
Database Systems Journal, vol. X/2019 3

A Reinforcement Learning Approach for Smart Farming

Gabriela ENE

The Bucharest University of Economic Studies, Romania

gabriela.ene02@gmail.com

At a basic level, the aim of machine learning is to develop solutions for real-life engineering

problems and to enhance the performance of different computers tasks in order to obtain an

algorithm that is highly independent of human intervention. The main lying ingredient for all

of these, is, of course, data.

Data is only valuable if it is transformed into knowledge, or, experience and the machine

learning algorithm is only useful if it can make a prediction with high accuracy outside the

examples in the training set. The field of machine learning intersects multiple domains such

as data science, artificial intelligence, statistics, and computer science, but has appliances in

any possible field that relies on decision making based on evidence, including healthcare,

finance, manufacturing, education, marketing and recently, more and more in agriculture and

farm-related management systems. As the Internet of Things and Cloud-Based solutions are

introducing artificial intelligence in farming, the phenomenon of Big Data is going to impact

the whole food-supply network. Machines that are connected with each other through a

network or that are equipped with deep learning software or just with measurement systems

are making the farming processes extremely data-driven. Fast decision-making capabilities

might become a game-changing business model in this field.

Keywords: machine learning, reinforcement learning, artificial intelligence, smart farming,

Thompson Sampling, Q-Learning

Introduction

Precision agriculture — a suite of

information technologies used as

management tools in agricultural

production— has already advanced and

will continue to change farm

management, from the way farmers

consider their commodity mix, scout

fields, and purchase inputs, to how they

apply conservation techniques, and even

how they price their crops and evaluate

the long-run size of their operations [1].

Mainly, the main focus of researchers and

one big improvement for the farmers is

the analytical causality between seeds

and fertilizers or be-tween irrigations and

crop quality. Traditional methods to

determine relationships between such

inputs and outputs relied on experiments

or estimating data by mixing observed

data sets with behavioral models, such as

two-stage least square technique.

For a vast majority of farmers, the small

plot experiments are mainly focused on

few inputs and restricted to a determined

time/season/location and cannot be often

generalized, so the results may not be

relevant and such implementation might be

costly. The intersection of machine learning

and agriculture might offer the starting point

of a broader solution de-signed to optimize

crop management. The aim of this article is

to cover the implementation and the impact

of reinforcement learning algorithms in

smart farming, starting from the problem

that many farmers face when they choose

between using past production methods that

bring income and exploring the value of new

practices that can increase income. This

problem fits under exploration vs.

exploitation paradigm, and the focus of this

paper is to conceptualize it as a multi-armed

bandit problem. Also, on the same note,

considering the increased costs of

transportation, a conceptual implementation

of a self-driven truck in an established

environment is presented.

1

mailto:gabriela.ene02@gmail.com

4 A Reinforcement Learning Approach for Smart Farming

2 Content details

2.1 Types of machine learning

algorithms

Machine learning algorithms can be

classified into three categories:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

First-class needs a labeled data set in

order to acquire the optimal knowledge.

One good example would be the

classification of a never-before-seen item

based on a trained model that includes

many items recorded in the data set with

a corresponding label. Saying that z is the

feature vector, as, in the data instance, the

equivalent label of z would be f(z),

known as the ground truth of z. The

feature vector can be a multi-dimensional

vector of different features that are

relevant to the item, and the value of f(z)

is one of a couple of classes of which the

item belongs, so the model, is basically a

classifier. If f(z) can have multiple values

and the outcome values are ordered, then

the model is a regressor.

Considering a prediction model of z as

p(z), the success of the model under the

influence of a parameter, p(z|θ), depends

on the distance between these two

vectors: f(z) and p(z|θ). This distance is

known as the cost. The main goal of

supervised learning is to minimize the

cost, so to determine the parameters of

the model that among all the data points

of z, result in minimum cost.

Unsupervised learning assumes

modelling data without knowing the

associated labels.

Dimensionality reduction and clustering

are very powerful tools that are broadly

used to gain knowledge from data alone.

The first one implies removing redundant

features, in order to lower the dimensional

space of the feature vectors, and clustering

manages the process of distributing the data

in specific classes without considering the

pre-defined labels.

Unlike training labeled datasets provided by

an external „teacher”, and different from the

approach of finding patterns in unlabeled

datasets, reinforcement learning challenges

the trade-off between exploration and

exploitation.

2.2 Reinforcement learning

The very basic definition of reinforcement

learning is acquiring knowledge through

interaction with an environment. An agent

acts in a specified environment and adapts

its behaviour based on the rewards that it

receives. The roots of the trial-and-error

process are in behaviourist psychology [2],

the agent main goal being to learn a strategy

[policy] that would maximise the

cumulative reward.

Reinforcement learning theory is already

contributing to our understanding of natural

reward, motivation, and decision-making

systems, and it can contribute to the

improvment of human abilities to learn, to

remain motivated, and to make decisions

[3].

The agent in the reinforcement learning

algorithm, at a predefined time step, t,

detects a state, st. The interaction with the

environment assumes taking an action at,

that will trigger the transition of both the

agent and the environment to a new state

st+1, defined by the previous one and the

taken action. The state consists of sufficient

statistics in order to offer the agent all the

needed data in order to proceed in the best

direction.

The rewards given by the environment

determine the optimal sequence of actions,

formally called „policy". The change of the

state consists also in providing feedback to

the agent, as a scalar reward rt+1. Knowing

the state, the policy will return a single

action or a set of actions to perform.

One efficient technique to describe the

Database Systems Journal, vol. X/2019 5

environment in an RL problem would be

the Markov Decision Process approach,

which provides an efficient model that

can perform probabilistic inference over

time. [4]

Markov Decision Process elements are as

follows:

• The set of states - S

• The set of actions - A

Each s(i) state has its corresponding

action or set of actions A(s(i)).

• The transition probabilities model

P {St+1 = s | St = s, At = a}

The probability of going from state st to

state st+1 depends only on the action and

on the state.

• Reward function - R(s)

• Discount factor: γ ∈ [0, 1)

Once the agent takes an action at,

selected from a set of actions that

correspond to the state st, the agent gets

the expected value of the reward, R(s,a)

and, given the transition probability, the

state of the process moves to the next

one, so the model builds a path of

transited states. Policy π is a mapping

from states to a probability distributions

over actions π(s,a). So, it describes the

way of acting. The function depends on

the action and the state and returns the

probability of taking the action in the

specific state.

The scope of the RL is to get the

maximum reward from all states, with the

optimal policy:

Learning the optimal policy implies using

one of the two types of value functions

available in machine learning: an action-

value function - Q(s,a) – or a value

function V(s).

Following a policy in state s, the expected

return would be given by the formula:

Even though the state is the same, the value

function varies depending on the policy. The

action-value function returns the value

added by taking an action in a specified state

when approaching some policy.

We can rewrite the value function in this

manner:

Taking into account the transition

probability, and the expected reward that the

agent receives by taking the action a and

moving to state st+1, we obtain the Bellman

equation for the action value function:

And also, we can do this for the action-

value function:

This equation is important because allows

expressing values of one state as values of

another state, so if we know the value of a

specific state we can determine the value of

another.

6 A Reinforcement Learning Approach for Smart Farming

3. The Thompson Sampling Algorithm

Thompson sampling is an algorithm for

online decision problems where actions

are taken sequentially in a manner that

must balance between exploiting what is

known to maximize immediate

performance and investing to accumulate

new information that may improve future

performance [5].

Although it was first proposed in 1933, it

is only in the past years that interest into

its potential developed, and currently, it

has been successfully applied in a broad

variety of domains, especially in website

management, A/B testing, portfolio

management, or recommendation

systems. The concept of the n-armed

bandit problem is as follows: among a set

on n actions, the agent is asked to make a

choice.

Every choice will be rewarded with a

numerical value selected from a

stationary probability distribution. The

objective of the agent is to maximize the

value received after each action over a

number of fixed iterations, or time steps.

The greedy approach of this assumes

selecting the action that will return the

highest reward, a phase that corresponds

to the exploitation part. Improving the

estimate of a reward, by choosing one of

the nongreedy actions is the exploration

phase.

The multi-armed bandit problem is often

presented as a slot machine with n arms.

By pulling one arm at a time step, a

reward is given and over M number of

rounds, the player’s scope is to obtain

the maximum sum of the rewards.

 Given the fact that the rewards are

random, each one of the n arms defines

for k ∈ {1, 2, … , n} a stochastic process

{Xi,m} in the form of a distributed

sequence of random variables, with an

unknown mean μi. One specific type of

the bandit problem is the Bernoulli

Bandit, which models the probability of

an event occurrence, that follows a

binomial distribution, with N = 1, which is

basically, the Bernoulli distribution.

This model can be adapted to the problem of

the farmer that needs to decide which plots

to select as experimental plots for different

seeding rates.

Supposing that the farmer manages many

fields, the purpose of our model is to decide

where to place experimental plots in order to

obtain improved yield response.

Each field has different soil characteristics,

such as nutrients, acidity/alkalinity, organic

matter or type.

The decision implies using all this

information for better placement of the

experimental plots in the field. The feature

vector, v, of a field consists of a predefined

number of similar characteristics for each

field and an area in the fields is defined by

M = ∑i |(v(i)| , the total of the feature values.

Let’s assume that v(1) describes parts of the

field by nutrients content, with values

varying in different ranges: less than 4%,

between 4.5% and 5%, 5% and 7% and over

7%, so the field would be divided into four

areas.

Following the same approach, v(2) can

classify the field into five areas depending

on the pH value, so we would have 9 parts

of the field that can overlap. Coming back to

our model, each of these parts nine parts is

an “arm’ of the multi-armed bandit problem.

By selecting an area and placing a plot there,

the farmer observes and figures if the plot

improved the total reward, in this case, the

yield response.

The model we follow to track the yield

response to the seeding rate is as follows, as

propesed in [6] :

 [6]

Ymax is the estimated asymptotic yield

maximum, and determines the

responsiveness of yield as seeding rate

increases.

Database Systems Journal, vol. X/2019 7

Therefore, a smaller indicates that a

higher seeding rate is needed to reach

maximum yield for that seed treatment.

[6]

The nonlinear least squares (NLS) was

used to estimate the parameters Ymax and

 separately, an estimation that can be

achieved by the algorithm [6].

Each area from the fields is assigned, at

each step, a probability that selecting a

plot that belongs to it will improve the

estimation of the parameters.

The probability function is based on the

previous steps, which resulted in the

better or worse estimation of the

parameters.

A reward of 1 is added if selecting the

field area improved the accuracy of the

prediction, and 0 otherwise. After that,

the area with the greatest probability of

improving the estimation is selected. At

each iteration of sample selection, a new

sample will be added to the training

dataset.

The expected rewards are modeled using

a probability that follows Bernoulli

distribution with parameter πi ∈ [0, 1].

We maintain an estimate of the likelihood

of each πi given the number of successes

αi and failures βi observed for the field

area. Successes (r = 1) and failures (r = 0)

are defined based on the reward of the

current iteration. It can be shown that this

likelihood follows the conjugate

distribution of a Bernoulli law, a Beta

distribution Beta(αi , βi) [7] :

Thompson Sampling for Sample Selection

[7]

1: Ymaxi = 1, βi = 1,S={}, M={areas},

A={1,2,…M},N=field areas ,∀i ∈ {1, . . . ,

M}

2: for t = 1, , ...N do

3: for i 1, . . . , N do

4: Daw ˆπi from Beta(Ymaxi, βi)

5: Reveal sample ht = {xt, yt, mt} from

field areas Cj

where j := arg maxi ˆπi.

6: Add sample ht to S and remove from

all field areas.

7: Obtain new model parameters

Ymaxi, βi

8: Compute reward rt based on new

prediction:

9: if rt == 1 then Ymaxj = Ymaxj + 1

10: else βj = βj + 1

4 Q-Learning Algorithm

The underlying philosophy of this algorithm

is based on the following method: the agent

takes an action at a particular state and the

feedback consists of a reward or a penalty.

The agent can evaluate the feedback by

estimating the value of the state to which it

was taken. So, the learning is the process of

going through different stages with the

scope of maximizing the future return, R.

The return from a specific time step, rt, can

be defined also by using the discount factor,

γ, where 0 < γ < 1, defined before as an

element in the Markov Decision Process.

The important thing to consider is that if the

value of this factor is smaller, the agent

would be inclined to choose only the

immediate reward and not take into

consideration the up-coming rewards.

If γ =1, then all rewards are equally

considered. The algorithm makes use of the

action-value function and estimates the

optimal function, with no regards of the

policy that it follows. But, the policy is used

also in this approach in order to map the

pairs of states and actions that were updated.

8 A Reinforcement Learning Approach for Smart Farming

The applications of this algorithm in

farming are many, but we will consider

one simulation, a delivery truck that is

self-driven.

The truck's job is to get the crop from a

determined place and to deliver it to

another. Basically, the reinforcement

algorithm that we will model will follow

pre-defined steps as: environment

observation, deciding upon the action to

take based on the strategy of maximizing

the obtained reward, acting, receiving the

penalty or the reward, accumulating

experience and improving the strategy

and, finally, iterating until the optimal

function is found.

A high positive reward is going to be

obtained for a successful arrival at the

location, and a penalty will be given if

the truck arrives in the wrong place. The

discount factor will be used when not

getting to the destination after every step,

meaning that late-arriving is better than

making wrong moves.

The state-space consists of all situations

that the truck may encounter and consists

of useful data needed in the decision-

making process.

Assuming that the field is the training

area of the truck, we don't have to

consider many obstacles that might be

encountered, but only the area of the

field, which we can divide in small plots,

viewed as a matrix M.

For the purpose of the example, we

would consider 36 possible plots, some of

them may contain the silo and some can

contain the harvested crop.

The actions will be defined as crop-load,

crop-delivery, west, north, east and south.

In the code, we would assign a penalty

for every stop at the wrong silo location.

The algorithm will only make use of the

state space and the action space, and we

will assign, in the defined order, a value

from 0 to 5 to each action. For each state,

the optimal action is the one that adds the

most to the total reward.

When the environment is defined, a

reward table or a matrix [number of states

as rows, number of actions as columns] is

created, named the Q-table. The table is

used by the agent to acquire knowledge

from it and hold the values of action-value

functions, initially populated with zeros, but,

during the training, with values that will

optimize the agent strategy for the maximum

total reward.

The first step of the algorithm is the creation

of Q-table with 0 values. Secondly, the

algorithm will iterate trough each state and

select any of the actions that are available

for the chosen state. As a result of the action

taken, the agent „goes" to the next state and

sees which action has the greatest Q-value.

The Q-table will be updated afterwards with

values obtained from the Boltmann equation

(2) and the next state will become the

current state. This will be repeated until the

goal is reached. After training with a large

data set, it is proven that the agent has

effectively learned the best move in a

predefined matrix. Over time, the hyper

parameters as the learning rate and the

exploration level should decrease, as the

gained knowledge increases, and the

discount factor would increase as well

because receiving the desired reward very

fast is preferable.

Q-Learning learns the optimal policy even

when actions are selected according to a

more exploratory or even random policy [8].

5 Implementation

5.1 Multi Armed Bandit Algorithm

Evaluation

For the Multi-Armed Bandit algorithm, we

make use of the pandas library in Python.

Pandas is a very powerful tool that enables a

lot of tools for data processing with very

high optimization.

Because of the lack of data that is needed for

the conceptual problem described, the

method of implementing the algorithm relies

on a randomly generated a set of data.

For the sake of simplicity, we assume

already observed data for the plots, and the

yield already computed based on the model

Database Systems Journal, vol. X/2019 9

described above[6]. We encode the

obtained yield over fixed values as a

good one, and we annotate it with „1",

and whatever is below the value, with

„0".

Using pandas, a DataFrame object is

created with the randomly obtained

values for 200 observations.

A list is initialized for the rewards

associated with each plot, and one for all

the penalties that belong to the plots.

For each observation, we iterate through

each machine and based on the highest

random beta distribution, the plot selected

is updated with the plot/machine used.

Once the plot is selected, the data

corresponding to it is verified and we

updated the list of rewards/penalties

accordingly.

The output is :

Fig. 1. Plot selection

In order to make sure that the algorithm

selected the most optimal plot over time, we

make a histogram of the plot that we use

over time.

Fig. 2. Histogram of selected

plots

By comparing the two graphs, we can see

that the optimal plot was selected every

time.

5.2 Q-Learning Algorithm evaluation

According to the GitHub repository, openAI

Gym is a toolkit for developing and

comparing reinforcement learning

algorithms. For the implementation, the

available collection of environments is

useful for testing the agent, because the

library also provides the required

information as in states, scores or actions. In

10 A Reinforcement Learning Approach for Smart Farming

openAI Gym, the environment replies

with rewards, namely, scores.

We make use of Env, the core gym

interface, and the predefined methods

available: reset, step and render.

Fortunately, openAI Gym provides a

built-in environment, named „Taxi-v2”,

but the environment uses only a matrix of

25 possible agent locations and four

possible destinations/locations.

In order to extend the locations, a new

environment is created in openAI Gym.

For achieving this, the environment is

registered by calling gym's register()

function, and by running the command

pip install –e that takes as argument the

location of the setup file where we

defined the new environment. The

custom made environment will be

available with the call of:

env = gym.make('truck-v0')

env.render()

The focus is to break down the agent’s

learning experience into episodes.

Each episode starts by setting the first

state of the agent randomly selected from

the distribution. The agent iterates

through episodes with the scope of

maximizing the expectation of total

reward/episode.

For our TruckEnv, we initilize „the

field”, like this matrix:

Fig. 3. Field matrix

The state space is represented by

:”truck_row”,”truck_col”,

„crop_location”, „silo_destination”.

For our example, we use a matrix with 5

possible crop locations and silo destinations.

So, the total number of states is 6 * 6 [the

possible positions of the truck in the matrix]

* 5[the possible crop locations] * 5 [the silo

destinations] = 900 possible states;

When the environment interface is built, the

initial matrix of states and actions is created.

In order to view the structure, with the call

of env.P(), we can see for each of the five

possible actions the probability, the next

state in which the agent will be if the action

at the indicated index is taken, the amount of

the reward[based on the type of the action

and the position], and a boolean value,

namely, „done", which indicates if the

episode is successful.

In the environement, the P structure is

initialize like this:

P = {state: {action: []

 for action in range(number_of_actions)}

 for state in range(number_of_states)}

We leave the other functions of the

environment as they are defined in openAI

gym default environment, because,

basically, the truck will use the same context

to train.

For training, the following hyperparameters

were used:

• alpha, the learning rate as 0.1

• gamma, the discount factor and we

set like this the importance of the

future reward as 0.5

• epsilon, the quantification of the

exploration phase

Explaining it in a simple manner, it would

be the decision of whether to check random

actions or to make use of the already

computed values in the Q-table. Epsilon is

set in the code as 0.1

The number of episodes is set to 100000 for

the training. We iterate through all the

Database Systems Journal, vol. X/2019 11

episodes, and we reset the environment at

each iteration to get a clean step.

For each step, we check the epsilon value

against a random value from 0 and 1 and

decide if the action is a random one or we

just exploit the already known actions

that have the greatest value in the Q-

table.

Afterwards, the action is taken and the

next step becomes the current one, the

reward and the „done” boolean value are

actualized along with the Qtable value for

the specific state and action based on the

formula described above.

For evaluating the performance of the

agent, we make use of three indicators:

the average number of steps taken to

reach the destination, the average number

of rewards and penalties per move, and

so, after the training, we iterate through

the range of episodes until the done

indicator is true. By selecting the action

only with the use of the Q-table, we can

calculate these parameters and observe

the performance.

The output is as follows:

Fig. 4. Performance of the agent

6 Conclusions

The evolution of Big Data and Machine

Learning will change the methods of farm

management and is actually changing the

research methods. Optimization is definitely

improved by the prevalence of data and

rapid estimation of causality relationship of

inputs is overpassing the traditional

approaches. Also, the adoption of data-

driven technologies will play a big role in

conserving resources and expanding the

returns. Analysis of data from software that

manages irrigation reduces water

consumption and impacts environmental

management. Predictions based on the

historical data are being replaced with a

comprehensive analysis of the crops, based

12 A Reinforcement Learning Approach for Smart Farming

on real-time input. Machines can also

classify and detect plant disease reducing

costs this way and improving the quality

of the crops. Progress in machine

learning has been driven by low-cost

computation opportunities as well by the

availability of online resources, data and

the development of learning algorithms.

 References

 [1] D. J. Russo, B. Van Roy, Benjamin,

A. Kazerouni, A. Osband, “A Tutorial

on Thompson Sampling. Foundations

and Trends”, Machine Learning, 11.

10.1561/2200000070, 2017

[2] S. Sukhbaatar, A. Szlam, R. Fergus.

“Learning Multiagent Communication

with Backpropagation”, NIPS, 2016.

[3] P. Sterling, S. Laughlin, “Principles

of Neural Design”, MIT Press,

Cambridge, MA, 2015

[4] CC Bennett, K Hauser, “Artificial

intelligence framework for simulating

clinical decision-making: A Markov

decision process approach”, Artificial

intelligence in medicine, Elsevier 2013

[5] D. J. Russo, B. Van Roy, A. Kazerouni,

I. Osband, Z. Wen (2018), "A Tutorial

on Thompson Sampling", Foundations

and Trends® in Machine Learning: Vol.

11: No. 1, pp 1-96

[6] A.P. Gaspar, P.D. Mitchell, S.P. Conley,

“Economic risk and profitability of

soybean fungicide and insecticide seed

treatments at reduced seeding rates”.

Crop Sci, 55, 924-933, 2015

[7] B.Gutiérrez, L. Peter, T. Klein, C.

Wachinger, “A Multi-Armed Bandit to

Smartly Select a Training Set from Big

Medical Data”, Computer Vision and

Pattern Recognition, arXiv:1705.08111,

2017

[8] R. S. Sutton, A.G. Barto, “Reinforcement

Learning: An Introduction”, MIT Press,

1998

Gabriela ENE has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2015. Currently she is a PhD Student at the same

university. Main fields of interest are big data technologies, artificial

intelligence, web development, algorithms and data structures.

