
Database Systems Journal vol. II, no. 2/2011 3

Managing XML Data to optimize Performance into Object-Relational
Databases

Iuliana BOTHA

Academy of Economic Studies, Bucharest, Romania
iuliana.botha@ie.ase.ro

This paper propose some possibilities for manage XML data in order to optimize
performance into object-relational databases. It is detailed the possibility of storing XML
data into such databases, using for exemplification an Oracle database and there are tested
some optimizing techniques of the queries over XMLType tables, like indexing and
partitioning tables.
Keywords: object-relational database, XML data, optimizing technique, index, partitioned
table.

Introduction
In the last decades, the world economy

was characterized by the transition from
industrial to information society, which is
governed by a new set of rules that use
digital technologies for accessing,
processing, storing and transferring the
information.
In all fields of activity are required
accurate and timely obtained information.
This information is obtained from primary
data collected and organized into databases
following extensive processes performed
using complex software products. Modern
information systems are currently
structured in different types and are
practically identified with the complex and
changing economic activity.
Currently, organizations are required to
store and process increasing quantities of
data, requiring recourse to modern
information technology, databases, data
warehouses, Internet and intelligent
systems.
Thus, in recent years are rapidly developed
some new ways to store and manipulate
multimedia and spatial data. Since
relational databases (RDB) have
limitations in the case of special data (like
multimedia, spatial, XML), the most
effective way proves to be the use of

object-relational databases (ORDB) [1].

2. Brief considerations about XML
technology
eXtensible Markup Language (XML) is a
platform-independent format for
representing data and was designed as a
standard for information exchange over the
Internet. XML enables easy exchange of
information, which allows interoperability
between applications due to data
encapsulation with metadata.
The studies [5], [6] and [7] present two
approaches for storing XML data: through
native XML databases or using mapping
techniques for translate XML data into a
relational or object-relational database.
Also, they propose mapping algorithms
and rules from XML Schema to object-
relational database schema.
Current paper will expose the possibility
of storing XML data into object-relational
databases, using for exemplification an
Oracle database. The main advantage of
using object-relational databases is that we
can get the benefits of both relational and
object-oriented technologies. However,
this translates into lower performances due
to XML data mapping to the relational
data, which can produce a database
schema with many relations.

1

mailto:iuliana.botha@ie.ase.ro

 Managing XML Data to optimize Performance into Object-Relational Databases 4

Storing data as XML also provides certain
facilities. First, XML is self-describing,
and applications can consume XML data
without knowing their schema or structure.
XML data are always arranged
hierarchically as a tree. XML tree structure
has a parent node, known as an XML
document. If a set of XML nodes have no
parent node, it is an XML fragment.
Second, the ordering is maintained in the
XML document. Thirdly, the scheme
declaration provides validation into the
document. XML is a language used to
define a structure for a valid XML
document or fragment. XML Schema
allows the declaration of optional sections
or types inside generic scheme that
supports any XML fragment. This means
that XML data can be used for
representing semi-structured or
unstructured data. Fourth, XML allows
searching. Due to the hierarchical
structure, multiple algorithms can be
applied to search within the tree structure.
Fifthly, XML data are extensible. XML
data can be manipulated by inserting,
modifying and deleting nodes. This means
you can create new XML instances of
existing XML structures.

3. Brief considerations about object-
relational databases
The object-relational databases are a
hybrid type of databases, which use the
best facilities of its predecessors (relational
and object-oriented databases) [3]. In other
words, they can be considered an object-
oriented extension of the relational
databases. The internal logic of storing and
retrieving data is the same like in the
relational case. The main difference
consists in new data types, some of them
user defined (like object classes), and in
the ability of manipulate them.
Multimedia, spatial and XML data are
important resources, which need to be
manipulated, in order to use them in
specific applications.
However, one can observe that, in a table

of such database, the main part of the
columns have nothing in particular, being
just standard columns. The exceptions
come from these columns that contain
complex data: large objects (LOB), object
types, spatial data, XML data [1].
The new standard for object-relational
design is SQL:1999 and provides support
for user defined abstract data types, which
can be used in the same way as the
standard data types. This allows for the
encapsulation of an object within another
object. Also, SQL:1999 added support for
XML platform for data representation
using text files.
As stated in [2], using this hybrid type of
database has its main reason for that:
• In many cases, the existing

applications are already based on a
relational data model. This calls for
coexistence with the relational model
as long as we do not want to redesign
the applications based on a common
object model to be included in a single
OODB;

• Performance and scalability are
important properties of an application,
and in this respect, OODBMS have not
yet shown advantages over RDBMS.

The main issue, in the case of object-
relational databases, is how to store objects
using tables and how to transform complex
requirements of applications into
properties stored in databases, all in a
simple and clear way, that keep the
structure of object-oriented application,
reduce programming effort and maintain a
reasonable level of performance [10].
As specified in [1], the object-relational
database management system (ORDBMS)
offer is very generous and covers a wide
scale of cost and performance, going from
the DBMS that can be used for free
(unlicensed or with public license, such as
PostgreSQL) to the commercial ones such
as Oracle 10g, DB2 UDB 8, and SQL
Server 2005. All these DBMS types extend
their relational model with abstract data
types and object-oriented properties.

Database Systems Journal vol. II, no. 2/2011 5

4. Managing XML Data in Oracle
ORDBMS
Oracle is a relational database
management system (RDBMS), but since
version 10g is included into the category
of relational DBMS extended with
facilities for defining and processing the
types of objects - ORDBMS. Thus, the
system can distinguish between types
(classes) of objects and objects (instances
of objects types) [8].
Oracle specific procedural language,
PL/SQL, supports object-oriented
programming features and objects types
(equivalent with objects classes). An
object type encapsulates a data structure
with functions and procedures for handling
data. The variables that form the object
type are called attributes. The functions
and procedures that manipulate the
attributes are called methods. The
definition of objects types and the methods
are stored in the database. Instances of
these types of objects can be stored in
tables and used as variables in PL/SQL
programs [9].
A new Oracle database functionality
consists into XML data management,
through Oracle XML DB component. It
provides high-performance storage and
retrieval of XML data.
The main components of Oracle XML DB
are shown in Figure 1 and the most
important features are highlighted in [13]
and summarized below:
• Supports XML Schema data models;
• Provides methods for navigating and

querying XML data;
• Allows DML statements over the XML

data;
• Allows standard methods for accessing

and updating XML, including W3C
XPath recommendation and the ISO-
ANSI SQL/XML standard;

• The transfer of XML data in and out of
Oracle Database can be made using
FTP, HTTP or WebDAV;

• Enables the management of the XML
hierarchy;

• Includes a XML repository that allows
XML content to be organized and
managed;

• Provides a storage-independent,
content-independent and
programming-language-independent
infrastructure for storing and managing
XML data;

• Supports standard APIs used for
programmatic access and manipulation
of XML content using Java, C, and
PL/SQL;

• Allows specific memory management
and optimizations;

• Allows Oracle Database main features,
such as reliability, availability,
scalability, and security for XML
content.

Figure 1 –Main components of Oracle XML DB

(Source: adapted from [13])

In today’s organizations, the data is
managed differently depending on their
structured or unstructured format. Thus,
unstructured data is stored into tables,
while structured data is stored into LOB
data files (Large Objects).
Oracle database allows XML data to be
stored and managed whether they are
structured, unstructured or semi-structured
data. Using Oracle it can be performed
XML operations on object-relational data,
but also SQL operations on XML
documents.
As shown in figure above, when we use
Oracle XML facilities we discuss about
XMLType data type and XML repository.

 Managing XML Data to optimize Performance into Object-Relational Databases 6

XMLType is an Oracle server data type,
similar to the native data types like DATA,
NUMBER or VARCHAR2. XMLType
allows the database to understand that a
column or table contains XML and also
provides methods that allow standard
operations such as XML Schema
validation and XSL transformations.
According to [12], the modalities to store
XMLType data are the following:

• Structured storage, in tables or views,
when we discuss about structured data;

• Large objects (LOB) storage, when we
discuss about unstructured or semi-
structured data and we need to store
XML document as a whole.

Table 1 listed below indicates the main
features of each type of storage:

Table 1 – The main features of each XMLType storage modality
(Source: adapted from [12])

CHARACTERISTIC STRUCTURED STORAGE LOB STORAGE

Database schema flexibility Limited flexibility for schema
changes

Good flexibility for schema
changes

Data integrity and accuracy Limited data integrity. Maintains
DOM fidelity.

Maintains the original XML
byte for byte - important in
some applications

Performance Good performance for the DML
statements

Medium performance for the
DML statements

SQL features
Good accessibility to existing SQL
features, such as constraints,
indexes, and so on

Medium accessibility to SQL
features

Space needed Consume less space when used
with Oracle XML DB

Can consume considerable
space

We can use XMLType as the data type of
columns in database tables or views, as
shown in the following example:

CREATE TABLE users
(
user_id NUMBER(3),
username VARCHAR2(15),
password VARCHAR2(20),
personal_data XMLTYPE
);

The structure for the XMLType data
can be visualized in the tree-
structure represented in the
Figure 2:

Figure 2 – XML hierarchy for personal data

If we choose to store XML data in an
XMLType column as a CLOB column, we
have the possibility to specify LOB
storage characteristics for that column, as
shown in the following example:

Database Systems Journal vol. II, no. 2/2011 7

CREATE TABLE users2
(
user_id NUMBER(3),
username VARCHAR2(15),
password VARCHAR2(20),
personal_data XMLTYPE
)
XMLType COLUMN personal_data
STORE AS CLOB
(
TABLESPACE lob_example
STORAGE
(
INITIAL 4096
NEXT 4096
)
CHUNK 4096
NOCACHE
LOGGING
);

In order to create an XMLType instance will
be used the XMLType() constructor applied
to a VARCHAR2 string or to a CLOB
(Character Large Object) data. The stored
data can be seen as in Figure 3.

INSERT INTO users VALUES
(100, 'User100', 'pass',
XMLType('<PersonalData user="100">
 <Name>Ionescu</Name>
 <Address>
 <City>Bucharest</City>
 <Code>012345</Code>
 </Address>
 <Phone>0211234567</Phone>
 </PersonalData>'));

Figure 3 – The modality to visualize the XML data

Another way for using this data type
allows us to create tables of XMLType.
Thus, the below example creates
the person table of XMLType. In
this case, the default type of
storage is CLOB based.

CREATE TABLE persons of XMLType;

XML type offers great search and query
facilities. The developers have the ability
to use different methods that allow

manipulation of XML data, like: extract(),
createXML(), existsNode(), getCLOBVal(),
getStringVal() or getNumberVal().
In order to query a table which
has a XMLType column, simple or
complex, will be used the method
extract() of the object type. The
result of the method will be a
VARCHAR2 value.

SELECT u.username,
u.personal_data.extract('/Personal

 Managing XML Data to optimize Performance into Object-Relational Databases 8

Data/Name/text()').getStringVal()
Name,
u.personal_data.extract('/Personal
Data/Address/City/text()').getStri
ngVal() City
FROM users u;

The above query retrieves values
of the nodes from XML structure
presented in Figure 2, by using
the path to these nodes.

Figure 4 – Result of the SELECT statement

The others DML statements (update and
delete) are no different from updating or
deleting rows containing any other
standard data type. Obviously, specific
XMLType methods can be used in order to
identify rows to update or delete, like in
the following example:

DELETE FROM users u
WHERE
upper(u.personal_data.extract('//C
ity/text()').getStringVal()) =
'BUCHAREST';

Other modalities to manipulate the
XMLType data use PL/SQL or Java
programs. In addition, for loading the
XML documents into the repository can be
used the PL/SQL standard package
DBMS_XDB, which stores under a given
path the document.

5. Optimizing database performance by
managing XML Data
Database performance can be optimized
through a severe management of XML
data and appropriate optimizing
techniques, like indexing and partitioning
tables.
When a query is executed over a table with
XMLType columns, the query optimizer
takes into consideration many factors
related to the objects referenced and the
conditions specified in the query, in order
to identify the most efficient technique.

The query optimizer estimates the cost of
the execution plan, which is an estimated
value that depends on resources used to
execute the statement (in terms of I/O,
CPU and memory) [4].
Oracle uses indexes to avoid the need for
full-table scans which are required when
the query optimizer cannot find an
efficient way to service the SQL statement.
An index is used to find data quickly,
regardless of the amount of data. The
structures used by Oracle to create and
maintain indexes are B-tree and bitmap
indexes.
The oldest and most popular type of
indexing is a classic B-tree index. A B-tree
consists of a root node that contains one
page of data, 0 or more additional pages
containing intermediate levels, and a leaf
level. Leaf level contains entries that
correspond to ordered data that are
indexed.
Oracle bitmap indexes are very different
from standard b-tree indexes. This type of
index creates a two-dimensional array with
one column for every row in the table
being indexed. Each column represents a
distinct value within the bitmapped index.
The array created represents each value
within the index multiplied by the number
of rows in the table.
An interesting and important feature in
Oracle indexing is represented by
function-based indexes. Thus, are created
indexes on expressions, internal functions,
and user-defined functions in PL/SQL or
Java. A function-based index ensures
matching any condition in a query and
replaces the unnecessary full-table scans
with super-fast index range scans.
In order to identify how database
performance can be optimized, we will
execute some queries on XMLType tables
stored into repository from Oracle
database.
First, performing a query against the
USER_XML_TABLES data dictionary
view will mark the XMLType tables from
the repository:

Database Systems Journal vol. II, no. 2/2011 9

SELECT table_name, storage_type,
xmlschema FROM user_xml_tables;

The result obtained in this case indicates
the Persons table as XMLType table, stored
with the object-relational storage option, as
we can see in table properties.
We will now execute the query below to
see if its execution plan is optimal:

SELECT
p.extract('/PersonalData/Name/text
()').getStringVal() Name,

p.extract('/PersonalData/Address/C
ity/text()').getStringVal() City
FROM persons p
WHERE
lower(p.extract('/PersonalData/Add
ress/City/text()').getStringVal())
='brasov';

As we can observe in the Figure 5, the
execution plan for the query performed
involves an inefficient TABLE ACCESS
FULL operation, with a cost of execution
estimated at 8.

Figure 5 – The execution plan before creating the index

To increase performance of query
execution, a function-based index will be
created:

CREATE INDEX city_index ON persons
p(lower(p.extract('/PersonalData/A
ddress/City/text()').getStringVal(
)));

To examine the created indexes on a table,
can be run the query shown below:

SELECT index_name, index_type,
table_name
FROM user_indexes
WHERE table_name='PERSONS';

The statistics for the execution plan are not
refreshed automatically, but at a specific
time or when this is an explicit
requirement. In this case, we collect
information about the tables in the current
scheme using a function included in the
standard package DMBS_STATS:

BEGIN
DBMS_STATS.GATHER_TABLE_STATS(user
, 'persons');
END;
/

After running the PL/SQL block above, we
will check the execution plan again, by
running the SELECT statement tested
before creating the index. The result

 Managing XML Data to optimize Performance into Object-Relational Databases 10

indicates that the query execution plan has
improved (the cost for executing the query
is now estimated at 2), as shown in the
Figure 6. Also, TABLE ACCESS FULL

operation has been replaced by more
efficient TABLE ACCESS BY INDEX
ROWID and INDEX RANGE SCAN
operations.

Figure 6 – The execution plan after creating the index

Moving forward in order to identify
optimizing techniques, we will study the
effects of partitioning against the queries
built on XMLType tables.
The main objective of the partitioning
technique is to radically decrease the
amount of disk activity and to limit the
amount of data to be retrieved.
Tables are divided into partitions using a
partitioning key. This is a set of columns
that will determine by their conditions in
which partition a given row will be stored.
Partitioning for object-relational storage
was introduced in Oracle Database 11g to
help simplify XML data life-cycle
management and performance [11].
We will create an XMLType table with
partitioned object-relational storage using
a XML Schema for identification of the
XML hierarchy elements. Then, the table
will be populated with data selected from
the Persons table.

CREATE TABLE person_part OF
XMLTYPE
XMLSCHEMA

"http://localhost:8080/orabpel/xml
lib/XMLSchema_persons.xsd"
ELEMENT "personal_data"
PARTITION BY LIST
(personal_data.address)
(PARTITION a VALUES ('Bucharest'),
PARTITION b VALUES ('Iasi'),
PARTITION c VALUES ('Oradea'),
PARTITION d VALUES ('Brasov')
);

The XML Schema which is pointed in the
CREATE TABLE statement is presented
below:

<?xml version="1.0" encoding="ISO-
8859-1" ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/X
MLSchema">
<xs:element name="personal_data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
type="xs:string"/>
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="city"
type="xs:string"/>
 <xs:element name="code"

Database Systems Journal vol. II, no. 2/2011 11

type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="phone"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

For better performance improvement of
the queries we can chose to create indexes
on the partitioned XMLType table. The
execution plan resulted will be more
efficient for large data sets.

7. Conclusion
The paper presents the object-relational
database main features and the possibilities
for integration with XML technology. We
have presented and tested two optimizing
techniques used by Oracle database for the
queries that are built on XMLType tables.

8. Acknowledgment
This paper presents some results of the
research project PN II, TE Program, Code
332: “Informatics Solutions for decision
making support in the uncertain and
unpredictable environments in order to
integrate them within a Grid network”,
financed within the framework of People
research program.

References
[1] Iuliana Botha, AndaVelicanu, Adela

Bâra, “Integrating Spatial Data with
Object Relational-Databases”, Journal
of Database Systems, no.1/2011, pp.
33-42, ISSN: 2069–3230

[2] Gheorghe Sabau, “Comparison of
RDBMS, OODBMS and ORDBMS”,
The Proceedings of the 8th
International Conference on
Informatics in Economy, Bucharest,
2007, pp. 792-796, ISBN 978-973-
594-921-1

[3] Michael Stonebraker, Dorothy Moore,
“Object-Relational DBMS - The Next
Great Wave”, Morgan-Kaufmann,
1996, ISBN: 155-860-397-2

[4] Adela Bâra, Ion Lungu, Manole
Velicanu, Vlad Diaconiţa, Iuliana
Botha, „Extracting data from virtual
data warehouses – a practical
approach of how to improve query
performance”, The Proceedings of the
7th WSEAS International Conference
on Artificial Intelligence, Knowledge
Engineering and Data Bases, 2008,
pp. 509-514, ISBN: 978-960-6766-41-
1, ISSN: 1790-5109

[5] Laila Alami Kasri, Noureddine
Chenfour, “Model of Storage XML
Database based on the Relational-
Object Model”, International Journal
of Engineering Science and
Technology, Vol. 2(11), 2010, ISSN
0975–5462

[6] Irena Mlynkova, Jaroslav Pokorny,
“From XML Schema to Object-
Relational Database – an XML
Schema-driven mapping Algorithm”,
Proceedings of the 3rd IADIS
International Conference
WWW/Internet, Madrid, Spain, 2004,
pp 115 - 122, ISBN 972-99353-0-0

[7] Irena Mlynkova, Jaroslav Pokorny,
“XML in the World of (Object-)
Relational Database Systems”,
Information Systems Development:
Advances in Theory, Practice, and
Education, Vilnius, Lithuania, 2004,
pp. 63 - 76, ISBN 978-0-387-25026-7

[8] Manole Velicanu, Dicţionar explicativ
al sistemelor de baze de date,
Economica Publishing House,
Bucharest, 2005, ISBN 709-114-0

[9] Manole Velicanu, Ion Lungu, Iuliana
Botha, Adela Bâra, Anda Velicanu,
Emanuil Rednic, Advanced Database
Systems, AES Publishing House,
Bucharest, 2009, ISBN: 978-606-505-
217-8

[10] Oracle Database, Application
Developer’s Guide: Object-Relational

 Managing XML Data to optimize Performance into Object-Relational Databases 12

Features, Oracle tutorial, December
2003

[11] Using Oracle XML DB to Optimize
Performance and Manage Structured
XML Data, Oracle tutorial,
http://www.oracle.com/webfolder/technetwor
k/tutorials/obe/db/11g/r2/prod/appdev/xmldb/

xmldb_structured/optimizeandmanageXMLda
ta_v3.htm

[12] http://download.oracle.com/docs/cd/B10501_
01/appdev.920/a96620/xdb04cre.htm

[13] Oracle XML DB Developer's Guide,
Oracle tutorial,
http://download.oracle.com/docs/cd/B19306_
01/appdev.102/b14259/toc.htm

Iuliana BOTHA is an Assistant Lecturer at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. She has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics

in 2006 and the Databases for Business Support master program organized by the Academy of
Economic Studies of Bucharest in 2008. Currently, she is a PhD student in the field of
Economic Informatics at the Academy of Economic Studies. She is co-author of 4 books, 8
published articles (2 articles ISI indexed and the other 6 included in international databases),
16 scientific papers published in conferences proceedings (among which 4 paper ISI indexed).
She participated as team member in 4 research projects that have been financed from national
research programs. From 2007, she is the scientific secretary of the master program
Databases for Business Support and she is also a member of INFOREC professional
association. Her scientific fields of interest include: Databases, Database Management
Systems, Design of Economic Information Systems, Business Intelligence.

