
12 Distributed algorithm to train neural networks using the Map Reduce paradigm

Performance Enhancement using SQL Statement
Tuning Approach

Hitesh Kumar SHARMA1, Mr. S.C. NELSON 2

University of Petroleum & Energy Studies, Dehardun, Uttarakhand, India
hksharma@ddn.upes.ac.in, cnelson@ddn.upes.ac.in

Tuning your SQL statements may be one of the most important tasks you can do to improve the
performance of your Oracle system. By tuning your SQL statements to be as efficient as possible, you
use your system to its full potential. Some of the things you can do to improve the efficiency of your
SQL statements may involve as little effort as rewriting the SQL to take advantage of some property of
your database or perhaps even changing the structure of the database itself.

Introduction
Tuning SQL really falls into two
separate categories:

Tuning an existing application.This
approach involves less flexibility in terms
of changing the structure of the application
and the database, but may provide
performance improvements anyway.
Designing a new application.With a new
application, you have the flexibility to
design the application and perhaps even
the database itself. With this approach, you
can take advantage of indexes, clustering,
and hashing.
This paper emphasis at both of these
categories. The amount of changes you can
do and the flexibility you have in changing
the design of the application and database
depends on your particular situation. The
more flexibility you have in designing the
database along with the application, the
better your overall results will be. Tuning
an Existing Application
Tuning an existing application can be
easier in some respects and harder in
others. It is easier in terms of determining
the data access patterns and the specific
problem areas because the application is
already running and can be profiled very
easily with SQL Trace and EXPLAIN
PLAN. However, fixing the problems can
be a challenge because you may not have
the flexibility to do so. With an existing
application, you may or may not have the
flexibility to fix the problem. For example,

you may have system performance
problems, but the system is still stable
enough and performs well enough for the
users to get their work done. It is hard to
justify the downtime involved in
reconfiguring the system when it is still in
a somewhat functional state. In this type of
situation, it is important to plan far in
advance and take advantage of scheduled
downtime to implement system
enhancements and fix any current
problems and anticipated additional growth
in user activity. This may be done by
changing Oracle or OS parameters or by
adding more disk drives, memory, and so
on. If you can afford to build in an
additional 20 to 30 percent growth, you
may save yourself some reconfiguration
time down the road.
Over the years, I have found that you take
advantage of additional capacity much
faster than most people anticipate and plan
for. I remember the old days of the PC
industry, when it was inconceivable that
anyone would ever need more than 64
megabytes of memory or even think of
needing a gigabyte of disk space on a
desktop PC. Today, high-end PC servers
support more than a gigabyte of RAM and
are getting close to supporting a terabyte of
disk space.

2. Problem Analysis
To tackle the problem of tuning an existing
Oracle application, I recommend using

1

Database Systems Journal vol. VIII, no. 1/2017 13

some kind of methodology. Here are the
steps that will hopefully lead you to the
problem’s resolution:
1. Analyse the system. Decide if there is a
problem; if there is one, what is it?
2. Determine the problem. What do you
think is causing the problem? Why?
3. Determine a solution and set goals.
Decide what you want to try and what
youthink will result from your changes.
What is it you want to accomplish? Do you
want more throughput? Faster response
times? What?
4. Test the solution. Try it. See what
happens.
5. Analyse the results. Did the solution
meet the goals? If not, you may want to
return to step 1, 2, or 3. By following a
plan of this sort, you will find it much
easier to resolve the problem—or
determineif there is a problem. It is
possible to spend a lot of time trying to
solve a performance problem that may not
even exist.
By looking at the performance of the
system as it is and carefully examining its
characteristics, you may be able to
determine whether any action is necessary
to fix the problem and how much effort is
involved. We like to classify performance
problems into oneof three categories:

 It’s broken. Performance is
severely handicapped because of a
configuration error or an incorrect
parameter in the OS or RDBMS.
Problems that fall into this category
cause a performance swing of 50
percent or more. Problems that fall
into this category are usually
oversights during the system build,
such as incorrectly building an
index or forgetting to enable
asynchronous I/O. This category of
problem may indicate a more
serious problem such as insufficient
disk drives or memory.

 It’s not optimized. Performance is
slightly degraded because of a
small miscalculation

in parameters or because system capacity
is slightly exceeded. These types of
problems are usually easily solved by fine-
tuning the configurations.

 Not a problem. Don’t forget that
sometimes there isn’t a problem;
you are just at the capacity of the
system. This “nonproblem” is
easily solved by upgrading or
adding more capacity. Not all
problems can be solved with
tuning.

In the first case, you may have to perform
some drastic fix that probably involves
rebuilding the database in some fashion.
The solution may be as drastic as having to
rebuild from scratch to add more disk
drives; it may be as simple as adding an
additional index.
In the second case, you may be able to tune
the system with an OS or database
configuration parameter. This is usually
very easy to do and does not involve much
risk. However, this solution does not
usually result in a huge increase in
performance.
The final case may involve adding an
additional CPU (if you have an SMP or
MPP machine) or upgrading to new
hardware. Perhaps you will find that there
really isn’t a problem after all and that
everyone is happy with the performance of
the system. One thing to remember: You
rarely see the end users if everything is
going fine. It’s only when there are
performance problems that you hear from
them.

3. Tuning the Application
When analysing the SQL statement, you
should look for two things:

 The SQL statement. What does it
do?

 The effect of the SQL statement.
What is it doing it to? How does it
fit into the big picture?

By looking at the SQL statement from
these different angles, you may find a
problem that you wouldn’t find by just
looking at it from one viewpoint.

14 Performance Enhancement using SQL Statement Tuning Approach

For example, consider an application that
does not used cached sequences to
generate a primary key value. By itself,
there is nothing wrong with this approach
and the application is probably very
efficient. But add a thousand users
executing the same application and the
problem is quite apparent: You have
contention getting the value for the
primary key value.

The SQL Statement
The best way to go about tuning the SQL
statements of an existing application is to
follow these few steps:
1. Familiarize yourself with the
application. You should be familiar not
only with the specific SQL statements but
with the purpose of the application and
what it does.
2. Use the SQL Trace facility to analyse
what the particular SQL statements are
doing, what features of the RDBMS are
being used, and how well those features
are being used.
3. Use EXPLAIN PLAN within SQL
Trace to analyse how the optimizer is
executing those SQL statements.
Now take a look at some specifics of these
steps.

Familiarize Yourself with the
Application
Look not only at the SQL statements
themselves but at the effect of those
statements. Make a chart of the different
SQL statements and determine the number
of accesses each SQL statement makes to
each table in the database. This chart can
give you an effective visual idea of which
tables are being accessed most frequently.
Consider the example shown in Figure 1.
This chart is a good quick reference for
which SQL statements are affecting which
tables. You can take this a step further and
split the chart into different types of
statements such as SELECTs, INSERTs,
UPDATEs, DELETEs, and so on.
Depending on your system and whether
your application is shrink-wrapped or

developed in-house, this may be or may
not be practical.

Use SQL Trace to Analyse the SQL
Statements
By running SQL Trace on the SQL
statements, you can gather much valuable
information about the specific operation of
each of the SQL statements. SQL Trace
provides such valuable information as the
following:

 Parse, execute, and fetch counts
 CPU and elapsed times
 Physical and logical reads
 Number of rows processed
 Library cache misses

You can use this information to determine
which SQL statements are efficient and
which ones are not. Look for the following
indications of inefficient statements:
SQL Trace Output Comments
CPU and elapsed time. If the CPU or
elapsed times are very high, this SQL
statement is a good candidate for tuning. It
doesn’t make much sense to spend time
tuning statements that don’t use many
resources. Executes Focus on SQL
statements that are frequently executed.
Don’t spend time on SQL statements that
are infrequently used.

Fig. 1. An example of an SQL statement-
analysis chart.

Database Systems Journal vol. VIII, no. 1/2017 15

Rows Processed. An SQL statement with a
high number of rows processed may not be
using an index effectively.
Library Cache. A large number of library
cache misses may indicate a need to tune
the shared pool or to change the SQL
statement to take advantage of the shared
SQL area. These clues may point you in
the direction of the SQL statements that
need to be tuned. You may have to alter
these SQL statements to improve their
efficiency. By using EXPLAIN PLAN,
you may find addition areas that can be
improved.

Use EXPLAIN PLAN to Analyse
Statement Execution
By running EXPLAIN PLAN as part of the
SQL Trace report, you can get a better idea
of how the SQL statement is actually being
executed by Oracle. This information (and
the information supplied by SQL Trace)
helps you judge the efficiency of the SQL
statement. Here is a list of some of the
things to look for:
Are the table’s indexes being used when
they should be? If not, the statement may
not be supplying the correct parameters in
the WHERE clause.

 Are indexes being used when they
should not be? In cases when you
are selecting too much data, you
may want to use the FULL hint to
bypass the index.

 What is the cost of the SQL
statement? This value is given in
the position column of the first row
of the table returned by EXPLAIN
PLAN.

 What is the amount of overhead
incurred from SELECT or
UPDATE operations?

 Is the statement being parallelized?
You may have to provide a hint to
effectively take advantage of the
Parallel Query option.

You should ask these questions and your
own specific questions as you review the
EXPLAIN PLAN output. By knowing
what your application is supposed to do,

you may find important information about
the efficiency of your statements by
looking at this information.

The Effect of the SQL Statement
In addition to looking at the SQL statement
itself, you should also look at the effect of
the SQL statements. In many cases, some
detail that is unimportant by itself can
become a problem when the application
and SQL statements are run by hundreds or
thousands of users at the same time. The
effect of this can be a bottleneck on a
specific table or even a specific row.
Here is a list of some things to look for
when analysing the effect of the SQL
statements:

 Is the SQL statement updating a
specific row? If you update a
specific row as a counter, it may
cause a bottleneck.

 Where is the majority of the table
activity? Is a specific table being
heavily accessed? This could
indicate an I/O bottleneck.

 Is there significant INSERT
activity? Is it all to one table? This
may indicate a contention problem
on a certain table.

 How much activity is there? Can
the system handle it? You may find
that the SQL statements overload
your particular system.

These are just a few of the things to
consider when you are looking at the
effects of the application on the system. I
have seen cases in which an application,
fully tested in the lab, moves into
production and fails because it was tested
with only one or two users. It is important
to take into account the effect of hundreds
or thousands of users simultaneously
accessing the application.

Review of How to Tune an Existing
Application
Tuning an existing application can be quite
a challenge. Determining whether the
system is in need of optimization and
figuring out how to do it is not always

16 Performance Enhancement using SQL Statement Tuning Approach

easy. The task may be easier if you take a
methodical approach like this one:
1. Analyse the situation. It may be that
your system is not in need of adjustment. I
do not recommend making any changes to
a stable system unless you have to.
2. Familiarize yourself with the
application. Look at the SQL statements
as well as the overall application.
Understand the purpose of the application.
3. Make an analysis chart. Look at the
table accesses being generated by the
application.
4. Run SQL Trace with EXPLAIN
PLAN. See what the SQL statements are
really doing. Choose the statements to
focus on based on how often they are used
and how many resources they use.
5. Understand how these SQL
statements affect the server system.
Look at Oracle and the OS. Determine
which disks may be overused and where
contention could occur when many users
run the application. With an existing
application, you may or may not have the
flexibility to fix the problem. I do not
recommend making any changes to an
existing application or a functioning
system unless some specific performance
problems are affecting users or limiting the
capacity of the system. Of course, if you
have the flexibility to make changes and
there is a need, any of the design and
application changes described in the
following section, “Designing a New
Application,” also apply to an existing
application.

Packages, Procedures, and Functions
Another way to improve performance of
your SQL statements is by using packages,
procedures, and functions. Packages can
help improve performance by storing
together procedures and functions that are
often used together. By storing these
elements together, you can reduce the I/O
required to bring them into memory from
disk. Because these elements are often
used together, they can also be loaded from
disk together. By using stored procedures,

you benefit in several ways. Stored
procedures allow you to reduce the amount
of data sent across the network. The stored
procedure requires fewer instructions to be
sent to the server; in many cases, less data
must be sent back to the client from the
server.
A second benefit of a stored procedure is
the increased chance that the SQL
statement can be used by other processes.
Because the SQL statement is defined and
used by many processes, chances are good
that the SQL statement will already be
parsed in the shared SQL area and
available to other users.

Optimization Approaches
Oracle offers several options for
optimization techniques. Among these are
a cost-based approach and a rule-based
approach. The approach you take depends
both on your application and your data. In
most cases, the cost-based approach is
recommended because it determines an
execution plan that is as good or better
than the rule-based approach. The
following sections look at the optimization
approaches available from Oracle and
when each approach is appropriate.
Remember that you can use hints to
specifically tell Oracle how you want the
SQL statement to be executed. There are
several ways you can indicate your
preference, as described later in this
chapter.

Rule-Based Approach
The rule-based approach to Oracle
optimization is straightforward and
consistent. In the rule-based approach, the
execution plan is derived by examining the
available paths and ranking them against a
list of predetermined values for these paths
(see Figure 2).

Database Systems Journal vol. VIII, no. 1/2017 17

Fig. 2. The rule-based optimization
rankings.

With the rule-based optimization approach,
the optimizer determines the ways to
execute the SQL statement. If there is more
than one way to execute the SQL
statement, the table in Figure is used to
choose the approach with the lowest
ranking.

Cost-Based Approach
The cost-based approach to optimization
uses existing knowledge of the database to
choose the most efficient execution plan.
During the normal operation of the
RDBMS, statistics are gathered on the data
distribution and storage characteristics.
The optimizer uses this information to
determine the most optimal execution plan.
This optimization approach takes three
steps:
1. The optimizer generates a set of possible
execution plans, just as it does with the
rule-based optimization approach.
2. The cost of each plan is determined
based on statistics gathered about the
database. This cost is based on CPU time
and the I/O and memory necessary to
execute the plan.
3. The optimizer compares the costs and
chooses the execution plan with the lowest
cost. The cost-based approach is usually
preferred. In some cases, the rule-based
approach may be more appropriate.

Discrete Transactions
Discrete transactions are an optional way
of processing SQL statements. They may
help performance in certain situations.
Discrete transactions can be used only in a
limited set of circumstances, but if you can
take advantage of them, they can help
performance. Discrete transactions work
with small, non-distributed transactions
and improve performance by deferring the
writing of redo information until the
transaction has been committed. Discrete
transactions cannot and should not be used
for all transactions.

How Do Discrete Transactions Work?
With discrete transactions, all changes
made to data are deferred until the
transaction has been committed. Even
though redo information is saved, it is not
written to the redo log until the transaction
has been committed. Until the commit, the
redo information is stored in another area
of memory. When the transaction is
committed, the redo information is written
to the redo log and the changes are made to
the data block. This arrangement causes
the rollback segments to be bypassed.
Because the changes are deferred until the
commit, the undo information does not
have to be saved. With normal
transactions, the undo information must be
saved in the rollback segments because the
data blocks have already been changed.
With discrete transactions, because the
data blocks have not been changed until
the commit, it is unnecessary to save that
information. Discrete transactions should
not be used on data accessed with long-
running queries because those queries will
not be able to access any undo information.

When Should Discrete Transactions Be
Used?
Discrete transactions should be used only
under certain circumstances and with
certain transaction types. Here are some
guidelines for when to use discrete
transactions:

18 Performance Enhancement using SQL Statement Tuning Approach

 Discrete transactions should be used to
modify only a few data blocks. The
amount of data and the amount of time
it takes to perform the transactions
should be as small as possible.

 Discrete transactions should not be
used on data that might be accessed by
long-running queries. Those queries
will not be able to access any undo
information.

 Discrete transactions should not be
used on any rows containing LONG
data. Because of these restrictions,
discrete transactions can be used only
with a small subset of transactions.
These transactions should be small and
quick. If you can take advantage of
discrete transactions, you should see a
fairly good performance benefit.

Discrete transactions work with small,
non-distributed transactions and can
improve performance by deferring the
writing of redo information until the
transaction has been committed. Discrete
transactions cannot and should not be used
for all transactions. Before making
modifications to your application design,
determine whether discrete transactions
can benefit your application. Determine
whether your transactions fit the profile
that can benefit from discrete transactions;
also determine whether these changes will
be significant enough to warrant the use of
discrete transactions. If your system is
under a heavy load of mostly small
transactions, it may be worth investigating
discrete transactions. Try implementing
them and see what kind of benefit they
return.

Tuning Considerations
The data warehouse is tuned to allow
several large processes to run at maximum
throughput. There is usually no concern for
response times. We may have to tune both
Oracle and the server operating system.
The following sections look first at Oracle
and then at the server operating system.

Server OS Tuning

We may have to tune the server OS to
provide for a large number of processes (if
we are using the Parallel Query option) and
optimal I/O performance. Some of the
things we may have to tune in the server
OS are listed here; remember that some
OSes may not require any tuning in these
areas:
 Memory. Tune the system to reduce

unnecessary memory usage so that
Oracle can use as much of the system’s
memory as possible for the SGA and
server processes. We may also need
significant amounts of memory for
sorts.

 Memory enhancements. Take
advantage of 4M pages and ISM, if
they are available. Both features can
improve Oracle performance in a data
warehouse environment.

 I/O. If necessary, tune I/O to allow for
optimal performance and use of AIO.

 Scheduler. If possible, turn off pre-
emptive scheduling and load balancing.
In a data warehousing system, allowing
a process to run to completion (that is,
so that it is not pre-empted) is
beneficial.

 Cache affinity. We may see some
benefits from cache affinity in a data
warehousing system because the
processes tend to run somewhat longer.
The server operating system is mainly
a host on which Oracle does its job.
Any work done by the operating
system is essentially overhead for
Oracle. By optimizing code paths and
reducing OS overhead, we can enhance
Oracle performance.

Hardware Enhancements
For a data warehouse, there are several
hardware enhancements that can improve
performance. These hardware
enhancements can be beneficial in the area
of CPU, I/O, and network, as described in
the following sections.

CPU Enhancements

Database Systems Journal vol. VIII, no. 1/2017 19

Enhancing the CPUs on our SMP or MPP
system can provide instantaneous
performance improvements, assuming that
we are not I/O bound. The speed of CPUs
is constantly being improved as are new
and better cache designs. For SMP or MPP
machines, the process of enhancing the
CPU may be as simple as adding an
additional CPU board. Before we purchase
an additional processor of the same type
and speed, however, consider upgrading to
a faster processor. For example, upgrading
from a 66 MHz processor to a 133 MHz
processor may provide more benefit than
purchasing an additional 66 MHz CPU
with the added benefit that we now have
the option of adding more 133 MHz CPUs.
Because of the complexity and run time
required by these queries, we can benefit
from more and faster CPUs. SMP and
MPP computers provide scalable CPU
performance enhancements at a fraction of
the cost of another computer. When
upgrading our processors or adding
additional processors, remember that our
I/O and memory needs will probably
increase along with the CPU performance.
Be sure to budget for more memory and
disk drives when we add processors.

I/O Enhancements
We can enhance I/O by adding disk drives
or purchasing a hardware disk array. The
data warehouse can benefit from the disk
striping available in both hardware and
software disk arrays.
Using Oracle data file striping can also
help the performance of our data
warehouse.
If our system performs only one query at a
time and we are not taking advantage of
the Oracle Parallel Query option, we may
not see a benefit from a hardware or
software disk array. In this specific case,
we do not recommend OS or hardware
striping; we should use traditional Oracle
striping. Because we are executing only
one query at a time without using the
Parallel Query option, the I/Os to the data
files are purely sequential on the table

scans. This scenario is somewhat rare; any
variance from “pure table scans” results in
degraded performance. Hardware and
software disk arrays have the added benefit
of optional fault tolerance. We should first
choose the correct fault tolerance for our
needs and then make sure that we have
sufficient I/O capabilities to achieve the
required performance level. If we use fault
tolerance, we will most likely have to
increase the number of disk drives in our
system. Another benefit of hardware disk
arrays is caching. Most disk arrays on the
market today offer some type of write or
read/write cache on the controller. The
effect of this cache is to improve the speed
of writing to the disk; the cache also masks
the overhead associated with fault
tolerance. If our queries often perform
table scans, we may see good improved
performance with disk controllers that take
advantage of read-ahead features. Read-
ahead occurs when the controller detects a
sequential access and reads an entire track
(or some other large amount of data) and
caches the additional data in anticipation of
a request from the OS. Unlike an OLTP
system in which this is just wasted
overhead, in the data warehouse where we
are performing DSS queries, it is likely
that we will need that data soon; if we do,
it will be available very quickly.
Enhancements to the I/O subsystem almost
always help in a data warehouse
environment because large amounts of data
are accessed. Be sure that we have a
sufficient number of disk drives, properly
configured. An I/O bottleneck is usually
difficult to work around. As with all types
of systems, a well-tuned application is very
important.

4. Conclusion
Tuning your SQL statements is one of the
most important tasks you can do to
improve performance.
In fact, you should tune your SQL
statements before tuning your RDBMS
server. By tuning your SQL statements to
be as efficient as possible, you can use

20 Performance Enhancement using SQL Statement Tuning Approach

your system to its full potential. Some of
the things you can do to improve the
efficiency of your SQL statements may
involve as little effort as rewriting the SQL
to take advantage of a property of your
database

References
[1] Hitesh Kumar Sharma, Aditya Shastri,

Ranjit Biswas, “A Framework for

Automated Database TuningUsing

Dynamic SGA Parameters and Basic

Operating System Utilities”, Database

Systems Journal”, Academy of

Economic Studies-Bucharest,

Romania.

[2] Hitesh Kumar Sharma, Sandeep

Kumar, Sambhav Dubey, Pawan

Gupta, “Auto-selection and

management of dynamic SGA

parameters in RDBMS”, Computing

for Sustainable Global Development

(INDIACom), 2015 2nd International

Conference.

[3] Hitesh Kumar Sharma, Aditya Shastri,

Ranjit Biswas, “SGA Dynamic

Parameters: The Core Components of

Automated Database Tuning”,

Database Systems Journal”, Academy

of Economic Studies-Bucharest,

Romania.

[4] S. Elnaffar, W. Powley, D. Benoit, and

P. Martin, “Today’s DBMSs: How

Autonomic are They?”, Proceedings of

the 14th DEXA Workshop, Prague,

2003, pp. 651-654.

[5] D. Menasec, Barbara, and R. Dodge,

“Preserving Qos of E-Commerce Sites

through Self-Tuning: A Performance

Model Approach”, Proceedings of 3rd

ACM-EC Conference, Florida, 2001,

pp.224-234.

[6] D. G. Benoit, “Automated Diagnosis

and Control of DBMS resources”,

EDBT Ph.D Workshop, Konstanz,

2000.

[7] B. K. Debnath “SARD: A Statistical

Approach for Ranking Database

Tuning Parameters” 2007.

[8] K. P. Brown, M. J. Carey, and M.

Livny, “Goal-Oriented Buffer

Management Revisited”, Proceedings

of ACM SIGMOD Conference,

Montreal, 1996, pp. 353-364.

[9] P. Martin, H. Y. Li, M. Zheng, K.

Romanufa, and W. Poweley, “Dynamic

Reconfiguration Algorithm:

Dynamically Tuning Multiple Buffer

Pools”, Proceedings of 11th DEXA

conference, London, 2002, pp.92-101.

[10] P. Martin, W. Powely, H. Y. Li, and

K. Romanufa, “Managing Database

Server Performance to Meet Qos

Requirements in Electronic Commerce

System”, International Journal of

Digital Libraries, Vol. 8, No. 1, 2002,

pp. 316-324.

[11] S. Duan, V. Thummala, S. Babu,

“Tuning Database Configuration

Parameters with iTuned”, VLDB ‘09,

August 2428, 2009, Lyon, France.

[12] H. K. Sharma, A. Shastri, R. Biswas “

Architecture of Automated Database

Tuning Using SGA Parameters” ,

Database Systems Journal vol. III, no.

1/2012.

[13] A. G. Ganek and T. A. Corbi, “The

Dawning of the Autonomic Computing

Era”, IBM Systems Journal, Vol. 42,

No. 1, 2003, pp. 5-18.

[14] H. K. Sharma, A. Shastri, R. Biswas

“A Framework for Automated

Database Tuning Using Dynamic SGA

Parameters and Basic Operating

System Utilities”, Database Systems

Journal vol. III, no. 4/2012.

Database Systems Journal vol. VIII, no. 1/2017 21

Dr. Hitesh Kumar Sharma: Author is an Assistant Professor (Senior Scale) in University of
Petroleum& Energy Studies, Dehradun. He has published 40+ research papers in International
Journal and 10+ research papers in National Journals.

Christalin Nelson. S: Author is an Assistant Professor (Selection Grade) in University of
Petroleum& Energy Studies, Dehradun. He has published 40+ research papers in International
Journal and 12 research papers in National Journals. He is Head of Department of Analytics.

