
Database Systems Journal, vol. XI/2020 37

A Big Data Modeling Methodology for NoSQL Document Databases

Gerardo ROSSEL, Andrea MANNA

Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación. Buenos Aires, Argentina

grossel@dc.uba.ar, amanna@dc.uba.ar

In recent years, there has been an increasing interest in the field of non-relational databases.

However, far too little attention has been paid to design methodology. Key-value datastores

are an important component of a class of non-relational technologies that are grouped under

the name of NoSQL databases. The aim of this paper is to propose a design methodology for

this type of database that allows overcoming the limitations of the traditional techniques. The

proposed methodology leads to a clean design that also allows for better data management

and consistency

Keywords: NoSQL, Document Databases, Conceptual Modeling, Data Modeling, NoSQL

Database developing.

Introduction

The need for analysis, processing, and

storage of large amounts of data has led

to what is now called Big Data. The rise

of Big Data has had strong impact on data

storage technology. The challenges in this

regard include: the need to scale

horizontally, have access to different data

sources, data with no scheme or structure,

etc. These demands, coupled with the

need for global reach and permanent

availability, gave ground to a family of

databases, with no reference in the

relational model, known as NoSQL or

“Not Only SQL”.

The NoSQL databases can be classified

by the way they store and retrieve the

information [1][2]:

• Key-Value databases.

• Document databases.

• Column Families databases.

• Graph Databases.

The development of conceptual modeling

and general design methodology

associated with the construction of

NoSQL databases is at an early stage

[SS17]. of data modeling is to highlight

in [3]: “Data modelling has an impact on

querying performance, consistency,

usability, software debugging and

maintainability, and many other aspects”

There are previous works on

development methodologies we can cite,

like the BigData Apache Cassandra

methodology, proposed by Artem Chebotko

[4][13]. It uses the Entity Relationship

Diagram as a conceptual model, but it is

oriented to a specific engine, Apache

Cassandra. Thus, it is not generic and does

not adapt to a design of other NoSQL

Databases. Another proposal using a

conceptual model for the design of NoSQL

is described in [5]. It suggests the use of the

various NoSQL databases common features

to obtain a general methodology, in which

an abstract data model called NOAM is used

for conceptual data modeling. Such data

model is intended to serve all types of

NoSQL databases using a general notation.

Recently, an attempt to generate a universal

modeling methodology adapted to both

relational and non-relational database

management systems was also presented, on

the grounds of overcoming the constraints

that the entity relationship model has,

according to the author [6].

The use of conceptual modeling is also

proposed in [7], although the background

is not sufficiently studied, such as our work

on interrelation of documents and the

relationship between them and the

conceptual model [8]. They use UML as a

tool for the realization of the conceptual

model and simple rules to transform it into a

1

38 A Big Data Modeling Methodology for NoSQL Document Databases

logical model using UML stereotypes.

These efforts show that traditional

methodologies and techniques of data

modeling are insufficient for new

generations of non-relational databases.

It is therefore necessary to develop

modeling techniques that adapt to these

new ways of storing information. In this

sense, this paper will provide the tools to

solve these limitations for document

database design. As indicated in [14] the

methodology should allow: “describe the

data-model precisely”

The rest of the paper is organized as

follows: Section 2 outlines the definition

of document database; Section 3

describes the main elements of the

methodology and phases of document

database develop; Section 4 presents the

logical design using the document

interaction diagram or DID by extending

our previous work: moving from logical

to physical model using JsonSCHEMA is

presented in section 5 and finally Section

6 presents conclusions and future work.

2 Document Databases

The proposed methodology is oriented to

the design of databases based on

documents. A document is a collection of

field name and value pairs. The values

can be a simple atomic value or a

complex structure such as lists of values,

another document or lists of child

documents.

NoSQL documents are generally referred

to as schema-less, which seems to

suggest that it is not necessary to make a

model before the development starts. The

fact that the structure of the data does not

need to be defined in advance has many

advantages for prototyping or exploratory

development, but as data expands and the

applications make use of them, the

necessity to have them organized in some

way arises. In that sense it is more

appropriate to say that they are agnostic

with respect to the internal structure of

the data. It is, therefore, necessary to

make a design of the data organization.

to as schema-less, which seems to suggest

that it is not necessary to make a model

before the development starts. The fact that

the structure of the data does not need to be

defined has a priori many advantages for

prototyping or exploratory development, but

as data expands and the applications make

use of them, the necessity to have them

organized in some way arises. In that sense

it is more appropriate to say that they are

agnostic with respect to the internal

structure of the data. It is, therefore,

necessary to make a design of the data

organization.

3 Methodology

The proposed design methodology has as its

starting point the conceptual model, that can

be considered as a high-level description of

data requirements. Conceptual modeling is

usually performed using some form of

entity-relationship diagram ([9]) for

conceptual class diagram in UML.

Conceptual modeling is intended to describe

the semantics of software applications.

In traditional relational database design

methodologies, conceptual modeling gave

way to a logical design that was later

transformed into a physical design. It

operates by transforming models from

higher levels of abstraction to a model that

maps directly into the structures of the

database.

Phases of proposed NoSQL document

database develop consists of high or

conceptual level (conceptual model and

access patterns), logical level (types of

documents, interrelations and

specifications), and physical design in steps

like phases of traditional relational database.

In the high-level phase, a conceptual data

model is developed in a similar way to the

design of relational databases. In the current

era, with the emergence of Big Data, the

need for conceptual modelling is even more

important than before.

As a tool of specification and

communication with the other phases, the

entity relationship diagram is used (ERD)

[9]. In this phase, it is also necessary to

Database Systems Journal, vol. XI/2020 39

specify the query patterns that have been

obtained in the analysis requirements.

Query patterns can be specified in natural

language or in a more formal language

like ERQL [10].

Fig. 1. Phases

The Logical Level is the heart of the

proposed methodology, in which the

types of documents and their

interrelationships are established. To

represent the logical design, we use a new

type of diagram that extends the ERD and

that we call document interrelation

diagram (DID)[8]. Each type of

document is later specified using

JSONSchema.

There are two ways of relating

documents: referencing or embedding.

The ability to embed documents allows

the designer to store related data as a

simple document.

In this way, what is called impedance

mismatch can be solved (that is, the

difference between the structures of data in

memory and the way in which they are

stored) [2]. The decision whether to embed

or reference is a design decision that is

guided by query patterns.

The last phase of our methodology is the

analysis and optimization of a logical model

to produce a physical data model. In this

phase, topics such as index creation,

sharding, data distribution, and adapting the

data types to the software of the database are

considered. The utilization of JSONSchemes

is essential in this regard.

4 Logical Design

The more important task in this phase is the

development of the document interrelation

diagram. The DID represents the logical

model for a document-based database that

captures the classes or types of documents,

their structure and interrelation. The

documents can be grouped into different

classes. Each database uses its own

terminology as collections in MongoDB or

tables in RethinkDB. we use classes or

document types as terminology to indicate a

group of documents with similar

characteristics.

In the DID each entity of the ERD

corresponds to a class or document type,

unless it is specifically indicated that this

entity will have an independent existence as

document type.

In order to exemplify, the entity relationship

diagram of Fig.2 will be used. This ERD

represents, in a simplified way, the

conceptual model of a database that stores

orders, products and customers.

40 A Big Data Modeling Methodology for NoSQL Document Databases

Fig. 2. ERD

The entities Customer, Order and

Product becomes three document types.

OrderItem is a weak entity so it is a

special case.

To complete the document interaction

diagram, it is necessary to decide how the

interrelationships will be solved. For this

it is necessary to consider the query

patterns.

Let’s start with the relationship "places".

Many design decisions are possible:

• Reference from both sides

• Embed on both sides

• Reference from Order and embed

from Customer (or vice versa)

• Embed partially from one side and

reference from the other.

• Embed partially from both sides

• Embed total / partial or reference

from one side and do nothing from

the other

Fig. 3 shows how the reference of both

sides is specified while Fig. 4 does the

same with embedding of both sides. The

arrow indicates reference and curly

brackets indicates embedding [8].

Fig. 3. DID: reference

Fig. 4. DID: embedding

Embedding simplifies access by minimizing

the number of times it should be read from

persistent storage. The goal is to keep data

that is frequently used together in one

document. Although it might be better for a

document not to incorporate all the

information of the document with which it is

interrelated, but only the necessary

information that arises from the query

patterns.

Suppose that the query patterns indicate that

a common way of access to the data is the

printing of the order for which the

customer’s commercial name and shipping

address are needed, in addition to all the

associated order items. Also suppose that

you want to get the dates of the orders made

and the total amounts of the same. If the

interrelation is solved using only references,

the applications are being forced to make

several roundtrips to server for to obtain the

necessary data. In these cases, a partial

embedding can be a better solution.

Database Systems Journal, vol. XI/2020 41

Fig.5 shows how partially embed is

represented. It is necessary to indicate

which

fields of the other entity that will be

embedded.

Fig 5 Embed Partially

Weak entities generally form an

aggregate with the strong entity that

determines them. It is the case of

ItemOrder and Order in which Order can

be considered as an aggregate or “a

collection of related objects that we wish

to treat as a unit” [1].

The simplest way to deal with this is to

embed the weak entity in the type of

document generated by the strong entity.

It is also necessary to indicate that the

weak entity will only have an embedded

existence, which is done by placing a

cross on it as shown in Fig. 6

The cross over any entity indicates that it

is not generating a type of document that

will be stored independently.

Fig. 6. DID: week entity

Although ItemOrder entity does not

generate a document type, it has an

interrelation with the Product entity that

must be resolved in the logical model. The

product information needed in the

ItemOrder will depend on the domain over

which the model was made and what are the

access patterns. In this case, it can be

assumed that only the name of the product is

needed, for which we partially embed the

name of the product in the item. When

embedding the ItemOrder in Order it is

embedded with everything it contains

including references and embedded fields of

other types of documents, in this case the

name of the product. The final diagram is as

in Fig. 7.

Fig. 7. DID

42 A Big Data Modeling Methodology for NoSQL Document Databases

In some cases, it is not enough with the

types of documents generated from the

ERD to resolve all interrelationships.

Assume the case of a database that must

save user access to different modules and

that a large number of daily accesses are

made by each user. The most important

query is to know on a given date which

modules a user accessed. The ERD in

Fig.8 is the conceptual data model.

Fig. 8. ERD Users and Modules

How to resolve the interrelation between

User and Access? At first glance it seems

to be a case like that of the previous order

and item. But there are two important

differences that change the design decision:

1. The immutability or not of the data: In

the previous case, once the order has

been sent to the client, the items can no

longer be modified. However, in this

new domain accesses are added

frequently.

2. The volume of data: The items in an

order have a limited amount of data. On

the other hand, user accesses grow

permanently and frequently.

In a document-based database the document

is the unit of access, changes in their sizes

may generate the need to reorganize the

physical space where they are stored, if this

is done very often there may be a

degradation of performance.

The query patterns in the example indicate

that, in general, accesses for a given date are

consulted, so it would be a good design

decision to divide the accesses by date.

Also, once the date is finished, the accesses

of the same are immutable. To have a

document by date it is necessary to create an

auxiliary document type. Fig. 9 shows how

that document is specified.

Fig. 9. DID: Partition

The new document that does not

correspond to any entity of the ERD is

drawn as a parallelogram with two

inclined sides. It is also necessary to

indicate which interrelation that

document is representing that is achieved

with a dotted line from the interrelation to

the symbol of the intermediate document.

The auxiliary document has on one hand a

reference to the user and on the other it

embeds the accesses. The key will be the

date and user id. We must explicitly mark as

Database Systems Journal, vol. XI/2020 43

a key the Date taken from the accesses to

indicate that it is the partition key and

therefore there is a single date per

document, the user identifier does not

need to indicate it since the arrow

indicates reference to the key of the user

and also the cardinality of the user-

measurement relationship indicates that

the measurements are of a single user. It

is not necessary to keep the

measurements as an independent

document, so the cross is placed on that

entity.

The extended entity relationship diagram

also supports hierarchies between

entities.

The hierarchies in the ERD can be with

full or partial coverage, with overlapping

or without overlapping. The possibility

that documents of the same type have

different schemes facilitates the design.

We can generate a single type of

document corresponding to the super-

entity that also has the attributes of the

sub-entities. For this, it is enough to

indicate that the sub-entities do not

generate a type of document as seen in

the Fig. 10.

Fig. 10. DID Herarchies

Depending on the pattern of

consultations, other decisions may be

made:

• Mark the super-entity as not

generating a document type and then

generate one for each sub-entity. This

is possible if the hierarchy has no

overlap.

• Specify that both super-entity and

sub-entities generate one document

type each. Indicating which attributes

would be placed in super-entity.

Another type of relationship that is

necessary to model is ternary relationship.

Fig. 11. ERD: ternary relationship

Suppose a ternary relationship between

Student, Semester and Course entities. The

cardinality in this case is n:m:p, for a student

and a semester there are many courses he

takes, a semester and a course has many

students enrolled, for a course and a student

can be many semesters where he takes it.

The DER of Fig. 11 shows this relationship.

The most complex part is deciding how to

model the relationship takes. The decision

on how to model will, as always, depend on

the query patterns. The basic case is to

generate a type of document that simply

contains the information of the relationship

with the identifiers of each of the entities

involved. To do this, an auxiliary document

is drawn with the name of the new document

type and a dotted line that binds it to the

entity as seen in Fig.12.

Fig. 12. DID: ternary relationship

That is the simplest model, but suppose that

a very common query is to know which

students are enrolled in a course in a

semester, in fact you want to know first

name, last name of them for a given course

and semester. While the previous model

44 A Big Data Modeling Methodology for NoSQL Document Databases

allows you to answer this query, you

might decide to have a document type

that stores the complete information to

optimize access to it.

The semantics of this diagram (Fig. 13)

are that only key attributes are added or

that allow you to group data from another

entity from those participating entities in

the interrelationship that are not related

by any link to the new document type.

Fig. 13. DID: complex ternary

relationship

One case to consider is when it becomes

necessary to group multiple instances of

an entity, by one or more attributes, into a

single document. To exemplify let's

assume a part of a DER where users and

their searches are modeled.

Fig. 14. DER: User/ search

The relationship between user and search

can be modeled in various ways, either by

embedding searches in the user or by

referencing. The relationship could also

be resolved by partitioning by user and

date in the same way as shown in Figure

9 for user and access. Let's say that a very

frequent query is to know the searches

performed on a given date. The solution

of partitioning by user and date is not

efficient for this because access should be

made for each user who has a search on

that date. In this case, the ideal is to have

a single document with all the searches

for a date. This would involve grouping

by the date attribute, i.e. generating a

document for each date that has all searches.

An auxiliary document should be created to

save all searches with the date as key. The

notation is similar to that seen before,

although in this case the auxiliary document

refers only to the entity on which it is being

grouped.

Fig. 15. DID: User/Search

Figure 15 shows the corresponding DID.

Note that the reference from Search to User

is important, because marking the entity as

not generating a type of document would

lose the relationship.

It is also possible to generate an

intermediate document to resolve the

relationship between User and Search.

There would be data redundancy in favor of

access speed. The complete DID is shown in

Figure 16.

Fig. 16. DID: Complete User-Search

5 From logical to physical level

Upon completion of the development model

interrelationship of documents, which is

equivalent to logic design relational

database, it continues with the physical

design.

The physical design implies making

decisions about specific aspects of

implementation such as: data distribution,

index generation, use of engine facilities of

the selected database, etc.

Many document databases support indexes.

Database Systems Journal, vol. XI/2020 45

Index creation must be based on query

patterns. It's about doing a trade-off so

you don't have a few indexes that could

lead to poor read performance, but not so

many that affect the write performance.

The use of JSONSchema for a more

detailed specification of each type of

document facilitates decision making

process and implementation. A

JSONSchema is a JSON document which

describes the structure of another

document.

The steps to follow are as follows.

1. For each document type in the DID:

a. Define the appropriate data

types for each attribute

b. Write the specification using

JSONSchema.

2. For each query analyze the ease of

documents to respond to it. Ideally a

single access should be enough for

the most used queries.

From the DID each type of document is

mapped to a JSONSchema which allows

to specify in detail the structure of each

document. For example, the document

type AccessByDate in Fig. 9 is mapped to

the the following scheme:

From the DID in Figure 16 JSONSchema

will be generated for each of the

following document types:

User: With the attributes in the diagram,

specifying the type of each.

UserSearchByDate: having the userid

and date as keys and a vector with that

user's searches on that date.

SearchByDate: The key is the date and

has a vector with the searches and in each

the corresponding userid.

No other document types are generated.

By indicating that an attribute is key we

are claiming that it is unique and that it

identifies each document, even though the

database always generates an identifier

attribute.

The flexibility of the JSONSechema to

establish optional properties makes it an

ideal tool for specifying document types of

variable structure. In the case of hierarchies

this facility is extremely useful because you

can specify conditions for which an attribute

exists or not. Looking at JSONSchemas it is

possible to realize that in some case it is

convenient to reserve space the same in such

a way that the document does not resize it

during its lifetime. If the document grows

larger than the size allocated for it, the

document may be moved to another location

with the consequent input/output cost [12].

Some document-based databases have tools

to validate if a document complies with a

JSONSchema.

6 Conclusions

A methodology that allows obtaining a

detailed design from a conceptual model has

been presented. This work extends and

completes previous work on document

modeling in the design process.

The proposal presented allows flexibility to

establish detailed design decisions. There is

not currently, to the best of our knowledge,

complete methodology such as that

presented for document-based databases that

have the same level of flexibility and

specification capability.

The presented methodology was used

successfully in several developments using

different database engines. In future work

we plan to report in detail the cases of

success in the use of this methodology.

References

[1] Adam Flowler, “The State of NoSQL”,

1st edition, 2016

[2] Pramod J. Sadalage, Martin Fowler,

“NoSQL Distilled: A Brief Guide to the

Emerging World of Polyglot

Persistence”, Addison-Wesley

[3] Gómez, P., Casallas, R., & Roncancio,

C. (2016). “Data schema does matter,

46 A Big Data Modeling Methodology for NoSQL Document Databases

even in NoSQL systems!” 2016 IEEE

Tenth International Conference on

Research Challenges in Information

Science (RCIS), 1-6.

[4] Artem Chebotko, Andrey Kashlev,

Shiyong Lu, “A Big Data Modeling

Methodology for Apache Cassandra”,

IEEE International Congress on Big

Data (BigData'15), pp. 238-245, New

York, USA, 2015.

[5] Francesca Bugiotti, Luca Cabibbo,

Paolo Atzeni, Riccardo Torlone.

“Database Design for NoSQL

Systems”. International Conference

on Conceptual Modeling, pp. 223 -

231 Atlanta, USA, Oct 2014.

[6] Ted Hills, “NoSQL and SQL Data

Modeling”, Basking Ridge, NJ:

Technics Publications, 2016

[7] Shin, K & Hwang, C & Jung, H.

(2017). “NoSQL database design

using UML conceptual data model

based on peter chen’s framework”.

International Journal of Applied

Engineering Research. 12. 632-636

[8] Gerardo Rossel, Andrea Manna,

”Diseño de Bases de Datos Basadas

en Documento: Modelo de

Interrelación de Documentos” XIII

Workshop Bases de Datos y Minería

de Datos. Congreso Argentino de

Ciencias de la Computación CACIC

2016 San Luis Argentina..

[9] Peter P. S. Chen, “The entity-

relationship model: toward a unified

view of data”, Proceedings of the 1st

International Conference on Very Large

Data Bases, ACM, New York, NY,

USA, 1975.

[10] M. Lawley and R. W. Topor, “A query

language for EER schemas,” in

Proceedings of the 5th Australasian

Database Conference, 1994, pp.292–

304.

[11] Storey, Veda & Song, Il-Yeol. (2017).

Big data technologies and management:

What conceptual modeling can do. Data

& Knowledge Engineering.

10.1016/j.datak.2017.01.001.

[12] Dan Sullivan. 2015. NoSQL for Mere

Mortals (1st. ed.). Addison-Wesley

Professional

[13] Jeff Carpenter & Eben Hewitt. (2020).

Cassandra: The Definitive Guide (3st.

ed.). O’Reilly Media, Inc.

[14] Pivert, Olivier. NoSQL Data Models:

Trends and Challenges. 2018. Wiley-

ISTE

Gerardo ROSSEL graduated as Ms. Sc. in Computer Science from the

Faculty of Exact and Natural Sciences of the University of Buenos Aires. He

has a Doctor's degree from the National University of Tres de Febrero. At

present, he is an assistant lecturer at Computer Department of FCEyN UBA.

He has more than 20 years of experience in software industry and is Chief

Scientist of UpperSoft software company. Her specific area of competences is

in Databases, NoSQL, Data Science, Machine Learning, Patterns and Software Architectures,

Epistemology and Philosophy of Computer Science. He is co-author of book “Algoritmos,

Objetos y Estructuras de Datos”. He has published several papers in national and

international conferences and journals. He was a member of the International Program

Committee of several international conferences.

Andrea MANNA, graduated from the Faculty of Exact and Natural Sciences of

the University of Buenos Aires in 2000. She got the title of Ms. Sc. of

Computer Science. At present, she is assistant lecturer in the Faculty of Exact

and Natural Sciences of the University of Buenos Aires. She has been working

in the software industry since 1995. She is Chief Software Architect of

UpperSoft Sofware Company and work in software development for more than

twenty years. She is co-author of book “Algoritmos, Objetos y Estructuras de Datos”.

