural Key Verses Surrogate Key”.
Internet:
http://www.databasejournal.com/featu
res/mssql/article.php/3922066/SQL‐Ser

[5] ver‐Natural‐Key‐Verses‐Surrogate‐
Key.htm, January 31, 2011 [Mar 18,
2011]

[6] Michelle A. Poolet, “Surrogate Key vs.
Natural Key”. Internet:
http://www.sqlmag.com/article/data‐
modeling/surrogate‐key‐vs‐natural‐
key/2, January 24, 2002 [Mar 18,
2011]

Studie in Bucha

Dragos‐Paul POP graduated from the Faculty of Computer Science for
Business Management at the Romanian‐American University of Bucharest in
2007 (Bachelor’s degree) and in 2009 (Master’s degree), specialising in
Economic IT. He is curently a Ph.D. candidate at the Academy of Economic
rest. He works as an assistant teacher at the Romanian‐American University

in Bucahrest, teaching computer architecture, operating systems, advanced web
programming and databases. His main domains of interest are web technologies, database
technologies, programming languages, networking, hardware and operating system

http://www.databasejournal.com/features/mssql/article.php/3922066/SQL-Ser
http://www.databasejournal.com/features/mssql/article.php/3922066/SQL-Ser

	Managing XML Data to optimize Performance into Object-Relational Databases
	Iuliana BOTHA
	Increasing Database Performance using Indexes
	
	Cecilia CIOLOCA, Mihai GEORGESCU

	 A Grid Architecture for Manufacturing Database System
	Laurentiu CIOVICĂ, Constantin Daniel AVRAM

	Grid Database - Management, OGSA and Integration
	Florentina Ramona PAVEL (EL BAABOUA)

	Considerations Regarding Designing and Administrating SOA Solutions
	 Vlad DIACONITA

	Natural versus Surrogate Keys. Performance and Usability
	Dragos-Paul POP

