
Database Systems Journal vol. VIII, no. 1/2017 31

Explain Plan and SQL Trace
 the Two Approaches for RDBMS Tuning

Hitesh Kumar Sharma, Mr. S.C. Nelson

University of Petroleum & Energy Studies, Dehardun, Uttarakhand, India

hksharma@ddn.upes.ac.in, cnelson@ddn.upes.ac.in

Probably the best way to determine whether your SQL statements are properly optimized is by
using the Oracle SQL Trace facility and the EXPLAIN PLAN command. You can use the SQL
Trace facility and the Oracle program TKPROF, which is used to translate trace files, to
trace production SQL statements, and gather statistics about those statements. You use SQL
Trace to gather information into a trace file; the Oracle program TKPROF formats the trace
information into useful, understandable data.

Introduction
The EXPLAIN PLAN command is
used to display the execution plan

chosen by the Oracle optimizer for
SELECT, UPDATE, INSERT, and
DELETE statements. By analysing the
execution plan the Oracle optimizer has
chosen, and knowing your data and
application, you should be able to
determine whether the optimizer has
chosen the correct execution plan for your
application. After using EXPLAIN PLAN,
you can rewrite your SQL statements to
take better advantage of such things as
indexes and hash keys. By analysing the
output, you may be able to providehints
that the Oracle optimizer can use to take
better advantage of your knowledge of
your data. By using hints, you may be able
to take better advantage of features such as
the Oracle Parallel Query option. By the
end of this chapter, you should be able to
execute SQL statements using both SQL
Trace and EXPLAIN PLAN and be able to
analyse the output from these statements.
You should also understand the value of
registering applications for later use when
tracking performance problems. These
Oracle options can greatly improve the
stability and performance of your system.

2. Tuning Considerations
The data warehouse is tuned to allow
several large processes to run at maximum
throughput. There is usually no concern for

response times. We may have to tune both
Oracle and the server operating system.
The following sections look first at Oracle
and then at the server operating system.

3. Server OS Tuning
We may have to tune the server OS to
provide for a large number of processes (if
we are using the Parallel Query option) and
optimal I/O performance. Some of the
things we may have to tune in the server
OS are listed here; remember that some
OSes may not require any tuning in these
areas:
 Memory. Tune the system to reduce

unnecessary memory usage so that
Oracle can use as much of the system’s
memory as possible for the SGA and
server processes. We may also need
significant amounts of memory for
sorts.

 Memory enhancements. Take
advantage of 4M pages and ISM, if
they are available. Both features can
improve Oracle performance in a data
warehouse environment.

 I/O. If necessary, tune I/O to allow for
optimal performance and use of AIO.

 Scheduler. If possible, turn off
preemptive scheduling and load
balancing. In a data warehousing
system, allowing a process to run to
completion (that is, so that it is not
preempted) is beneficial.

1

32 Explain Plan and SQL Trace the Two Approaches for RDBMS Tuning

 Cache affinity. We may see some
benefits from cache affinity in a data
warehousing system because the
processes tend to run somewhat longer.
The server operating system is mainly
a host on which Oracle does its job.
Any work done by the operating
system is essentially overhead for
Oracle. By optimizing code paths and
reducing OS overhead, we can enhance
Oracle performance.

4. Hardware Enhancements
For a data warehouse, several hardware
enhancements can improve performance.
These hardware enhancements can be
beneficial in the area of CPU, I/O, and
network, as described in the following
sections.

4.1. CPU Enhancements
Enhancing the CPUs on our SMP or MPP
system can provide instantaneous
performance improvements, assuming that
we are not I/O bound. The speed of CPUs
is constantly being improved as are new
and better cache designs. For SMP or MPP
machines, the process of enhancing the
CPU may be as simple as adding an
additional CPU board. Before we purchase
an additional processor of the same type
and speed, however, consider upgrading to
a faster processor. For example, upgrading
from a 66 MHz processor to a 133 MHz
processor may provide more benefit than
purchasing an additional 66 MHz CPU
with the added benefit that we now have
the option of adding more 133 MHz CPUs.
Because of the complexity and run time
required by these queries, we can benefit
from more and faster CPUs. SMP and
MPP computers provide scalable CPU
performance enhancements at a fraction of
the cost of another computer. When
upgrading our processors or adding
additional processors, remember that our
I/O and memory needs will probably
increase along with the CPU performance.
Be sure to budget for more memory and
disk drives when we add processors.

4.2. I/O Enhancements
We can enhance I/O by adding disk drives
or purchasing a hardware disk array. The
data warehouse can benefit from the disk
striping available in both hardware and
software disk arrays.
Using Oracle data file striping can also
help the performance of our data
warehouse.
If our system performs only one query at a
time and we are not taking advantage of
the Oracle Parallel Query option, we may
not see a benefit from a hardware or
software disk array. In this specific case,
we do not recommend OS or hardware
striping; we should use traditional Oracle
striping. Because we are executing only
one query at a time without using the
Parallel Query option, the I/Os to the data
files are purely sequential on the table
scans. This scenario is somewhat rare; any
variance from “pure table scans” results in
degraded performance. Hardware and
software disk arrays have the added benefit
of optional fault tolerance. We should first
choose the correct fault tolerance for our
needs and then make sure that we have
sufficient I/O capabilities to achieve the
required performance level. If we use fault
tolerance, we will most likely have to
increase the number of disk drives in our
system. Another benefit of hardware disk
arrays is caching. Most disk arrays on the
market today offer some type of write or
read/write cache on the controller. The
effect of this cache is to improve the speed
of writing to the disk; the cache also masks
the overhead associated with fault
tolerance. If our queries often perform
table scans, we may see good improved
performance with disk controllers that take
advantage of read-ahead features. Read-
ahead occurs when the controller detects a
sequential access and reads an entire track
(or some other large amount of data) and
caches the additional data in anticipation of
a request from the OS. Unlike an OLTP
system in which this is just wasted
overhead, in the data warehouse where we
are performing DSS queries, it is likely

Database Systems Journal vol. VIII, no. 1/2017 33

that we will need that data soon; if we do,
it will be available very quickly.
Enhancements to the I/O subsystem almost
always help in a data warehouse
environment because large amounts of data
are accessed. Be sure that we have a
sufficient number of disk drives, properly
configured. An I/O bottleneck is usually
difficult to work around. As with all types
of systems, a well-tuned application is very
important.

5. Fault Tolerance Consideration
Because the data warehouse contains so
much data, we can take one of two
approaches to dataprotection:

 Protect everything. Because there
is so much data and so many disks
in use, everything must be
protected. The large number of
disks in use increases the
possibility of a disk failure. The
massive amount of data increases
the time needed for backup and
recovery.

 Conserve cost. Because there are
so many disks involved, it may be
cost prohibitive to use RAID-1 or
disk mirroring. When we mirror the
disks, we double the number of
disks.

In a data warehousing system, a good
compromise is to use a fault tolerant
method such as RAID-5 for the data files.
We can be somewhat selective and use
RAID-1 on volumes with heavy update
activity and RAID-5 on volumes with
more read activity. Remember that the
performance penalty for RAID-5 is only on
writing; we can achieve excellent read
performance from RAID-5.

6. Hardware Considerations
When choosing hardware to use for a data
warehousing system, consider these
factors:

 Low user load. Not many
concurrent processes/threads
simultaneously access the

systemunless we take advantage of
the -Parallel Query option.

 High I/O load. I/Os are concurrent
and heavy, with mostly random
I/O.

 Huge amounts of data. Data
warehousing systems typically
involve massive amounts of data.
We must make sure that our system
can support the high volumes of
data we will be using.

 Low network traffic during
runtime, possibly high during
load. During the execution of
typical decision support queries
against our data warehouse, there is
very little network activity. When
data is being loaded or updated
from other sources (possibly our
OLTP systems), the network
activity can be quite high.

If we can take advantage of the Oracle
Parallel Query option, many different
processes will use the machine at once; an
SMP or MPP machine should scale very
well. Because an SMP architecture uses
CPUs based on the processes that are
available to be run, if we always have a
runnable process available for each CPU,
we should see good scaling by adding
additional processors. With an MPP
machine, we see a similar effect but on a
much larger scale. Because there is much
random access to the disks, we can benefit
from a disk array. We prefer hardware
striping to OS striping because hardware
striping does not incur any additional
overhead for the operating system and does
not take up valuable CPU cycles. If
hardware striping is not available, OS
striping is adequate. Network traffic may
or may not be an issue to our data
warehousing system. If necessary, segment
the network or add faster network
hardware. A network bottleneck is an easy
problem to solve: simply add more and
faster hardware.

34 Explain Plan and SQL Trace the Two Approaches for RDBMS Tuning

7. SQL Trace
The SQL Trace facility and the Oracle
program TKPROF are designed to give
performance information about individual
SQL statements. You can use this
information to determine the
characteristics of those statements. You
can enable SQL Trace for a session or for
an entire instance. Of course, because this
facility gathers an abundance of
information about SQL statement
functionality and performance, SQL Trace
has an effect on the performance of the
system. If you use SQL Trace on a single
session, the effect is fairly minimal, but if
you use SQL Trace on an entire instance,
you will see a substantial effect on the
performance of the system. Avoid running
SQL Trace on an entire instance for this
reason.

7.1. SQL Trace Initialization
Before you run SQL Trace, you must make
sure that certain Oracle initialization
parameters are set:
Parameter Description

7.2. Controlling SQL Trace
You can enable the SQL Trace facility on a
per-session basis or for the entire instance.
The following sections explain how to
enable and disable SQL Trace for both of
these cases.
Enable SQL Trace for a Session
To enable SQL Trace for a session, use this
Oracle command:

ALTER SESSION

SET SQL TRACE = TRUE;

Alternatively, you can use the Oracle
procedure:

RDBMS_SESSION.SET_SQL_TRACE.
To enable SQL Trace for a session other
than your own, you can use the Oracle
procedure
RDBMS_SYSTEM.SET_SQL_TRACE_I
N_SESSION with the arguments SID,
Serial#, and TRUE. To determine
the values for SID and Serial#, use the
following SQL statements:

SQL> SELECT sid, serial#,
osuser
2 FROM v$session
3 WHERE osuser = ‘Ed Whalen’;
SID SERIAL# OSUSER
----------- ------- ---------

7 4 Ed Whalen

To turn SQL Trace on for that session, use
the Oracle stored procedure as follows:

SQL> EXECUTE
RDBMS_system.set_sql_trace_in
_session(7,4,TRUE);
PL/SQL procedure successfully completed.

Disable SQL Trace for a Session
To disable SQL Trace for a session, use
this Oracle command:

ALTER SESSION
SET SQL TRACE = FALSE;

The SQL Trace facility is also disabled
when your session disconnects from
Oracle. To disable SQL Trace for a session
other than your own, use the Oracle
procedure RDBMS_SYSTEM.SET_
SQL_TRACE_IN_SESSION with the
arguments SID, Serial#, and FALSE as
shown here:
SQL> EXECUTE
RDBMS_system.set_sql_trace_in
_session(7,4,FALSE);
PL/SQL procedure successfully completed.

Database Systems Journal vol. VIII, no. 1/2017 35

Enable SQL Trace for an Instance
To enable SQL Trace for your instance, set
the Oracle initialization parameter
SQL_TRACE to TRUE. Doing so enables
SQL Trace for all users of this instance for
the duration of the instance.

Disable SQL Trace for an Instance
The SQL Trace facility cannot be disabled
for the entire instance without shutting
down the Oracle instance and setting the
Oracle initialization parameter
SQL_TRACE to FALSE. Alternatively,
you can remove the parameter because its
default value is FALSE. When SQL Trace
is enabled for the entire instance, it is still
possible to disable it on a per session basis.
You can disable SQL Trace on a per-
session basis with the SQL statement
shown in the preceding section.

7.3. SQL Trace Functionality
Once SQL Trace is enabled, it gathers the
following information:

 Parse, execute, and fetch counts.
These counts can give you vital
information about the efficiency of
the SQL statements.

 CPU and elapsed times. This
information can tell you which
statements take the most time to
execute.

 Physical and logical reads. This
information can help you determine
the effectiveness of the database
buffer pool.

 Number of rows processed. This
information can be used as an
indication that more rows are being
processed than you expected, thus
indicating a problem.

 Library cache misses. This
information can show you the
effectiveness of the shared SQL
area and how well you are reusing
already parsed SQL statements.

SQL Trace puts this information into a
trace file in an unreadable form. You then
use the Oracle program TKPROF to format

the trace information into useful,
understandable data.

7.4. Interpreting SQL Trace
This section looks at some of the statistics
available from SQL Trace and how to
interpret them. For each SQL statement
executed, SQL Trace provides the
following information:

By looking at each of these parameters,
you can get an idea of how your SQL
statements are being processed and which
statements are taking the most time. By
analysing which statements are taking the
longest, you may be able to find some
inefficiencies you can correct. The SQL
Trace facility was enabled in a session by
using this Oracle command:

EXECUTE
RDBMS_system.set_sql_trace_in
_session(7,3,TRUE);

In another session (with SID = 7 and
Serial# = 3), the following SQL statement
was executed:

SELECT
SUBSTR(dogname,1,20) “Dog
Name”,
SUBSTR(description,1,20)
“Breed”,
SUBSTR(owner,1,20) “Owner”
FROM
dogs, breeds
WHERE
dogs.breed = breeds.breed

36 Explain Plan and SQL Trace the Two Approaches for RDBMS Tuning

ORDER BY
dogs.breed;

The SQL Trace facility was later disabled
using this Oracle command from the fist
session:

EXECUTE
RDBMS_system.set_sql_trace_in
_session(7,3,FALSE);

Following the execution of the SQL
statements, the trace file was translated by
running TKPROF as follows:

tkproforclshad.trctrace.out
sys=no explain=ed/ed

In this syntax, the following are true:
orclshad.trc Trace file generated by
SQL Trace trace.out Where I want the
output to go sys=no Indicates that no SYS
or recursive SQL statements should be
printed explain=ed/ed Specifies that I also
want to generate EXPLAIN PLAN output
TKPROF generated the output file shown
in Listing

The EXPLAIN PLAN Command
The EXPLAIN PLAN command shows
you the execution plan that the Oracle
optimizer has chosen for your SQL
statements. With this information, you can
determine whether the Oracle optimizer
has chosen the correct execution plan
based on your knowledge of the data and
the application. You can also use
EXPLAIN PLAN to determine whether
any additional optimization should be done
to your database (for example, the addition
of an index or the use of a cluster). The
EXPLAIN PLAN command is used to
display the execution plan chosen by the
Oracle optimizer for SELECT, UPDATE,
INSERT, and DELETE statements. After
using EXPLAIN PLAN, you can rewrite
your SQL statements and see whether the
new SQL statement is better optimized
than theoriginal statement. By analysing
the output, you may be able to provide

hints that the Oracle optimizer can use to
take better advantage of the data.

EXPLAIN PLAN Initialization
When you run SQL statements with the
EXPLAIN PLAN command, the output of
EXPLAIN PLAN is put into a table with
the default name plan_table. You must
create this table before you can run
EXPLAIN PLAN. The table can be created
in one of two ways:

Using the UTLXPLAN.SQL script
provided by Oracle.
Creating the plan_table table by hand.

The plan_table table is define as follows:

SQL> describe plan_table
Name Null? Type

-- -------- ----
STATEMENT_ID VARCHAR2(30)
TIMESTAMP DATE
REMARKS VARCHAR2(80)
OPERATION VARCHAR2(30)
OPTIONS VARCHAR2(30)
OBJECT_NODE VARCHAR2(128)
OBJECT_OWNER VARCHAR2(30)
OBJECT_NAME VARCHAR2(30)
OBJECT_INSTANCE NUMBER(38)
OBJECT_TYPE VARCHAR2(30)
OPTIMIZER VARCHAR2(255)
SEARCH_COLUMNS NUMBER(38)
ID NUMBER(38)
PARENT_ID NUMBER(38)
POSITION NUMBER(38)
OTHER LONG

You do not have to name the table
plan_table. You can direct EXPLAIN
PLAN to use a table of another name if
you want.

Invoking EXPLAIN PLAN
Invoke the EXPLAIN PLAN command
with the following Oracle command
sequence:

EXPLAIN PLAN

Database Systems Journal vol. VIII, no. 1/2017 37

SET STATEMENT_ID = ‘Testing
EXPLAIN PLAN’INTO plan_table
FOR
SQL Statement;

STATEMENT_ID should reflect the
statement’s function so that you can
recognize it at a later time. The plan_table
parameter is the name of the table you
created as described in the preceding
section. If the INTO clause is omitted, the
command defaults to the name plan_table.

Here is an example of a completed
command:
SQL> EXPLAIN PLAN
2 SET STATEMENT_ID = ‘Testing
EXPLAIN PLAN’
3 INTO plan_table
4 FOR
5 SELECT
6 SUBSTR(dogname,1,20) “Dog
Name”,
7 SUBSTR(breed_name,1,20)
“Breed”,
8 SUBSTR(owner,1,20) “Owner”
9 FROM
10 dogs, breeds
11 WHERE
12 dogs.breed = breeds.breed
13 ORDER BY
14 dogs.breed;
Explained.

The results of the EXPLAIN PLAN are
written into the table plan_table. The
following sectionexplains how to retrieve
the information in that table.

Extracting EXPLAIN PLAN Results
The output of EXPLAIN PLAN is written
to the table specified in the EXPLAIN
PLAN command (by default, to the table
named plan_table). You must extract this
information in order to look at the results
of EXPLAIN PLAN. The results can be
displayed with a query such as this:

SELECT SUBSTR(LPAD(‘
‘,2*(LEVEL-
1))||operation,1,30)

||’ ‘||SUBSTR(options,1,15)
||’
‘||SUBSTR(object_name,1,15)
||’ ‘||SUBSTR(DECODE(id, 0,
‘Cost = ‘||position),1,12)
“Statement Execution Plan”,
SUBSTR(optimizer, 1, 10)
“Optimizer”
FROM
plan_table
START WITH
id = 0 AND statement_id =
‘Testing EXPLAIN PLAN’
CONNECT BY PRIOR
id = parent_id
AND
statement_id = ‘Testing
EXPLAIN PLAN’;

This query results in the following output:

Statement Execution Plan Optimizer

------SELECT STATEMENT Cost =
CHOOSE
MERGE JOIN
SORT JOIN
TABLE ACCESS FULL BREEDS
SORT JOIN
TABLE ACCESS FULL DOGS
6 rows selected.

If the optimizer had chosen a cost-based
approach, the cost of the query would have
been reflected in the first line of the
optimization plan. Any features such as
parallel query are also reflected here. With
this information, you can tell whether your
SQL statements take advantage of indexes,
clusters, or hash clusters. If you use
EXPLAIN PLAN, you can see precisely
how your SQL statement is being executed
and what effect any changes you make to
the SQL statements have on the execution
plan. If you change your SQL statements
to take advantage of an index or a cluster,
for example, you can see an immediate
improvement. EXPLAIN PLAN output is
ideal for pointing out your execution plan
and may indicate that where you thought

38 Explain Plan and SQL Trace the Two Approaches for RDBMS Tuning

you were takingadvantage of an index, you
actually were not.

8. Registering Applications
When you register an application, the name
and the actions performed by that
application are stored in the database to
assist with debugging and performance
tuning efforts. When an application is
registered, its name and actions are
recorded in the V$SESSION and
V$SQLAREA views. This information can
be used later to track problems. To register
an application, use the following
procedures, available in the
RDBMS_APPLICATION_INFO package:

Procedure Description
SET_MODULE Used to set the name of
the module currently being run.
SET_ACTION Used to set the name of a
certain action currently being performed.
SET_CLIENT_INFO Used to set up
information for the client information field.
READ_MODULE Reads the current
values of the module and action fields for
the current session.
READ_CLIENT_INFO Reads the
current client information field for the
currently running session.
By registering the application, you can
track many different parameters. Some of
the values available through V$SQLAREA
are given here:

 Memory used
 Number of sorts
 Number of executions
 Number of loads
 Number of parse calls
 Number of disk reads
 Number of buffer gets
 Number of rows processed

These parameters can provide valuable
information when you are trying to debug
various modules within your application.
The information is enhanced by the
addition of actions, which can further
identify sections of your application.

9. Conclusion
Determining whether your SQL statements
are properly optimized can be as important
as anything else you can do to tune your
system. An improperly tuned SQL
statement can nullifyany work you have
done to optimize the database system. A
well-tuned server system thatis handling
hundreds or thousands of unnecessary SQL
statements can be perceived to havepoor
performance when, in reality, there is just
an abundance of excess work being done.
The Oracle SQL Trace facility and the
EXPLAIN PLAN command can be
valuable tools in debugginginefficient SQL
code. The SQL Trace facility and its
companion program TKPROF cangive
valuable information into such areas as
these

References
[1] Hitesh Kumar Sharma, Aditya Shastri,

Ranjit Biswas, “A Framework for

Automated Database TuningUsing

Dynamic SGA Parameters and Basic

Operating System Utilities”, Database

Systems Journal”, Academy of

Economic Studies-Bucharest,

Romania.

[2] Hitesh Kumar Sharma, Sandeep

Kumar, Sambhav Dubey, Pawan

Gupta, “Auto-selection and

management of dynamic SGA

parameters in RDBMS”, Computing

for Sustainable Global Development

(INDIACom), 2015 2nd International

Conference.

[3] Hitesh Kumar Sharma, Aditya Shastri,

Ranjit Biswas, “SGA Dynamic

Parameters: The Core Components of

Automated Database Tuning”,

Database Systems Journal”, Academy

of Economic Studies-Bucharest,

Romania.

[4] S. Elnaffar, W. Powley, D. Benoit, and

P. Martin, “Today’s DBMSs: How

Database Systems Journal vol. VIII, no. 1/2017 39

Autonomic are They?”, Proceedings of

the 14
th

DEXA Workshop, Prague,

2003, pp. 651-654.

[5] D. Menasec, Barbara, and R. Dodge,

“Preserving Qos of E-Commerce Sites

through Self-Tuning: A Performance

Model Approach”, Proceedings of

3
rd

ACM-EC Conference, Florida,

2001, pp.224-234.

[6] D. G. Benoit, “Automated Diagnosis
and Control of DBMS resources”,
EDBT Ph.D Workshop, Konstanz,
2000.

[7] B. K. Debnath “SARD: A Statistical

Approach for Ranking Database

Tuning Parameters” 2007.

[8] K. P. Brown, M. J. Carey, and M.

Livny, “Goal-Oriented Buffer

Management Revisited”, Proceedings

of ACM SIGMOD Conference,

Montreal, 1996, pp. 353-364.

[9] P. Martin, H. Y. Li, M. Zheng, K.

Romanufa, and W. Poweley, “Dynamic

Reconfiguration Algorithm:

Dynamically Tuning Multiple Buffer

Pools”, Proceedings of 11
th

DEXA

conference, London, 2002, pp.92-101.

[10] P. Martin, W. Powely, H. Y. Li,

and K. Romanufa, “Managing

Database Server Performance to Meet

Qos Requirements in Electronic

Commerce System”, International

Journal of Digital Libraries, Vol. 8, No.

1, 2002, pp. 316-324.

[11] S. Duan, V. Thummala, S. Babu,

“Tuning Database Configuration

Parameters with iTuned”, VLDB ‘09,

August 2428, 2009, Lyon, France.

[12] H. K. Sharma, A. Shastri, R.
Biswas “ Architecture of Automated
Database Tuning Using SGA
Parameters” , Database Systems
Journal vol. III, no. 1/2012.

[13] A. G. Ganek and T. A. Corbi, “The

Dawning of the Autonomic Computing

Era”, IBM Systems Journal, Vol. 42,

No. 1, 2003, pp. 5-18.

[14] H. K. Sharma, A. Shastri, R.

Biswas “A Framework for Automated

Database Tuning Using Dynamic SGA

Parameters and Basic Operating

System Utilities”, Database Systems

Journal vol. III, no. 4/2012.

[15] P. S. Yu, M. S. Chen, H. U. Heiss,

S. H. Lee, “On Workload

Characterization of Relational

Database Environments”, IEEE

Transactions on Software

Engineering”, Vol. 18, No. 4, 1992,

pp.347-355.

[16] J. Seok Oh, S. Ho Lee, “ Resource
Selection for Autonomic Database
Tuning”, Korea Research Foundation .

Dr. Hitesh Kumar Sharma: Author is an Assistant Professor (Senior Scale) in University of
Petroleum& Energy Studies, Dehradun. He has published 40+ research papers in International
Journal and 10+ research papers in National Journals.

Christalin Nelson. S: Author is an Assistant Professor (Selection Grade) in University of
Petroleum& Energy Studies, Dehradun. He has published 40+ research papers in International
Journal and 12 research papers in National Journals. He is Head of Department of Analytics.

