
Database Systems Journal Vol. XIII/2022 71

Human Resources Allocation Solution

BÂLTAC Mihai-Cristian

The Bucharest University of Economic Studies, Romania

baltacmihai19@stud.ase.ro

As technology advances, so do its applications and standards. We are at a crossroads in a

civilization that has grown based on the automation of operations and the development of

technology to better human lives. As additional programs that do the same thing arrive, both

large and small businesses utilize them, promoting their development. The approach in this

paper is to address the major issue, which is the most frequently utilized capabilities in a

company, whether it is IT or event production. My work involves minimizing these

applications and developing a standard that may subsequently be updated on needs and

demand.

Keywords: HRIS, Tasks, Meetings, Resource Allocation, Management

Introduction

The employees, in addition to the

programs they use to do the work, may

also utilize time management or

managerial applications. According to an

analysis by Okta Inc. [1], the number of

software applications used by major

organizations in all industries increased

by 68% between 2014 and 2018, with an

average of 129 apps per company at the

end of 2018. We define a large firm as

one with more than 2000 people and a

small business as one with fewer than this

amount. And small organizations tend to

use more applications, with the average

number increasing from 53 in 2015 to 73

in 2017. In 2018, more than 10% of

businesses had more than 200 enterprise

applications in their portfolio.

According to Bill Swanton, vice

president and analyst at Gartner Inc.,

many firms utilize numerous programs

that accomplish the same thing, since

each person has a favorite application.

Many of them are attempting to adopt

"application streamlining" in order to

standardize applications and minimize

total business application costs.

Ticketing, meeting or planner, task

tracking, or the application where each

employee fills his activity (either the

tasks he worked on or the meetings he

attended) are all apps that are not missing

from the portfolio of enterprise

applications, whether we are talking about

small or large businesses. Not all companies

have a free day management application;

they use the classic way: an application for

the human resources department.

According to Luke Marson's post The 7 most

effective employee experience applications

[2], the HRIS application (or The human

resource information system) is first and

foremost, being the most effective

application in his opinion. Collaboration

apps, which are related to systems that

record meetings, tasks, projects, and

important information about them, are

second. Ticketing applications are ranked

fourth.

HRIS is a kind of business program that

allows companies to store employee data,

handle typical HR processes, and perform

important HR tasks such as payroll and

benefits administration.

An employee self-service portal, payroll,

workforce management, recruitment and

hiring, benefits administration, and talent

management are all features of HRIS

solutions. The individual modules that make

up a comprehensive suite of HR solutions

are frequently used to provide these features.

By first establishing a document, called a

"ticket," a ticketing system documents the

interactions on a support or service case.

Both the representative and the customer

have access to the ticket, which keeps

account of their interactions in one spot.

1

mailto:baltacmihai19@stud.ase.ro

72 Human Resources Allocation Solution

Either party can return to the thread at

any time.

After creating the ticket, advocates can

work on the issue on their own. When

they have updates or solutions, they can

notify the client via the ticket.

Meanwhile, if the customer has any

questions, they can contact the customer

support person by ticket.

The agent is then notified by the ticketing

system that a response has been recorded

on the ticket, allowing them to resolve it

immediately.

Jira [3] is one of the most widely used

ticketing applications. Jira is a project

management and issue tracking software

program. The Atlassian tool, which was

created in Australia, is now widely used

by agile development teams to monitor

bugs, stories, epics, and other activities.

There is no universal template that can be

used to all projects; we can see that a

variety of Agile time management

approaches (Scrum, eXtreme

Programming) have emerged, therefore,

different programs are utilized for

different types of project (Jira vs

SpiraTeam) The approaches stated above

are only a few examples; they can be

applied to technical projects, IT, and

programming in general. But there are

methodologies and strategies for other

areas as well: Marketing, Sales.

The application I am presenting is one

that combines the most commonly

utilized features of the previous

programs. I have listed the most often

used features by different types of users.

Users, action, impact, frequency, and

severity are described in the next

paragraphs.

The following people will be considered

users:

• an employee with access to tasks,

meetings, projects, and vacation

time;

• The Team Lead is in charge of

coordinating a department;

• each project can have many

departments, which are created by

the Project Manager in charge of the

project to which it is allocated.

• The CEO is in control of adding and

modifying projects, as well as

generating monthly reports for

employees.

• Support is a person who has

complete access to all databases and

the ability to add, alter, and delete

anything from the database.

Fig.1. Analyzes of Application Activities

Table

There are three types of profiles in the app:

employee, CEO, and support. The profile for

the roles of Team Manager and Project

Manager is similar to that of an employee,

with the exception that they have additional

functionalities on the project where they

hold this position.

For each role, the Action column gives a list

of available actions. As a result, depending

on the type of user, it can perform a variety

of tasks.

The Impact column indicates the user's level

of need for that activity. The action is

graded on a scale of 1 to 10, with 1

indicating that it is not very important and

Database Systems Journal Vol. XIII/2022 73

10 indicating that it is extremely

important.

The Frequency column shows how often

the user will perform that everyday

action. The user is ranked on a scale of 1

to 10, with 1 indicating that the user does

not perform the activity frequently and 10

indicating that the user performs the

action multiple times per day.

The arithmetic mean of the impact

column and the frequency column is the

Severity column. This is estimated to

determine which activities are necessary

and how the design should be conceived

to maximize the user experience.

2 Technical Specification

Frontend technologies

For frontend React.js and Sass

technologies were used.

Facebook created the React Js user

interface library in JavaScript. It offers

profound insights on how to work with

the DOM (Document Object Model),

organize your app's data flow, and

consider user interface elements as

separate components. [4]

React (also known as React.js or

ReactJS) is a free and open-source front-

end JavaScript toolkit for creating UI

components-based user interfaces.

React can be used to create single-page or

mobile applications as a foundation.

React, on the other hand, is solely

concerned with state management and

rendering that information to the DOM,

so constructing React apps frequently

necessitates the usage of extra

frameworks for routing and client-side

functionality.

One issue that React solves, to the

detriment of traditional web applications,

is efficient DOM processing. Each

website contains a DOM that shows the

page components; they are organized as

nodes and objects and may be updated

using javascript. It is shaped like a tree.

When javascript makes significant

modifications to the conventional DOM,

it is rendered, which can become

inefficient. React js introduces the concept

of Virtual DOM, which duplicates the

standard DOM and renders only the updated

nodes or objects.

Fig.2. Virtual DOM Example [5]

Fig.2. shows how the virtual DOM modifies

a node (State Change) and changes the color

from blue to green. Then we modify all the

nodes that have the updated node (Compute

Difference) as the parent, and we re-render

the Virtual DOM in the Browser style (the

DOM that the browser sees).

Class React and Functional React are the

two types of React. Functional React is

becoming increasingly popular because it

makes use of the fact that Javascript is a

functional programming language. A

component of the React class is constructed

by extending the React class and rendering

HTML code, which is returned by the

render() function. The functional React

component is given by a function that

returns HTML code. It is significantly easier

to design a component when using

functional react; however, this is a drawback

when utilizing a component as a class and

want to use the OOP (Object-Oriented

Programming) paradigm. Because the two

types are compatible, we may have a

component in the form of a class that calls

another component in the form of a function.

CSS (Cascading Style Sheets) is a

fundamental technology of a web page. CSS

is the visual component of a website,

covering from layout to text color. We may

use it to create multiple styles for different

74 Human Resources Allocation Solution

devices or screen sizes.

A CSS preprocessor is a scripting

language that allows programmers to

write code in one language and then

compile it into CSS. Less and Stylus are

two well-known examples of

preprocessors. Sass is probably the most

popular right now.

Sass (short for "Syntactically Awesome

Style Sheets”) is a CSS extension that

allows us to use variables, nested rules,

inline imports, and other features. It also

helps organize and allows one to produce

style sheets more quickly.

When Chris Eppstein released Compass

in 2009, a project specifically designed to

handle Sass packages and encourage

open-source Sass code sharing, Sass

attracted widespread notice.

Eppstein identified an opportunity for

Sass to adjust pre-build class names'

copy-pasting libraries. [6]

When we compile the sass code, we get

the CSS code. As a result, the capacity of

Sass to affect the DOM should not be

confused; it just helps to create CSS code

more effectively. Some CSS constraints

are also present in Sass, such as the

inability to access an element's parent and

unconnected text flows.

There are various ways to compile Sass.

Installing an extension that achieves this

is the simplest, but also the most

recommended option. Another option is

to utilize bash scripts to do this. The

global Sass mode installation is necessary

for the device to recognize these

instructions. Uncompiled Sass is often

permitted in frameworks. As a result,

when the app builds the page code, it also

produces the Sass.

The syntax of Sass code is similar to that

of the Python language since it employs

indentation, no brackets, and no

semicolons to conclude a line.

Scss is a Sass variant that has the same

capability as Sass but has a code syntax

that is similar to conventional CSS. Scss

code will be utilized in the provided

application.

Backend technologies

For backend Node.js, Express and Sequelize

technologies were used.

Node JS can be thought of as a JavaScript

runtime environment built on top of

Google's V8 engine. As a result, it gives us a

context in which we can write JavaScript

code on any platform that has Node.js

installed.

Ryan Dahl gave a presentation at JSXonf in

2009 that permanently impacted JavaScript.

He introduced Node.js to the JavaScript

community during his lecture. [7]

Node.js allows developers to utilize

JavaScript to create command-line tools and

server-side scripting, which involves

running scripts on the server before sending

the page to the user's browser. As a result,

Node.js symbolizes a "JavaScript

everywhere" paradigm, bringing online

application development together around a

single programming language rather than

separate languages for server- and client-

side scripts.

There are benefits and drawbacks to

Node.js. Some of its benefits include fast

performance for real-time applications,

simple scalability for recent software, a

quick learning curve for developers already

familiar with Javascript, and improved

performance of applications. The

disadvantages of using a relatively new

technology include: limited support from

existing libraries and a lack of experienced

developers. Javascript also has other

drawbacks that affect node.js, such as an

unstable API that encourages frequent code

changes, Javascript is also a language with

the Asynchronous Programming Model

paradigm that makes code maintenance

challenging.

The core concept of Node is the usage of

non-blocks, which are extremely effective

and lightweight in comparison to other

technologies because Javascript is an event-

driven programming language (anything

starts with an event). Node.js seeks to

address a market issue rather than try to

displace competing technologies. It is useful

Database Systems Journal Vol. XIII/2022 75

for constructing fast and scalable

applications because it is efficient and

writes relatively quickly. It is not

suggested to utilize it for CPU operations

or any type of intensive processing, since

these will neutralize all of its benefits.

Fig.3. Traditional Web Server vs Node.js

[8]

The architecture of a conventional Web

server and Node.js are contrasted in

Fig.3. Accordingly, in the conventional

form, every new request generates a new

thread, filling the system memory; when

there is no longer any further memory, it

waits for a thread to be released. Instead,

Node.js uses non-blocking I/O calls and

runs on a single thread, allowing

hundreds of active connections to be

called simultaneously.

Express.js, or simply Express, is a back-

end web application framework for

Node.js that was distributed under the

MIT license as free and open-source

software. It is intended for the

development of web applications and

APIs. It has been dubbed Node.js' de

facto standard server framework.

Express. js is a web framework built

around the Node.js http module and the

Connect components. Middlewares are the

term for these components. Developers are

the epicenter of the framework's concept,

namely, configuration over condensation. In

other words, developers are free to choose

which libraries they require for a given

project, giving them a great deal of freedom

and customization. [9]

Express is a simple and adaptable

framework that helps in building reliable

online applications. It is Node.js' most

widely used framework. It offers a range of

techniques for quickly and simply building

an API. Both SQL and non-SQL databases

can use it. Other well-known frameworks

like Feathers, KeystoneJs, NestJs, and many

others have been developed on top of this

framework because of how commonly used

it is in industry.

Fig.4. Express Architecture [10]

The architecture of this framework is

illustrated in Fig.10. Data models, called

models, typically define tables. This means

that each name of the table is represented by

a structure with columns as its elements.

Controllers are functions that handle data,

act like functions, and receive parameters

using a variety of techniques (in the body of

a request or as parameters of the function).

Routes link the corresponding controller to

the request code. As a result, we may

specify which requests call which controls

on the routes. Controllers render the date

using views or templates.

Data conversion between systems that use

OOP languages is known as object-

relational mapping or ORM. In that

76 Human Resources Allocation Solution

programming language, it generates a

"virtual object database" that can be used.

In other words, we can use objects to

manipulate database data. As a result, we

can now use object methods instead of

writing SQL code. Therefore, if we

change the database, all we need to do is

check to see if the ORM we use supports

it; if it does, then we don't need to do any

code changes.

Prism and Sequelize, which have

accumulated over 20,000 github starts

each, are the top ORMs for Node js. On

the other hand, users use Sequelize more

frequently. Both ORMs support six

different types of databases. [11]

Sequelize is a promise-based Node.js

ORM tool that supports Postgres,

MySQL, MariaDB, SQLite, DB2 and

Microsoft SQL Server. It includes

transaction support, relations, eager and

lazy loading, read replication, and other

features.

Sequelize uses Semantic Versioning and

is compatible with Node v10 and higher.

Sequelize uses objects that are extended

from the Model class, as is conventional

for ORMs. Thus, object methods are used

to carry out actions like Select, Insert,

Update, and Delete. The "belongsTo ()"

and "hasMany ()" methods specify the

connections between tables (in our case,

models). Later, these techniques assist us

in joining the tables (in Sequelize the

"include" method is used).

Fig.5. Sequelize Role in Node.js

Application [12]

Database Technology

One of the first open-source RDBMSs to

be designed and built was MySQL.

Although there are many different

versions of MySQL available right now,

their fundamental syntax is the same. Due to

its unique architecture compared to other

database servers, MySQL can be used to

address a variety of issues. You must

understand its design to operate with it

because it has a unique architecture.

In contexts with high demand, like web

applications, MySQL is flexible enough to

operate very effectively. It is adaptable in

many aspects, such as you may set it to run

effectively on a wide variety of hardware

and supports a variety of data kinds. [13]

Because MySQL is based on a client-server

architecture, its central component is a

MySQL server, which manages all database

commands. MySQL was originally built to

manage huge databases fast. Various

transaction types, including stored

procedures, functions, viewers, views, and

triggers, are possible. Compared to other

databases, MySQL is relatively efficient for

read-only commands, but for big testing or

sophisticated queries, PostgreSQL is a

superior alternative.

3 Implementation of the solution

My objective is to create a web platform that

incorporates all of these technologies,

allowing managers and human resources to

better manage workers on a wide range of

projects.

The software has five types of users:

employees, team leaders, project managers,

CEOs, and support.

The employee can accept assignments,

provide comments or be in charge of tasks,

look for other individuals, study project

strategies, and apply to the project as an

employee, team leader, or even project

manager.

The team leader may carry out all employee

responsibilities, admit people into his

project, create a calendar, submit

assignments and meetings, and load the

strategy.

The project manager not only performs all

the duties of a team leader, but also chooses

team leaders for the project.

The CEO develops, oversees, and produces

monthly reports for each employee.

Database Systems Journal Vol. XIII/2022 77

Support has complete access to all objects

and can monitor all projects and events in

the application, as well as add, modify,

and remove each piece from the database.

A well-defined architecture is required for a

better solution to ensure a smooth flow.

Fig.6. Database Architecture

The User table contains user information

such as name, email, Facebook, username

and password, photo, phone number,

vacation days, and the type of rights,

which can be of the following types:

employee, CEO, and support. The

department is a foreign key for the

department table, so we can figure out

what interface the user will see based on

this information.

Each department's name and icon are

listed in the department table.

The Events table has two foreign keys

that point to the department and project

tables, respectively. Other columns

include name, description, label, start and

end dates, and type, indicating if the

event is a task, meeting, or free day. I

chose this format since I didn't want to

make tables with the same structure.

Aside from the type of event, the only

distinction between a task and a meeting

is the information in the label column; in

the case of tasks, the label column has

four possible answers: New, Doing,

Done, and Closed. This table, the label

table, contains the link to the platform

where the meeting is hosted in the case of

meetings.

The user and the event are linked through

the event allocation table. This table was

chosen to prevent the many-to-many

relationship between the two tables.

The project table provides the following

details: name, description, colour (which is

used to visually distinguish the projects),

start date, and end date.

In addition to the foreign key relationships

between the user and the project, the

assigned project table contains a type, which

is an enumeration of various types:

employee, team lead, project manager, and

CEO. Additional activities are established in

this project based on these types.

When the application is first launched, a

login window displays, requesting the user

for login information before sending a

request to the backend. If the input is

accurate, the frontend receives a json

containing the user id and user type. As a

result, the program may render the user

interfaces and activities. As a result, we

have three options for the user: employee,

support, or CEO.

The information obtained from json is then

78 Human Resources Allocation Solution

saved as cookies, so that if the user

refreshes the page or exits the program

and returns later, no additional login is

necessary; he may erase this cookie by

hitting the Logout button.

The employee interface shows when the

user has logged in with his employee

credentials. It has access to four different

pages: the Dashboard, Tasks, Meetings,

and Projects. The Dashboard page is the

first and most significant page in terms of

User Experience. On this page, the User

can view: account information, a calendar

for the current month (where he can see

which days, he has tasks or meetings),

three sections: one for meetings, one for

tasks, and one for projects.

Fig.7. Dashboard

As shown in Fig.7., On the Dashboard

page, the user can access a number of

sections. A picture, a name, some contact

information (phone and email), and the

number of free days, they are all found in

the first section, which is titled Personal

Information. We can see three different

types of highlights in the calendar section

on the right. If a day is highlighted in

colour, it indicates that a task or meeting

will take place on that day. This time, the

project's colour serves as the background

for the event. Days 13 through 17 are

highlighted in a very light gray, which

indicates that the user is on vacation on

those days. On the 25th, which is the

current date, there is another kind of

highlight. If a date has a border but no

background, there will be multiple events

that day. We can hover over a day to

view more information about the events on

that day.

We can add events (tasks, meetings, or free

days) directly from the dashboard. When

we click on a date in the calendar, a context

menu with three options will appear,

allowing us to add additional events. When

you select the "Add Meeting" or "Add Task"

option, a pop-up window will appear with

all the details for that event. When we click

"Take Vacation," the screen will refresh and

we can see that the date we chose is

highlighted and that the number of days off

has been reduced by 1, indicating that the

action was successful.

 It takes numerous steps to publish a day of

vacation. As a result, we have a project with

the id 0 of "FREE DAY" and a department

with the id 0 of "FREE DAY". I decided to

work with ids of 0 since MySQL permits the

usage of primary keys with values of 0 and

because the first primary key would

automatically start at 1 when the database is

reset. Therefore, the value 0 will remain

empty.

We have the following logic for posting a

day off: We build an event that will receive

the start and finish dates, the department id,

the description data, and the project id,

which will have the number 0 in it. If this

event is successfully created, we go to the

next step; otherwise, we provide a 500 error

code and the words "Server Error." We add

our user to the event after it has been

created. The user's remaining free days are

then determined by accessing him. By

deducting one day from these days after this,

we can modify the user.

If every step was successfully completed,

we return a code of 200 with all of our

adjustments. If not, we send the client a code

500 with an error message.

postFreeDay: async (req, res) => {

 EventDB.create({

 name: "Off day",

 projectId: 0,

 description: "Free day",

 departmentId:

req.body.departmentId,

 startingDate:

req.body.startingDate,

 endingDate: req.body.endingDate,

Database Systems Journal Vol. XIII/2022 79

 type: "FREE_DAY",

 label: "FREE_DAY",

 })

 .then((event) => {

 EventAllocationDB.create({

 userId: req.body.userId,

 eventId: event.id,

 })

 .then((event) => {

 UserDB.findOne({

 where: {

 id: req.body.userId,

 },

 })

 .then((event) => {

 UserDB.update(

 {

 daysOff:

event.daysOff - 1,

 },

 {

 where: {

 id:

req.body.userId,

 },

 }

)

 .then((event) => {

res.status(200).send(event);

 })

 .catch((error) => {

console.log(error);

res.status(500).send({ message:

"Server error" });

 });

 })

 .catch((error) => {

 console.log(error);

res.status(500).send({ message:

"Server error" });

 });

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({

message: "Server error" });

 });

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({

message: "Server error" });

 });

 }

We have three sections at the bottom of

the dashboard: one for tasks, one for

meetings, and one for projects.

Depending on the kind, each part has a

variety of cards with useful information.

We may click on these cards to get to the

card page. If I click on a task, it will take me

to the task page; if I click on a meeting, it

will take me to the meeting page; and if I

click on a project, it will take me to the

project page.

The next 2 pages in the user menu contain

the tasks list and the meetings list. These are

similar, the only difference is the data in the

tables.

To add a new event, we simply click the +

sign on the page. Depending on the type of

event, inputs change. We will create a task,

which will include the necessary

information, if we are on the task page. Only

the projects that the user is enrolled in are

visible since the selected project

dynamically receives the projects we have.

 let { projectId, departmentId } =

useParams();

if (projectId && departmentId) {

 tableDetails = {

 type: "Project",

 userId: userId,

 projectId: projectId,

 departmentId: departmentId,

 };

 } else {

 tableDetails = {

 type: "User",

 userId: userId,

 projects: projects,

 };

 }

These two pages, which provide lists of

tasks or meetings, can be accessed by the

current user or by a department within a

project. The same component will be used,

with a few user-specific differences. I

utilized the URL's parameters for this. If it

receives the parameters, it means that a user

is accessing the page from a project; if it

doesn't have parameters, it means that the

current user is accessing the page from the

navigation bar.

A task or meeting's page is opened up when

we click on it. The dashboard also provides

access to an event.

The pages of a meeting and a task are

similar, but the information displayed and

the actions that can be taken are different.

For example, while we can access the

meeting link in a meeting page, this action is

unnecessary in a task page, because we

80 Human Resources Allocation Solution

don’t have this information, instead, we

have a status and the ability to modify

that status. New, Doing, Done, and

Closed are the available states.

Change event, see participants, and

remove event are the common actions. A

popup identical to adding an event's

opens when the event is changed, except

this time the inputs have a default value,

which is the current value. We can view,

add, or remove participants to that event

by choosing the option labelled "See

Members." When we click the button to

delete an event, a popup window asks us

once more whether we are sure we want

to do so.

The projects they are assigned to are

listed on the projects page along with

basic information about them.

We have more options on some other

pages depending on the job role we have.

We are unable to edit or add departments

to a project's details when we have an

employee or a team lead position on the

project.

When working as the project manager,

we can modify a project's details by

clicking the pencil icon, which causes a

popup to appear with all the project's

editable details. If we want to add a new

team lead on the project or a department,

we click on the plus. A modal will open,

in which we are asked for the username

of the person we want to add. If we add a

team lead, the department to which it

belongs is automatically added.

As a Team Lead, you have two options:

eliminate the department (by clicking on

the trash icon in the first section) or alter

the users (add or delete) (by clicking on

the pencil to the right of the Members).

These features are not available if we

have the position of Employee on the

project. As a result, they will not appear.

The task and meeting options will open

the same component as on the user's task

and meeting pages, but this time the

department's tasks will be displayed.

findDepartmentProject: async (req,

res) => {

 const { Op } =

require("@sequelize/core");

 const { projectId, departmentId } =

req.params;

 await ProjectAllocationDB.findAll({

 where: {

 projectId: projectId,

 type: {

 [Op.and]: [{ [Op.ne]:

"PROJECT_MANAGER" }, { [Op.ne]: "CEO"

}],

 },

 },

 include: [

 {

 model: UserDB,

 attributes: ["name", "photo",

"id"],

 where: {

 departmentId: departmentId,

 },

 include: [

 {

 model: DepartmentDB,

 attributes: ["name"],

 },

],

 },

],

 attributes: ["type"],

 order: [["type", "DESC"]],

 })

 .then((event) => {

 res.status(200).send(event);

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({ message:

"Server error" });

 });

 }

There are multiple processes in the above

controller. We first look for project

allocations and exclude the Project Manager

and CEO, because they are automatically in

the project. We search all the users of that

project for those from the department which

is given as a parameter of the route. We

provide details like name, image, and ID for

these users. The department's name is also

included. After completing all of these steps,

we have a list of users who belong to our

department and do not have the role of

Project Manager or CEO on the project.

Because the letter "e" from "Employee"

occurs in the alphabet before the letter "t"

from "Team Lead," it is required to sort the

Database Systems Journal Vol. XIII/2022 81

types of project allocation in descending

order.

The interface between the CEO and the

employee hasn't changed much. The new

"Reports" page and new features are what

distinguish them from one another: It

features all of the above functionalities in

addition to the ability to add and delete

projects. Its role is an extension of the

Employee's (Fig.8.).

Fig.8. CEO's Projects Interface

The report option, which directs us to a

different page, is present in the navbar.

The "+" symbol can be seen on the

projects page to the right. When the

button is touched, a pop-up window

appears asking for all the necessary data

to establish a project.

 postProject: async (req, res) => {
 ProjectDB.create({

 name: req.body.name,

 description:

req.body.description,

 color: req.body.color,

 startingDate:

req.body.startingDate,

 endingDate:

req.body.endingDate,

 })

 .then((project) => {

 ProjectAllocationDB.create({

 projectId: project.id,

 userId: req.body.userId,

 type: "CEO",

 })

 .then((pjAllocation) => {

res.status(200).send(pjAllocation);

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({

message: "Server error" });

 });

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({ message:

"Server error" });

 });

 }

The logic for starting a project is seen in the

above controller. When we initially get the

data from the body, we use it to make a

project with name, description, color, start

and end date. If the project was created

successfully then, we assign the user who

made the request as CEO.

Whenever we start a new project, the

presence of a Project Manager is requested.

By selecting the "Add project manager"

button in the first section, we can

accomplish this. In addition to the project's

edit button, we also have a trash button that,

when touched, displays a pop-up asking us

to confirm that we want to destroy the

project. We do this to prevent accidents

from occurring if the trash button is

unintentionally pressed.

The report page is quite simple, it has two

options: departments or users.

Fig.9. Departments Reports

There are three sections on the department

reports page (Fig.9.). The page name

appears in the first part. A barchart in the

second section compares various statistics

between departments. The list of

departments is represented in the third

section. I utilized a third-party library named

chart.js in the second portion. We can

compare tasks and meetings, users and tasks,

users and meetings, or even follow the

differences between these metrics

individually by clicking on one of the

rectangles in the legend, which is

dynamically erased from the chart. The

82 Human Resources Allocation Solution

report page for a department will open if

we click on a department in section 3 of

the screen.

There are two bar charts on each

department's page of individual reports.

One describing the distinction between

meetings and tasks and another

describing projects and members. The

functionality of these bar charts is

identical to that of clicking on the legend.

To make it simpler to calculate additional

types of statistics, there is a summary

below this. The "See Members" option

also directs us to a list of the department's

employees. The only distinction between

this page and the one in which is reached

by selecting the alternate option (the

Users on the Reports page), is that on this

page, only the users in the department

from which we select "See Members,"

are shown.

On this page, which we access by

clicking on "Users" on the "Reports"

page, there is a list of all the users on our

page. It can be seen that there are users

with the color yellow text (which means

that person has the role of CEO) and

green (indicating that the person is

Support). We also have the choice of

adding a new user; however, we are not

asked for the username or password

because those are produced automatically

in the backend.

When we click on a user on the page with

all users it will lead us to that user's

report page. The first two dashboard

sections are found on this page; the only

difference is that, on the calendar, there is

no longer a context menu. Therefore,

nothing happens if we click on the date.

The following two ("All time" and "Last

month") show the reports from meetings

and assignments throughout various time

periods. The final panel matches the

dashboard's panel for Projects.

getStatsLastMonth: async (req, res)

=> {

 const { Op } =

require("sequelize");

 const lastMonth = new Date(new

Date().setDate(new Date().getDate() -

31));

 const { userId } = req.params;

 UserDB.findOne({

 attributes: [],

 include: [

 {

 model: EventAllocationDB,

 attributes: ["eventId"],

 include: [

 {

 model: EventDB,

 attributes: ["type",

"endingDate"],

 },

],

 },

],

 where: {

 id: {

 [Op.eq]: userId,

 },

 },

 })

 .then((event) => {

 event.dataValues =

event.dataValues.EventAllocations?.map((

e) => {

 if

(e.dataValues.Event.dataValues.endingDat

e > lastMonth)

 return

e.dataValues.Event.dataValues.type;

 });

 let noOfTasks = 0;

 let noOfMeetings = 0;

 event.dataValues.forEach((e) =>

{

 if (e == "TASK") noOfTasks++;

 if (e == "MEETING")

noOfMeetings++;

 });

 event.dataValues.forEach((e) =>

{});

 event.dataValues.Task =

noOfTasks;

 event.dataValues.Meeting =

noOfMeetings;

 res.status(200).send(event);

 })

 .catch((error) => {

 console.log(error);

 res.status(500).send({ message:

"Server error" });

 });

 },

We have a bit more difficult process in the

controller shown above. The month's past

date is the first thing we obtain (we assumed

Database Systems Journal Vol. XIII/2022 83

that each month has 31 days). The

following stage incorporates gaining

access to the database and discovering all

the Events that our user attended. If the

activity proceeded as intended after

getting this information, we compare the

deadline for each event. Those that

occurred less than a month ago will alter

by store only the type of the event, and

the other data is discarded as

unnecessary. Following the completion of

this phase, we go through our list once

more and count the instances of events of

type "Task" and "Meeting" to add to the

variables noOfTasks and noOfMeetings,

respectively. The data must then be

removed and the calculated numbers for

tasks and meetings added.

As an extension of the CEO user, the

Support user gets access to all of the

CEO's application features. It can also

add, edit, and remove departments. It can

also alter and delete users. It can also

reset passwords. He can view all tasks,

meetings, and projects on the dedicated

pages, which is another distinction.

Fig.10. User Reports Support Interface

4 Conclusions

The topic of human resources

management is extremely complex, and

tactics are always evolving. We aim to

allocate resources as effectively as

possible so that each project can be

structured utilizing a methodology.

Numerous applications are continually

changing, and new standards are always

being released. Both new jobs and

modified new processes are established.

The application that I've described in my

paper is a way to enhance teamwork and

effective time management within an

organization, assisting both staff members

and business owners. The application aims

to combine the functionalities currently

utilized by the majority of businesses while

giving users complete control to develop and

alter plans in order to reach their objectives.

By allowing users to customize the sequence

of events, project management tactics are

made easier to utilize, from choosing which

departments we include on each project to

structuring tasks and meetings. To make it

simpler to build an effective report, the

application tries to take into account every

event that a user has. Business leaders can

track and organize their human resources

with the use of the numerous reports

produced on various matrices.

Although it has a friendly interface and is a

complex tool, anyone can use it. By

employing applications that can perform

more and can manage these components

more simply, I hope to reduce the number of

programs needed by businesses.

These standards are always evolving;

therefore, the program needs to adapt and

provide new functionality as needed.

Considering the possibility to extend the

application and to make it as efficient as

possible, I can state some improvements that

the application must have. These are:

• Developing a mobile app (currently

the application can only be used on the

desktop).

• The user's ability to personalize the

application, from the colour scheme to the

grouping of dashboard parts.

• Connecting to other calendars, such

as Google Calendar and Outlook, so that

when an event is added to one, it should also

appear in the other.

• Linking up with other user-used

applications.

• The ability to send event

notifications through email and phone

number.

• Making it possible for users to write

comments on events would make user

communication more effective.

• The ability to connect several events.

84 Human Resources Allocation Solution

• The ability to upload files,

including movies and text documents.

References

[1] Loten, A., “Employees Are Accessing

More and More Business Apps, Study

Finds”, The Wall Street Jurnal, 7

February 2019,

https://www.wsj.com/articles/employ

ees-are-accessing-more-and-more-

business-apps-study-finds-

11549580017

[2] Marson, L., “The 7 most impactful

employee experience apps”. Tech

Target 31 August 2020,

https://www.techtarget.com/searchhrs

oftware/tip/The-7-applications-that-

impact-employee-experience-the-

most

[3] Atlassian. 2022. “Jira | Issue &

Project Tracking Software |

Atlassian.”

<https://www.atlassian.com/software/

jira?bundle=jira-

software&edition=free&tab=release>.

[4] A. and Bush, A., “React.js essentials”,

Packt Publishing, 2015, p.5.

[5] DEV Community. 2022. “React

Virtual DOM Explained in Plain

English

https://dev.to/adityasharan01/react-

virtual-dom-explained-in-simple-

english-10j6

[6] Giraudel, H. and Suzanne M., „Jump

start Sass”., SitePoint, 2016, p.139.

[7] Satheesh, M., D'Mello, B. and Krol, J.

“Web development with MongoDB and

NodeJS” , Packt Publishing., 2015, p.2.

[8] Endeev.com. 2022. “Sails.js –

Beginning with Node.js – Endeev”.

<http://www.endeev.com/blog/sails-js-

beginning-with-node-js/>

[9] Azat M., “Express.js Guide”. Lean

Publishing, 2014, p. 2.

[10] Developer.mozilla.org. 2022. “Express

Tutorial Part 4: Routes and controllers -

Learn web development | MDN”.

<https://developer.mozilla.org/en-

US/docs/Learn/Server-

side/Express_Nodejs/routes>].

[11] Openbase. 2022. “10 Best Node.js

MySQL ORM Libraries in 2022 |

Openbase”.

<https://openbase.com/categories/js/best-

nodejs-mysql-orm-libraries> .

[12] Thakkar, R., 2022. “Mechanisms of

Sequelize.js”. DEV IT Journal. Available

at:

<https://www.blog.devitpl.com/sequelize

/> .

[13] Schwartz, B., Zaitsev, P., Tkachenko,

V., Zawodny, J., Lentz, A. and Balling,

D., 2008. “High performance MySQL”.

2nd ed. United States of America:

O'Reilly, pp.1,2.

BÂLTAC Mihai-Cristian is a graduate of the Faculty of Economics

Cybernetics, Statistics and Information at the Bucharest University of

Economic Studies, bachelor’s degree in Computer Science, mostly

interested in web development and automation.

