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Data analytics are now playing a more important role in the modern industrial systems. 

Driven by the development of information and communication technology, an information 

layer is now added to the conventional electricity transmission and distribution network for 

data collection, storage and analysis with the help of wide installation of smart meters and 

sensors. 

Big data has a potential to unlock novel groundbreaking opportunities in the power grid 

sector that enhances a multitude of technical, social, and economic gains. The currently 

untapped potential of applying the science of big data for better planning and operation of 

the power grid is a very challenging task and needs significant efforts all-around. As power 

grid technologies evolve in conjunction with measurement and communication technologies, 

this results in unprecedented amount of heterogeneous big data sets from diverse sources.       
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Introduction 

Big data analytics examines large 

amounts of data to uncover hidden 

patterns, correlations and other insights. 

With today’s technology, it’s possible to 

analyze your data and get answers from it 

almost immediately – an effort that’s slower 

and less efficient with more traditional 

business intelligence solutions. 

Big data is a term used to describe massive 

amounts of information (Figure 1) that 

frequently occurs in the form of 

unstructured data sets that cannot be 

analyzed with standard database software. 

The energy industry has worked with big 

data for years, regularly processing 

significant amounts of information produced 

on an intra-hourly basis. 

Markets settle on metered data that 

measures power in five-minute increments. 

Utilities use supervisory control and data 

acquisition (SCADA) systems. Investors 

and planners run models with full 

representation of each generating unit, 

transmission load flow and hourly dispatch. 

Although other industries are relatively new 

to big data, they are finding innovative ways 

to use it. Applying these innovations to the 

energy industry promises to be 

transformative.

 

 
Fig. 1. Big Data ecosystem 
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2. Characteristics of Big Data 

Big Data refers to the large, diverse sets of 

information (Figure 2) that grow at ever-

increasing rates. It encompasses the volume 

of information, the velocity or speed at 

which it is created and collected, and the 

variety or scope of the data points being 

covered. Big Data often comes from 

multiple sources and arrives in multiple 

formats. 

Big Data can be categorized as unstructured 

or structured. Structured data consists of 

information already managed by the 

organization in databases and spreadsheets; 

it is frequently numeric in nature. 

Unstructured data is information that is 

unorganized and does not fall into a pre-

determined model or format. It includes data 

gathered from social media sources, which 

help institutions gather information on 

customer needs. 

The presence of sensors and other inputs in 

smart devices allows for data to be gathered 

across a broad spectrum of situations and 

circumstances. 

 

 
Fig. 2. Big Data characteristics 

 

 

3.Characteristics of Smart Grids 

Smart Grids comprise a broad mix of 

technologies to  ptimize  electricity 

networks, extending from the end user to 

distribution and transmission. 

Not only can better technologies for 

monitoring, control and automation 

stimulate the development of new business 

models, they can unlock system-wide 

benefits including reduced outages, shorter 

response times, deferral of investments to 

the grids themselves and distributed energy 

resource integration. 

At the end-user level, smart grids can enable 

demand flexibility and consumer 

participation in the energy system, including 

through demand response, electric vehicle 

(EV) charging and self-produced distributed 

generation and storage. 

Demand flexibility can increase the overall 

capacity of the system to integrate variable 

renewables while accelerating the 

electrification of heating, cooling and 

industry at a lower cost. Deploying a 

physical layer of smart-grid infrastructure – 

underpinned by smart meters – can help 

unlock these benefits. 

Electric power plants are generally 

dispatched so that the plants with the lowest 

operating costs (baseload plants) come on 

first, followed by more expensive plants 

when load increases, and finally, the most 

expensive plants during times of peak load1 

. Very little electricity is stored for future 

use because storage is typically too costly. 

For this reason the marginal cost of 

supplying electricity is much higher during 

times of peak load. However, most 

electricity consumers are charged the same 

price for every kWh they consume. This is 

economically inecient as the prices 

consumers pay do not reflect the true costs 

of production. Advanced electricity pricing 

refers to a broad range of approaches and 

pricing programmes that try to make 

consumer prices more accurately reflect 

real-time production costs so that customers 

shift consumption toward times when 

electricity is less expensive. Advanced 

pricing can also shift consumption to times 

when RE is available. Three representative 

advanced pricing schemes are described 

further. 

Electricity usage typically peaks around the 

same time every day in a given area. The 

simplest method of discouraging electricity 

use during peak times is to institute a time-

of-use (TOU) price schedule, under which 

electricity is least expensive when loads are 

low (typically at night) and most expensive 

during peak times (usually afternoons). 
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Customers paying TOU rates may adjust 

loads manually or use building or home 

energy management systems 

(BEMS/HEMS) to control their loads. TOU 

pricing schemes may vary with the season 

but are generally set far in advance. This 

means TOU pricing does not help much on 

the few days per year when load approaches 

its annual peak. TOU pricing programmes 

are becoming common. TOU pricing is 

typically advantageous for solar PV, which 

produces power during the daytime, when 

the price is usually high. 

Wind plant power forecasting has become a 

priority for grid operators as utility-scale 

wind plants have come to make up a 

significant portion of grid capacity in some 

areas. With wind penetrations around 25%, 

studies have shown that wind forecasting 

can save tens to hundreds of millions of 

dollars per year in operating costs over 

several states in the U.S. (Lew, et al., 2011). 

When NWP power forecasts for regional 

aggregations of wind plants are compared to 

actual wind power output for those 

aggregations, error rates of 5% are typical. 

Error rates for single locations are two to 

four times higher. Current day-ahead NWP 

error rates are not expected to drop 

significantly. Wind plants may also use very 

short-term (millisecond scale) wind 

nowcasting to optimize power output by 

dynamically adjusting the pitch of turbine 

blades (Madrigal, 2010). Light Detection 

and Ranging (LIDAR) and Sonic Detection 

and Ranging (SODAR) wind sensors 

located on turbines are used for this purpose. 

This technology is experimental. 

 

4. Big Data applications in power 

distribution systems 

The carbon emission reduction and 

sustainability of environment are the driving 

force and construction purpose of smart 

grid, which is designed in a decentralized 

structure. The employment of distributed 

generator units in modern power distribution 

system now provides an effective means for 

the utilization of widespread renewable 

energy such as wind and solar energy. These 

emerging microgrids are vital for the 

expectation of a low-carbon society. 

Moreover, the close distance between the 

generator and loads in microgrid improves 

the reliability of power delivery and reduces 

the power transmission loss. The ability to 

operate in an island mode also protects the 

load from damages caused by power system 

including voltage fluctuation, frequency 

deviation, etc. 

Distribution automation (DA) is a concept 

of smart grid which focuses on the operation 

and system reliability at the distribution 

level. A successful DA has the capability to 

localize and isolate the faults in distribution 

system with a reduced restoration time and 

improved customer satisfaction. Under the 

concept of DA, increasing volume of 

operational data have been collected from 

supervisory control and data acquisition 

(SCADA) or advanced metering 

infrastructure (AMI) for state monitoring 

and fault diagnosis. 

Thanks to the development of ICT 

technology in power systems, a huge 

volume of data can be collected via AMI 

and communication infrastructures. Power 

system operating data, weather information 

and log data of relay protection devices are 

processed as the input of a one class 

classification system, which is a data-driven 

model of fault phenomena based on a 

hybridization of evolutionary learning and 

clustering techniques. This fault recognition 

system is validated in the medium voltage 

power grid in Rome. The traditional 

statistical methods such as linear 

discriminant analysis (LDA) and logistic 

regression are discussed for mining the 

relation between power system faults and 

the features extracted from raw data. 

Big data applications in distribution system 

planning can be divided into two categories 

● Short term operations 

● Long term planning studies 

Short term applications are detection of 

energy theft, outage detection, peak load 

monitoring, customer consumption behavior 

modeling, special load and renewable 

forecast, distribution system visualization, 
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state estimation and distribution system 

planning, in which the first three 

applications are qualified to be very short 

term applications. Applications in Long 

term system planning studies include 

modeling customer consumption behavior 

under various incentives and pricing 

structures, transformation of distribution 

system planning process. 

 

5. Implementation on a cloud 

computing platform 

Cloud computing can be deployed as the 

infrastructure layer for big data systems to 

meet certain infrastructure requirements, 

such as cost-effectiveness, improved 

accessibility, and scalability. Based on the 

requirements of the proposed framework, 

Infrastructure as a Service (IaaS) clouds are 

appropriate to use to implement the smart 

grid big data framework. Cloud service 

providers such as, Amazon AWS and 

Google can be utilized to build a cluster that 

will host the framework. In this 

implementation, a Google cloud platform 

cluster with six machines is used.  

As smart grid data increases exponentially 

in the future, utilities must envision ever-

increasing challenges on data storage, data 

processing, and data analytics. Even though 

many electric utilities have realized that 

deployment of big data analytics is a must 

and not a choice, for future business growth 

and efficient operation, implementation of 

big data analytics in utility framework is 

lagging. Therefore, there is a need of 

comprehensive study to investigate current 

challenges, value proposition to 

stakeholders (e.g., consumers, utilities, 

system operators), operational benefits, and 

potential path forward to deploy big data 

analytics in power grids. 

The high volume data gather in smart grid is 

similar in size and characteristics to the 

concept of big data. Big data is defined as 

data with high volume, velocity, and variety. 

The sampling frequency from perception 

devices can make the data size very large. 

Data velocity reflects the required speed for 

collecting and processing the data. Hence, 

big data management and processing 

techniques (hardware, software, algorithms, 

AI, etc) can be borrowed and applied in the 

domain of IoT. In addition, some 

applications of smart grid can perform their 

tasks only at specific time a day, such as 

weather forecasting and one-day ahead of 

time energy distribution, which can be 

performed at the night of every day. 

However some other applications perform 

their tasks all day round, such as real-time 

applications that monitor the power grid 

components. This is needed to speed up 

energy outage recovery process and real-

time response to emergent behaviors in 

power demands. Even with today’s 

development in big data processing 

techniques, managing of data in the smart 

power grid poses new challenges that are 

based upon the criticality of power systems, 

real-time response, proactive solutions, 

accurate predictions, and security. Hence, 

we address first the question of where to 

store the smart grid big data. 

The increasing number in services and 

capabilities of cloud computing make it a 

good candidate to host SCADA systems. 

Cloud computing is a model that enables a 

convenient on-demand access to a shared 

pool of computing resources such as 

network, storage, servers, applications, and 

services. Cloud computing enterprises 

deliver their services to end users in three 

models namely, Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and 

Software as a Service (SaaS). IaaS provides 

end users with operating systems, storage, 

network, and database services deployed 

within the cloud. PaaS provides end users 

with capabilities to deploy their applications 

such as programming languages and 

libraries that are available within the cloud. 

SaaS cloud provides a ready to use 

application for end users. 

 

6. Key Challenges for Big Data 

Analytics 
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Table 1 

Challenges Possible Impact Potential Solution 

Data Volume Need of increased storage 

and computing resources 

Dimensionality reduction, 

Parallel computing, Edge 

computing, Cloud computing, 

pay-per use 

Data Quality Lack of complete 

information, misleading 

decision 

Probabilistic and storchastic 

analysis, data cleaning (e.g. 

dealing with missing values, 

smooth out noises, outliers, and 

inconsistent data) 

Data Security Vulnerable to malacious 

attack, compromise 

consumer privacy and 

integrity, mislead 

operational decision and 

financial transactions 

Data anonymization (e.g. data 

aggregation, data encryption, 

P2DA) 

Time Synchronization Mislead operational 

decision, wrong 

interpretation of data, bad 

diagnostic of past events 

Synchronize devices based on 

same radio clocks or satellite 

receivers 

Data Indexing Computational complexity, 

long processing time 

Deploy new indexing 

techniques such as R-trees, 

Btrees, Quad-trees 

Value Proposition Non-acceptance by 

stakeholder, delay 

deployment of big data 

Quantifying both technical and 

economic values to key 

stakeholders, namely consumer, 

system operator, utility. 

Standards and Regulation Interface challenges among 

various computing, storage, 

and processing platforms, 

delayed deployment 

Regulatory entity define 

guidelines about data 

sharing/exchange, and standards 

should technically ensure 

regulatory aspects 

 

Data volume 

Before we start to build any data 

processes, we need to know the data 

volume we are working with: what will be 

the data volume to start with, and what the 

data volume will be growing into. If the 

data size is always small, design and 

implementation can be much more 

straightforward and faster. If the data start 

with being large, or start with being small 

but will grow fast, the design needs to take 

performance optimization into 

consideration. The applications and 

processes that perform well for big data 

usually incur too much overhead for small 

data and cause adverse impact to slow 

down the process. On the other hand, an 

application designed for small data would 

take too long for big data to complete. In 

other words, an application or process 

should be designed differently for small 

data vs. big data. 

This large amount of data exceeds the 

amount of data that can be stored and 

computed, as well as retrieved. The 

challenge is not so much the availability, 

but the management of this data. With 

statistics claiming that data would increase 

6.6 times the distance between earth and 

moon by 2020, this is definitely a 

challenge. 

Some of the newest ways developed to 

manage this data are a hybrid of relational 
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databases combined with NoSQL 

databases. An example of this is 

MongoDB, which is an inherent part of the 

MEAN stack. There are also distributed 

computing systems like Hadoop to help 

manage Big Data volumes. 

 

Data Quality 

Veracity, one of the most overlooked Big 

Data characteristics, is directly related to 

data quality, as it refers to the inherent 

biases, noise and abnormality in data. 

Because of veracity, the data values might 

not be exact real values, rather they might 

be approximations. In other words, the 

data might have some inherent 

impreciseness and uncertainty. Besides 

data inaccuracies, Veracity also includes 

data consistency (defined by the statistical 

reliability of data) and data trustworthiness 

(based on data origin, data collection and 

processing methods, security 

infrastructure, etc.). These data quality 

issues in turn impact data integrity and 

data accountability. 

While the other V’s are relatively well-

defined and can be easily measured, 

Veracity is a complex theoretical construct 

with no standard approach for 

measurement. In a way this reflects how 

complex the topic of “data quality” is 

within the Big Data context. 

Data users and data providers are often 

different organizations with very different 

goals and operational procedures. Thus, it 

is no surprise that their notions of data 

quality are very different. In many cases, 

the data providers have no clue about the 

business use cases of data users (data 

providers might not even care about it, 

unless they are getting paid for the data). 

This disconnect between data source and 

data use is one of the prime reasons behind 

the data quality issues symbolized by 

Veracity. 

Data veracity, in general, is how accurate 

or truthful a data set may be. In the context 

of big data, however, it takes on a bit more 

meaning. More specifically, when it comes 

to the accuracy of big data, it’s not just the 

quality of the data itself but how 

trustworthy the data source, type, and 

processing of it is. Removing things like 

bias, abnormalities or inconsistencies, 

duplication, and volatility are just a few 

aspects that factor into improving the 

accuracy of big data. 

Unfortunately, sometimes volatility isn’t 

within our control. The volatility, 

sometimes referred to as another “V” of 

big data, is the rate of change and lifetime 

of the data. An example of highly volatile 

data includes social media, where 

sentiments and trending topics change 

quickly and often. Less volatile data would 

look something more like weather trends 

that change less frequently and are easier 

to predict and track. 

The second side of data veracity entails 

ensuring the processing method of the 

actual data makes sense based on business 

needs and the output is pertinent to 

objectives. Obviously, this is especially 

important when incorporating primary 

market research with big data. Interpreting 

big data in the right way ensures results 

are relevant and actionable. Further, access 

to big data means you could spend months 

sorting through information without focus 

and a without a method of identifying what 

data points are relevant. As a result, data 

should be analyzed in a timely manner, as 

is difficult with big data, otherwise the 

insights would fail to be useful. 

 

Data Security 

When producing information for big data, 

organizations have to ensure they have the 

right balance between utility of the data 

and privacy. Before the data is stored it 

should be adequately anonymized, 

removing any unique identifier for a user. 

This in itself can be a security challenge as 

removing unique identifiers might not be 

enough to guarantee the data will remain 

anonymous. The anonymized data could 

be cross-referenced with other available 

data following de-anonymization 

techniques. 



Database Systems Journal, vol. XI/2020  115 

 

 

When storing the data, organizations will 

face the problem of encryption. Data can’t 

be sent encrypted by the users if the cloud 

needs to perform operations over the data. 

A solution for this is to use "Fully 

Homomorphic Encryption" (FHE), which 

allows data stored in the cloud to perform 

operations over the encrypted data so new 

encrypted data will be created. When the 

data’s decrypted, the results will be as if 

the operations were carried out over plain 

text data. So the cloud will be able to 

perform operations over encrypted data 

without knowledge of the underlying plain 

text data. 

A significant challenge while using big 

data is establishing ownership of 

information. If the data’s stored in the 

cloud, a trust boundary should be 

established between the data owners and 

the data storage owners. 

Adequate access control mechanisms are 

key in protecting the data. Access control’s 

traditionally been provided by operating 

systems or applications restricting access 

to the information - this typically exposes 

all the information if the system or 

application is hacked. 

A better approach is to protect the 

information using encryption that only 

allows decryption if the entity trying to 

access the information is authorized by an 

access control policy. 

An additional problem is that software 

commonly used to store big data, such as 

Hadoop, doesn’t always come with user 

authentication by default. This makes the 

problem of access control worse, as a 

default installation would leave the 

information open to unauthenticated users. 

Big data solutions often rely on traditional 

firewalls or implementations at the 

application layer to restrict access to the 

information. The main solution to ensuring 

data remains protected is the adequate use 

of encryption. For example, Attribute-

Based Encryption can help in providing 

fine-grained access control of encrypted 

data. 

Anonymizing the data’s also important to 

making sure privacy concerns are 

addressed. It should be ensured that all 

sensitive information is removed from the 

set of records collected. 

Real-time security monitoring is also a key 

security component for a big data project. 

It’s important organizations monitor 

access to make sure there’s no 

unauthorized access. It’s also important 

threat intelligence is in place to guarantee 

more sophisticated attacks are detected and 

the organizations can react to threats 

accordingly. 

For example, many big data solutions look 

for emergent patterns in real time, whereas 

data warehouses often focused on 

infrequent batch runs. How do these 

different usage models impact security 

issues and compliance risk? 

In the past, large data sets were stored in 

highly structured relational databases. If 

you wanted to look for sensitive data such 

as health records of a patient, you knew 

exactly where to look and how to access 

the data. 

Removing any identifiable information 

was also easier in relational databases. Big 

data makes this a more complex process, 

especially if the data is unstructured. 

Organizations will have to track down 

what pieces of information in their big data 

are sensitive and then carefully isolate this 

information to ensure compliance. 

Another challenge with big data is that you 

can have a big variety of users each 

needing access to a particular subset of 

information. This means the encryption 

solution you choose to protect the data has 

to reflect this new reality. Access control 

to the data will also need to be more 

granular to ensure people can only access 

information they are authorized to see. 

 

Conclusion 

In this paper we explained every separate 

concept for big data, smart grid and cloud 

computing and how we can get all of them 

to work together for optimal end results. 
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We discussed the implementation of cloud 

energy storage devices, and cloud data 

storage mechanisms for the smart grid 

architecture. Using cloud computing 

applications, energy management 

techniques in smart grid can be evaluated 

within the cloud, instead of between the 

end-user’s devices. This architecture gives 

more memory and storage to evaluate 

computing mechanism for energy 

management, and cost- 
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