
Database Systems Journal vol. XV, no. 01/2024 1

Automating the Generation of Microservice Architectures in Web

Applications

Pavel-Cristian CRACIUN1
1Bucharest University of Economic Studies

craciunpavel18@stud.ase.ro

The advent of microservice designs, which prioritizes enhancing deployment timelines,

scalability, and flexibility, marks an advancement period in software development. This

article presents a tool designed to accelerate the construction of microservice architectures.

Using an intuitive interface, the solution allows users to create fundamental code and

graphically construct structures, which streamlines the typically laborious first coding

process. Through the automation of project documentation and scaffolding, the solution

reduces resource consumption and speeds up development. The proposed solution's complete

approach is demonstrated by a comparison with Spring Initializr, which provides a straight

path from conceptual design to deployable code. This highlights the potential of the proposed

tool to revolutionize software project development.

Keywords: Microservices, Software Development Efficiency, Automated Code Generation,

Architectural Planning

Introduction

The evolution of web applications

demands scalable and flexible

architectural solutions to handle the

complexities of modern software needs.

Microservices are an architectural and

organisational approach as much as a

technological one, having the goal of

accelerating software application

deployment cycles, encouraging

creativity, ownership and improving a

software applications maintainability and

scalability. Also, productivity, agility

resilience are methods that are the result

factor of this shift in software

development. This type of architecture

represents a foundation of scalable and

agile systems which supports flexibility

in integrating new features, meeting

dynamic demands. A microservice

architecture’s ability to distinguish

services allows developers to concentrate

on distinct components, which promotes

innovation and makes maintenance

easier.

The structured process used for planning,

creating, and deploying an information

system is SDLC (Software Development

Lifecycle) this is compounded from distinct

phases such as:

- Requirement analysis: identifying

and documenting what is required by

stakeholders.

- Design: defining the architecture of

the software based on the demanded

requirements.

- Implementation: Coding based on the

system designed.

- Testing: verifying that the software

meets all the requirements.

- Deployment: delivering the software

to be used by the users.

The current paper focuses on the Design

phase from the SDLC that represents how

the architecture will be built.

2 From monolithic to microservice

architecture

There are two models that can be

approached to have a consistent architecture,

these are: Monolith and Microservices. The

Monolith represents a standalone

architecture that highlights a linear process

in which the whole logic of the application

and services are dependent one of another

[1]. From a management point of view is a

less need for coordination between different

1

mailto:craciunpavel18@stud.ase.ro

2 Automating the generation of microservice architectures in web applications

teams, as everything can be centralized in

one place. Everything is in a single

codebase thus making the testing process

easier to approach. for the Deployment

process is straightforward since involves

only one build and one release process.

There are certain limitations and other

aspects that Monolith architecture

highlights:

- Scalability issues, where a notable

study by G. Blinowski, et al.,

underscores the debate

surrounding scalability in

monolithic vs. microservice

architectures. Their investigation

into the performance dynamics on

a single machine highlighted

potential scalability challenges

when migrating to microservices,

especially for smaller businesses

with limited concurrent users,

posing implications for scalability

strategies [2].

- Complexity in making Changes,

which spotlights the revitalization

of software design through

microservices comes as a

response to the rigidity found in

monolithic architectures, where

the complexity of implementing

changes can stifle innovation and

prolong development cycles. This

is substantiated by the work of

Milos Milic, et al., who developed

a quality-based model

emphasizing the cumbersome

nature of adapting monolithic

systems to evolving software

needs [3].

- Slow Start-Up Times, the agility

afforded by microservices directly

addresses the sluggish

responsiveness endemic to

monolithic architectures during

initialization phases. The

comparison provided by Nahid

Nawal Nayim, et al., evaluates

performance implications in an

e-commerce startup setting,

shedding light on the substantial

lead time reductions achievable with

microservice infrastructures [4].

The addressed limitations of monolithic

architectures in the design phase in the

SDLC advocate for using microservices

instead. Microservices architecture involves

designing a system as a collection of smaller

independent applications, each performing a

specific business function.

Microservice architectures represents an

advancement in the design and development

of web applications [5].

It is evident that the transition from

monolithic to microservices architecture is

not merely a technical upgrade but a

strategic necessity to overcome profound

operational challenges [1]. This type of

architectural paradigm named Microservices

decomposes applications into small,

independently, and deployable services with

each of their own having their unique

business functionality. Terdal’s work on

microservices exemplifies this approach,

highlighting the transition of e-commerce

web applications from monolithic to

microservice architecture, emphasizing the

benefits of independent development,

testing, and deployment facilitated by

modern technologies like Docker containers

and Kubernetes [6].

The architectural approach of microservices

also offers notable financial advantages,

particularly in terms of cost-effectiveness

when developing large-scale systems [7].

The perspectives of Nada Salaheddin

Elgheriani et. al. [8] highlight even more of

the many advantages that microservice

designs offer, including improved agility,

developer productivity, resilience,

scalability, dependability, maintainability,

and ease of deployment. All these qualities

work together to create a strong structure

that can handle future demands in addition

to meeting company development's present

needs. Considering the above listed

academic achievements, software

development processes might be greatly

streamlined by automating the creation and

implementation of microservice

architectures. Tools like as "Mono2Micro"

Database Systems Journal vol. XV, no. 01/2024 3

from IBM [9], which were put out by A.

Kalia et al., show how AI may help ease

the shift from monolithic to microservice

architectures by providing an automated

and effective way forward [10].

Developers may quickly prototype and

implement services by including

automatic code generation approaches, as

covered by Gaetanino Paolone et al. [11].

Although, the solution represents more of

an aid in transforming existing codebases

and primary focuses on migration rather

than the initial creation of microservices

from scratch.

The proposed tool offers a novel solution

by enabling the rapid setup and

deployment of microservices,

streamlining the development cycle, and

reducing the time and resources

traditionally required for architectural

planning and documentation. Essentially,

the revolutionary potential of automating

the creation and implementation of

microservice architectures is fully

captured by this suggested approach. It

holds the potential to redefine the

standard for software development,

particularly in terms of project

conception and execution. As we

continue to explore this novel technique,

our research delves into the theoretical

foundations, real-world applications, and

potential impacts of the proposed web

application on the effectiveness,

scalability, and resilience of web

application development frameworks.

This investigation aims to illuminate how

the proposed solution can fundamentally

enhance the architectural landscape of

software engineering, promising a

transformative shift in how developers

approach project development.

3 Efficient Automation of

Microservices in Web Applications

In contrast, this paper proposes a solution

designed to pioneer the development of

microservice architectures from the

ground up. As a web application with a

user-friendly UI, the solution proposes a

solution for creating and interconnecting

microservices through the interface. Also,

another important objective would be to

generate a comprehensive foundational

project that includes all necessary

dependencies and microservices code. This

tool reduces the need for extensive design

and planning meetings, allowing developers

to directly construct and visualize their

architecture through an intuitive UI diagram.

Each microservice can be customized based

on the goal that it serves and can be

documented directly in the interface, where

notes and details can be added to enhance

clarity and maintainability. This approach

not only streamlines the development

process but also ensures that all aspects of

the system architecture are well-documented

from the outset, significantly enhancing the

efficiency and effectiveness of project

development.

The approach is characterized as empirical

research aimed at identifying ways to

automate microservices. It was intended to

thoroughly analyse the automation of

microservices architectures in comparison to

with other existing tool, Spring Initialzr.

Various strategies were employed to focus

on analyse and demonstrate the efficiency of

automation in the microservice architecture

development process. The research was

conducted with the aim of identifying,

testing, and documenting the most effective

practices to reduce time and resources in the

software development lifecycle. This

involved a combination of theoretical study

and practical application to assess the impact

of automation on project efficiency and error

minimization.

3.1 Beyond existing solutions

The proposed solution represents a new step

in the software development by simplifying

the creation of microservice architectures.

Through an intuitive and friendly

user-interface, developers can visualize and

design their system using a diagrammatic

approach, which fosters a clear visual

understanding of service interconnectivity.

The application streamlines the process of

4 Automating the generation of microservice architectures in web applications

setting up microservices by allowing

users to add dependencies directly within

the UI, thus eliminating the traditional

back-and-forth between planning and

execution. Going beyond mere

diagramming, the proposed tool generates

the corresponding microservices code,

complete with specified dependencies,

thus significantly accelerating the

development workflow.

There are multiple solutions that share the

same purpose as this paper such as:

- Jhipster [12], a development

platform, that generates, develops,

and deploys Spring Boot web

applications and Spring

Microservices.

- Telosys [13], a lightweight code

generator capable of creating

various types of applications

(Web, CLI, etc.) from a simple

model defined with text files or

database schema.While flexible,

Telosys might not offer as much

depth in handling complex

microservices architectures.

- Jmix [14], an instrument that

provides high-level tools for

enterprise development with

Spring Boot. Specialised in rapid

development capabilities but

might not offer the same level of

microservices-focused

functionalities.

Spring Initializr [15] was specifically

chosen for comparison due to its

widespread recognition and focused

utility in bootstrapping Spring-based

projects efficiently, making it highly

relevant to developers familiar with

Spring ecosystems. This context helps

highlight the proposed solution's

enhancements over traditional methods

like those provided by Spring Initializr. A

straightforward through the Internet

interface is offered by Spring Initializr to

create Spring-based projects using

pre-made templates. Through the creation

of build files and project structures, it

provides developers with a rapid start.

However, as Table 1 illustrates, its

usefulness, is limited to the initial setup and

requires human implementation of the

comprehensive architectural design and

inter-service communication.

Conversely, the proposed solution

encompasses a wider range of functions by

not just starting projects but also

streamlining the complete architecture

design process. The suggested approach

emphasises the complete perspective of the

system architecture by enabling the

thorough designing of interconnected

services, in contrast to Spring Initializr,

which mainly provides project scaffolding.

It bridges the gap between initial setup and

full-fledged architectural development by

providing teams with a more integrated

solution.

Table 1. Comparison Solutions Table

Feature Spring

Initialzr

Proposed

Solution
Primary

Function

Bootstrapping

Spring-based

projects

Comprehensive

microservice

architecture

creation

User

Interface

Simple web-

based

interface

Intuitive and

diagrammatic

user interface

Automation

Level

Generates

basic project

structures and

build files

Automates

microservice

code and

dependency

management

Developing strong software architectures

requires meticulous attention to detail,

starting with the creation of diagrams and

documentation of architectural designs and

each microservice's functionality. Research

indicates that these preliminary tasks are

naturally slow paced and resource-intensive,

even though they are essential for

comprehending and growing applications

[16][17]. Developers expend substantial

effort not only in conceptualizing the

structure and interaction of services but also

in translating these conceptualizations into

actionable code which represents difficult,

redundant procedure that demands for

creativity. While, Spring Initialzr provides a

solid foundation for initiating Spring-based

Database Systems Journal vol. XV, no. 01/2024 5

projects, the proposed solution, extends

far beyond the initial setup. It integrates

the entire design and development, saves

time and enhances quality which makes it

superior.

3.2 Web prototype of the proposed

solution

The solution proposed is designed to

assist development teams, to avoid the

usual obstacles related to the architectural

foundation stage. Conventional methods,

such as lengthy design and planning

meetings with iterative cycles to finalize

an architecture, often delay project

kick-offs. But these chores would become

much simpler when the offered solution

would be used. As illustrated in Figure 1,

the solution does more than just

visualisation of the project architecture: it

also converts the visualisation into

deployable code. This guarantees that

teams leave the design and planning

session with more than just conceptual

schematics. Instead, they have a workable

code foundation that can be expanded

upon. The tool is essentially removing the

need for fundamental work by

automating the creation of microservices

infrastructure, freeing up teams to focus

on product development and business

logic execution. Leaping ahead of the

early setup stages results in increased

productivity, a shorter time-to-market,

and more efficient use of resources.

Fig. 1. Solution Architecture

The application is built using Java 17 and

employs a microservices architecture. One

of the microservices is designed to process

JSON inputs, storing templates that

represent snippets of code such as classes,

records, and interfaces. These templates are

then overlaid with additional templates, such

as annotations, and transformed into strings.

These strings are subsequently modified

with parameters derived from the JSON

input, utilizing a builder pattern to construct

these values and inject them into the

codebase. This process allows for dynamic

code generation based on the HTTP Request

parameters.

Upon accessing the suggested application,

developers are prompted to create a new

project. Also, the user will have the

possibility to edit in the future the project

that was created.

Fig. 2. Main Menu

What can be seen in Figure 2 is an approach

of the application to set the stage for a

customized microservice architecture. Upon

project creation, users will articulate

essential metadata, including project’s title,

the preferred programming language, and an

enumeration of global dependencies that

will underpin the subsequent architecture.

This initial stage is critical as it establishes

the project’s core framework. Ensuring that

a sensible technological and structural

baseline is followed by all upcoming

microservices.

After creation, the user is redirected to a

dashboard that takes the stage for a future

placeholder of the microservices that will be

connected through diagramming. This

represents a centralized core and an

orchestrator of the project, which grants the

user an oversight over their microservice

ecosystem. As shown in Figure 3, the

dashboard provides sections for adding new

microservices or templates. This is the place

where the design, management and

6 Automating the generation of microservice architectures in web applications

configurational utilities come together to

provide users with the resources they

need so that at the end could have a fully

functional project. As new microservices

are created, users can attach detailed

notes to each one, documenting specific

functionalities and architectural

decisions. This ensures that each

microservice’s role and configuration are

clearly understood and maintained

through the project lifecycle.

Fig. 3. Dashboard diagram

The “Add Service” option on the

dashboard takes users to a customised

design area where they may access the

microservice architecture’s granularity.

Illustrated in Figure 4, users have the

freedom to choose from creating a service

from scratch, fully customized by them or

to choose from an existing template such

as Login Service, User Details service

and many more.

Fig. 4. Create service

These templates are services that are

usually present in every application. If

the users select to create a new service,

the application will grant them freedom

to determine the characteristics of the

services, such as programming language,

nomenclature, and whether to build a

custom entity from scratch or instantiate the

service from a desired template. Because of

its adaptability, every microservice

guaranteed to be both precisely functional

and to be in harmony with the project’s

overall architectural philosophy.

One other example of the proposed

solution's strength is its ability to specify

deep services. As a component of a broader

architectural process, every microservice

requires careful description of classes,

methods, and their interactions. This is made

possible by the user-friendly, diagrammatic

interface of the suggested solution,

displayed in Figure 5, which gives

developers the ability to see and control the

operational dynamics of any service

component.

Fig. 5. Create template

One important aspect that the tool provides

is the possibility to incorporate

dependencies for each microservice,

ensuring that each has the necessary tools

and libraries for optimal functionality, as

seen in Figure 6.

With the proposed solution, developers may

examine the complete project layout after a

thorough architecture has been built and

documented. Users can iterate and revise

their design during this comprehensive

review phase, which is crucial for assuring

alignment with project objectives and

functional needs. The suggested tool stands

Database Systems Journal vol. XV, no. 01/2024 7

out for being able to provide a codebase

that can be used. This essential feature

eliminates the need for manual coding by

converting the graphically represented

architecture straight into an organised,

deployable project structure that includes

all necessary microservices and

dependencies.

Fig. 6. Add dependencies

At the end, the tool delivers the users a

fully deployable code that will only need

focus on writing the business logic of the

application/product. Through this

integration of design, documentation and

automated code generation, development

teams will help other teams of

management and business analysts to

understand and have a broader view on

the technical landscape which will

reversely make the development team be

more focused on the product and business

side.

4 Conclusion

All things considered, the proposed

solution rethinks the architectural

foundation of microservice-based apps,

transforming a labour-intensive

procedure into one that is automated,

effective and minimises errors. Looking

through the prism of studies that

highlights how time- and resources-

consuming traditional design methods

are, the suggested solution becomes more

than simply a tool, and it’s a paradigm

change. By removing the barrier that

separates design from implementation, it

enables development teams to jump straight

to the process of integrating business logic

into precisely created, thoroughly

documented code bases. For future

enhancements, the proposed solution aims to

further boost efficiency and reduce costs by

incorporating additional automation across

the Software Development Lifecycle,

including:

- Infrastructure Automation:

Enhancing the solution to automate

infrastructure generation could

significantly improve system

portability through advanced

containerization techniques. This

would align with modern

development practices and address

scalability and deployment

challenges [18].

- Monitoring Automation: Extending

automation to include the monitoring

of previously created microservices.

This would facilitate proactive

management and maintenance,

ensuring high availability and

performance consistency [19].

In contrast to Spring Initialzr, which mainly

facilitates project initialization, the offered

solution advances the concepts of agility,

speed, and accuracy that form the

foundation of contemporary software

engineering, therefore capturing the spirit of

innovation in software development. The

proposed solution facilitated the structured

creation of microservices architectures,

providing extended functionalities for

visualization and code generation. These

elements have significantly enhanced the

efficiency of the project development

process, which confirms the achievement of

the established objectives.

References

[1] Kalske, M., Mäkitalo, N., Mikkonen,

T. (2018). Challenges When Moving

from Monolith to Microservice

Architecture. In: Garrigós, I.,

8 Automating the generation of microservice architectures in web applications

Wimmer, M. (eds) Current Trends

in Web Engineering. ICWE 2017.

Lecture Notes in Computer

Science, vol 10544. Springer,

Cham. https://doi.org/10.1007/978-

3-319-74433-9_3

[2] G. Blinowski, A. Ojdowska and A.

Przybyłek, "Monolithic vs.

Microservice Architecture: A

Performance and Scalability

Evaluation," in IEEE Access, vol.

10, pp. 20357-20374, 2022, doi:

https://doi.org/10.1109/ACCESS.2

022.3152803.

[3] Milić, Miloš, and Dragana Makajić-

Nikolić. 2022. "Development of a

Quality-Based Model for Software

Architecture Optimization: A Case

Study of Monolith and

Microservice

Architectures" Symmetry 14, no. 9:

1824.

https://doi.org/10.3390/sym140918

24

[4] N. N. Nayim, A. Karmakar, M. R.

Ahmed, M. Saifuddin and M. H.

Kabir, "Performance Evaluation of

Monolithic and Microservice

Architecture for an E-commerce

Startup," 2023 26th International

Conference on Computer and

Information Technology (ICCIT),

Cox's Bazar, Bangladesh, 2023, pp.

1-5, doi:

https://doi.org/10.1109/ICCIT6045

9.2023.10441241.

[5] A. Jan, "What is Microservices

Architecture," Sumerge, 09-Nov-

2020. [Online]. Available:

https://www.sumerge.com/what-is-

microservices-architecture/.

[6] Dr. Sujata Terdal, Prasad R G,

Vikas Mahajan, Vishal S K,

“Microservices Enabled E-

Commerce Web Application”,

International Journal for Research

in Applied Science & Engineering

Technology (IJRASET) ISSN:

2321-9653; IC Value: 45.98; SJ

Impact Factor: 7.538 Volume 10

Issue VII July 2022, doi:

https://doi.org/10.22214/ijraset.2022.4

5791

[7] I. Papakonstantinou, S. Kalafatidis and

L. Mamatas, "A Techno-Economic

Assessment of Microservices," 2020

16th International Conference on

Network and Service Management

(CNSM), Izmir, Turkey, 2020, pp. 1-5,

doi:

10.23919/CNSM50824.2020.9269114.

[8] Nada Salaheddin ELGHERIANI,

Nuredin D Ali Salem AHME,

“MICROSERVICES VS.

MONOLITHIC ARCHITECTURES

[THE DIFFERENTIAL

STRUCTURE BETWEEN TWO

ARCHITECTURES]”, MINAR

International Journal of Applied

Sciences and Technology, 2022, doi:

https://doi.org/10.47832/2717-

8234.12.47

[9] https://www.ibm.com/products/cloud-

pak-for-applications/mono2micro

[10] Anup K. Kalia, Jin Xiao, Chen Lin,

Saurabh Sinha, John Rofrano, Maja

Vukovic, and Debasish Banerjee.

2020. Mono2Micro: an AI-based

toolchain for evolving monolithic

enterprise applications to a

microservice architecture. In

Proceedings of the 28th ACM Joint

Meeting on European Software

Engineering Conference and

Symposium on the Foundations of

Software Engineering (ESEC/FSE

2020). Association for Computing

Machinery, New York, NY, USA,

1606–1610.

https://doi.org/10.1145/3368089.3417

933

[11] Paolone, Gaetanino, Martina

Marinelli, Romolo Paesani, and

Paolino Di Felice. 2020. "Automatic

Code Generation of MVC Web

Applications" Computers 9, no. 3: 56.

https://doi.org/10.3390/computers9030

056

[12] https://www.jhipster.tech

[13] https://www.telosys.org

https://doi.org/10.1145/3368089.3417933
https://doi.org/10.1145/3368089.3417933

Database Systems Journal vol. XV, no. 01/2024 9

[14] https://www.jmix.io

[15] https://start.spring.io

[16] Przemysław Jatkiewicz and

Szymon Okrój. 2023. Differences

in performance, scalability, and

cost of using microservice and

monolithic architecture. In

Proceedings of the 38th

ACM/SIGAPP Symposium on

Applied Computing (SAC '23).

Association for Computing

Machinery, New York, NY, USA,

1038–1041.

https://doi.org/10.1145/3555776.35

78725

[17] R. Mishra, N. Jaiswal, R. Prakash

and P. N. Barwal, "Transition from

Monolithic to Microservices

Architecture: Need and proposed

pipeline," 2022 International

Conference on Futuristic Technologies

(INCOFT), Belgaum, India, 2022, pp.

1-6, doi:

10.1109/INCOFT55651.2022.1009455

6. keywords:

[18] P.-C. Craciun and S.-C. Necula,

"Theoretical and Applied in

Automating Kubernetes Resources",

Informatica Economică vol. 27, no.

2/2023, 2023, pp. [36-45], doi:

https://doi.org/10.24818/issn14531305

/27.2.2023.04

[19] D. Boncea, M. Zamfiroiu, and I.

Bacivarov, " A scalable architecture

for automated monitoring of

microservices”, Economy Informatics

vol. 18, no. 1/2018, 2018, pp. [13-22].

Pavel-Cristian Craciun completed his undergraduate studies at the Faculty

of Economic Computation and Economic Cybernetics in 2021 and graduated

from the master’s program in Informatics Systems for the Management of

Economic Resources at the Academy of Economic Studies. He is currently

enrolled as a first-year PhD student in Economic Informatics. Professionally,

he excels as a DevOps engineer, focusing on developing, maintaining, and

monitoring software applications.

https://start.spring.io/

