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In this paper it is implemented the inner JOIN operator in the latest Pascal Compute Unified 
Device Architecture (CUDA), using two approaches developed in the CUDA Toolkit 8.0: a 
classical approach in which a thread selects one element from the first table and performs a 
binary search for the corresponding keys residing in the second table; a second approach that 
makes use of the dynamic parallelism feature of the Pascal architecture to solve the problem 
of task processing unbalance that may occur when the number of corresponding elements is 
different along the threads. The Compute Unified Device Architecture dynamic parallelism 
feature is used to invoke a supplementary kernel function in order to build in parallel the final 
output set of elements.  
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Introduction 
In recent years, due to the 
unprecedented huge increase of the 

data volume that must be processed in a 
wide area of applications, scientists had 
to devise novel and efficient solutions for 
surpassing these difficulties. One of the 
most prominent breakthroughs in 
scientific computing is marked by the 
Compute Unified Device Architecture, 
released by the NVIDIA Company in 
2007.  
This solution allowed the developers of 
software applications to make use of the 
tremendous parallel processing power of 
the Graphics Processing Units (GPUs) to 
solve computational intensive problems 
efficiently and in a timely manner [1].  
This major development had a massive 
impact on the industry, economy, and 
medicine and on many scientific research 
fields. The shift from the traditional 
sequential programming to the parallel 
processing one has opened up new paths 
and numerous possibilities in the 
information technology landscape, 
facilitating huge leaps and advances in 
technology, bringing many advantages 
through this new computing approach.  
Until the release of the CUDA 
architecture, the primary role of the GPU 
has been solely to process graphics tasks, 

mainly in parallel. The introduction of this 
concept has provided the necessary means to 
the programmers for using the parallel 
processing power of the GPUs without 
having to know in detail specialized 
graphics programming.  
The Graphics Processing Units are not 
targeting exclusively games developers 
anymore. Through the CUDA approach, the 
GPU becomes a general purpose 
programmable equipment that can be 
addressed by the developers in a wide area 
of applications.  
In the last decade, there have been 
conducted a lot of researches that target the 
development of software optimization 
solutions using the Compute Unified Device 
Architecture [2], [3], [4]. Improving the 
software performance of data processing 
represents the main focus of researches from 
various fields, because of their multiple 
applications in: decision support systems 
[5], [6], electronic payments systems [7], 
[8], complex solutions for the office 
environment [9], temporal data mining [10].  
The latest GPU Compute Unified Device 
Architecture, Pascal, released in the Spring 
of 2016, brings multiple improvements and 
new features to the previous versions, like:  
a new 16 nm Fin Field Effect Transistor 
(FinFET) production process that provides 
an improved performance and efficiency per 
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Watt, a new interconnect offering 
significant speeds up, support for a new 
type of memory architecture, an 
improved programming model and 
specifically optimized artificial 
intelligence algorithms. Thus, the Pascal 
architecture offers new opportunities for 
improving the software performance of 
compute intensive applications [11].   
The newly developed software 
applications that have to process huge 
volumes of data differ significantly in 
terms of memory requirements and in the 
order of processing the instructions of the 
source code. This is the main reason why 
CUDA developers must take into account 
the hierarchical nature of parallelism, that 
is strictly tied to the tasks that have to be 
processed and the resulting processing 
time.  
The research issues of significant 
importance consist in obtaining efficient 
and high performance parallel 
implementations in the Compute Unified 
Device Architecture of algorithms that 
handle complex data structures, scaling 
the problem to be solved according to the 
GPU features, thus obtaining an increased 
memory bandwidth and low execution 
time.  
This article addresses the above 
mentioned issues in a specific situation 
regarding the implementation of the inner 
JOIN operator in the latest Pascal 
Compute Unified Device Architecture. 
The JOIN operator is a relational algebra 
operator that is frequently used in 
relational database applications. The 
inner JOIN operator processes two tables 
and returns a new one, using in the 
process one or more columns from each 
of the tables as a key and computes the 
Cartesian product for all the rows that 
correspond to the respective keys.  
The article brings contributions to the 
current state of knowledge by developing 
and implementing two approaches in the 
latest Pascal Compute Unified Device 
Architecture using the CUDA Toolkit 
8.0:  a classical approach in which a 

thread selects one element from the first 
table and uses the method described in [1] to 
perform a binary search for the 
corresponding keys residing in the second 
table; a second approach that makes use of 
the dynamic parallelism feature to solve the 
problem of task processing unbalance that 
may occur when the number of 
corresponding elements is different along 
the threads. 
Although there have been conducted 
extensive researches in the literature 
regarding the CUDA dynamic parallelism 
feature [12], [13], [14], to the extent of the 
available information, none of the works so 
far have analysed the impact of the Compute 
Unified Device Architecture dynamic 
parallelism feature when developing 
applications targeting the latest Pascal 
CUDA architecture.  
In the following, the paper has the 
subsequent structure: in the 2nd section, there 
are presented the main features offered by 
the Pascal CUDA architecture; the 3rd 
section focuses on the main parallel 
programming issues that have been taken 
into consideration in developing the two 
approaches; in the 4th section are presented 
and compared the experimental results based 
on the two developed approaches; the 5th 
section presents the conclusions. 
 
2 The main features offered by the Pascal 
CUDA architecture 
When compared to the previous Maxwell 
and Kepler Compute Unified Device 
Architectures, one can observe that the most 
recent Pascal GP100 architecture offers 
substantial enhancements to the streaming 
multiprocessor (SM) such as: the level of 
occupancy afferent to the cores, and 
improved efficiency consisting in an 
enhanced performance per Watt metric.  
The Pascal architecture offers important 
improvements, resulting in a higher overall 
performance than on all the other previous 
architectures. One can note that the Pascal 
GP100 architecture comprises 64 CUDA 
cores per each streaming multiprocessor, 
with a single precision of FP32 (Fig. 1).  
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Fig. 1. A detailed insight of thelatest 

Pascal GP100 SM architecture1 
 
In contrast with this, the previous 
Maxwell architecture comprises 128 
CUDA cores (FP32 precision) within 
each streaming multiprocessor, while the 
Kepler CUDA architecture contains 192 
CUDA cores (FP32 precision) in each of 
the streaming multiprocessors. In 
addition to this, the Pascal GP100 
architecture incorporates 32 CUDA cores 
having a FP64 precision, thus resulting in 
half a rate when performing floating point 
computations with a FP64 precision. The 
Pascal architecture offers the technical 
possibility to incorporate in certain 
situations two operations having a 
precision of FP16 into a computing core 
that has a FP32 precision.  
The Pascal GP100 SM architecture also 
contains two schedulers for warps, two 
buffers for instructions and two 
dispatching units per each processing 
block (Fig. 1). The Maxwell architecture 
incorporates a double number of cores 
than the Pascal one does, but the Pascal 
                                                 
1The Figure has been created based on the figure 
provided by the official NVIDIA documentation 
sitehttps://devblogs.nvidia.com/parallelforall/insi
de-pascal/ , accessed on 10.14.2016, at 23:10 

architecture maintains the Maxwell's register 
file's size and has the possibility to attain the 
same occupancy level of the warps and 
thread blocks.  
The number of registers per streaming 
multiprocessor has remained unchanged 
when compared to the Maxwell and Kepler 
architectures but it brings a significant 
improvement. Although, the Pascal 
architecture offers a higher total amount of 
register memory because it has a higher 
number of streaming multiprocessors than 
the other CUDA architectures.  
A comparison of the most popular Pascal 
architecture implementations (GP100 
implemented in Tesla P100, GP102 
implemented in Titan X, GP104 
implemented in GeForce GTX1080) and 
their main technical characteristics are 
depicted in Table 1.  

 
Table 1. A comparison between the 

technical features of the main  
Pascal architecture implementations2 

 
 
The graphic cards that implement the CUDA 
Pascal architecture cover a broad range of 
market segments, starting with game 

                                                 
2The table has been created according to the official 
Nvidia documentation site 
https://devblogs.nvidia.com/parallelforall/inside-
pascal/ , accessed on 10.15.2016, at 00:30 
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oriented cards (GTX1080, GTX 1070, 
GTX 1060), up to scientific 
computational dedicated ones (Tesla 
P100). The novel CUDA Pascal 
architecture offers new features and 
innovations that provide the customers 
the possibility to solve problems that 
were previously impractical to approach, 
due to the huge computational 
requirements. Based on its undeniable 
advantages and prospects regarding the 
improvement of the parallel processing 
software performance, energetic 
efficiency and affordable price, the 
CUDA Pascal architecture is a viable 
option for developing solutions for 
optimizing database operations on huge 
datasets.  
In the following section, there are 
analysed the main parallel programming 
issues that have been taken into 
consideration when developing the two 
approaches for implementing the inner 
JOIN operator in the latest Pascal 
Compute Unified Device Architecture 
(CUDA).  
 
3 Analyzing important parallel 
programming aspects in order to 
develop the CUDA implementation 
The most important aspects that had to be 
considered when developing the two 
approaches consisted in the appropriate 
management of the synchronization 
process, of race conditions, of atomic 
operations, avoiding memory leaks and 
dynamic parallelism.  
The management of race conditions can 
be easily achieved when developing 
classical applications that run on central 
processing units and need only a single 
thread of execution. In such a situation 
the programmer only has to analyse the 
data flow in order to notice if a certain 
value has been retrieved from a variable 
before the latest updated value has been 
stored in it.  
Nowadays, most of the existing 
compiling tools are able to signal and 
exactly point out these problems when 

developing single threaded applications. In 
the case of developing multi-threaded 
applications, these aspects must be 
meticulously analysed and prevented. 
In the Compute Unified Device 
Architecture, the threading system 
automatically aims to attain the highest level 
of performance, often having as a result the 
fact that threads are executed without taking 
into account a certain chronology. For 
example, when processing an array in a 
certain program loop and the result from a 
certain step depends on the result obtained at 
a previous step, if the programmer allocates 
for every element a thread, the outcome will 
be correct only when the threads are 
executed in an ascending order and the 
result from the previous step has already 
been computed. If more threads are executed 
in parallel, the risks are high for the result to 
be incorrect or even the whole program may 
crash [1].  
In some situations, randomly, the program 
may even produce the correct results if by 
chance a thread gets to finish the processing 
before another one needs the respective 
value. These particular issues illustrate the 
concept of a race condition, meaning that 
certain parts of a program are running in the 
same time to a certain execution point.  
There are situations when a certain warp 
reaches the execution point and computes 
the result before another warp that needs the 
respective value reaches that point and there 
can also happen situations when the second 
warp reaches the execution point first, thus 
resulting in a computing error.  
Therefore, a first characteristic for race 
conditions is that they manifest only in 
certain situations when particular conditions 
have been met, making it very hard for the 
developer to identify and pinpoint the 
problem.  
Another important characteristic of these 
race conditions is that they are tightly 
related to the moment of executing. There 
are situations when introducing a breakpoint 
in the source code execution in order to 
debug the problem results in the altering of 
the warp's execution pattern and sometimes 
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the error doesn't have the necessary 
chronology to happen.  
In this situation, one has to disregard the 
place in the source code where the error 
manifests itself but has to analyse 
thoroughly how the threads are ordered 
and the pattern execution of blocks in 
order to pinpoint the trigger of the error. 
A programmer that develops Compute 
Unified Device Applications must keep 
in mind the fact that the CUDA thread 
mechanism does not enforce a certain 
chronology in the execution of thread 
blocks or of the warps.  
If there is even a single place in the 
source code where the programmer 
implements the logic of the program by 
presuming that a certain chronology will 
be followed by the thread blocks, then the 
whole application is faulty. There are 
certain situations when a programmer can 
and should state and create a certain order 
of the elements that are processed (for 
example, through sorting actions). 
Nevertheless, the programmer must 
develop his application by taking into 
account that the order of execution in the 
equipment is indeterminate and thus, one 
must use a synchronization technique.   
In the Compute Unified Device 
Architecture, the synchronization process 
makes it possible for the programmer to 
exchange data among the threads of the 
same block of threads or he can even 
exchange information among multiple 
blocks belonging to the same grid of 
blocks. Each thread has available a local 
memory region and its own register 
memory [1]. 
In order for the threads belonging to a 
certain block to be able to parallel 
process a dataset and exchange 
information with each other, they will 
have to store and retrieve data using the 
shared memory that is available at the 
block level.  
In the Compute Unified Device 
Architecture, the warp has a size of 32 
threads and offers to the device the 
possibility to schedule their execution. 

Therefore, in such a case the 
synchronization problem may arise. In the 
situation when the warps have the same 
execution paths, the operations are 
automatically serialized in the block, being 
processed in warps, at different moments of 
time. In spite of this, the pipelining of warps 
cannot be maintained consistent, due to 
external dependencies that may setback a 
warp for a period of time.  
Within a block of threads, there can happen 
a situation when each warp inside the block 
retrieves data from the global memory. All 
the warps use the L1 cache memory except 
the final one that has to retrieve its data from 
global memory.  In a situation like this, this 
warp will lag more iterations behind the 
others. It is obvious that without the 
implementation of carefully selected 
synchronization points, one cannot be 
certain that he obtains the correct results 
under all circumstances [1]. 
The synchronization process is mandatory in 
situations when the threads from different 
warps have to share data. When executing a 
CUDA program, the scheduling mechanism 
invokes considerable sets of block of threads 
that have their identifiers increase in a linear 
pattern. Only when a certain number of 
blocks have been freed from memory, the 
scheduling mechanism invokes new blocks 
of threads.  
This was particularly useful when 
developing the two approaches for 
implementing the inner JOIN operator in the 
latest Pascal Compute Unified Device 
Architecture, as this made it possible to 
improve the access and availability of the L1 
cache memory. Conversely, there is a risk of 
diminishing the state of the warps that are 
free and can be scheduled.  The execution of 
warps and of thread blocks is spread at 
different points of the execution chronology 
and as a consequence it is absolutely 
necessary to assure that the computing has 
finished at certain points of an application.  
In order to achieve this, when developing 
the two approaches, the "__syncthreads" 
primitive along with shared memory have 
been used to solve the race conditions and 
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achieve correct synchronization. When 
developing the approaches, the 
synchronization was mandatory but was 
applied minimally as to ensure the 
obtaining of the correct results, avoiding 
the risk to keep the Graphics Processing 
Unit idle.  
The fact that the chronology of operation 
is not assured also stands true for basic 
operations like read, write and update as 
one cannot be sure that these operations 
will finish in the same time in all the 
streaming multiprocessors of the 
Graphics Processing Unit. For that 
reason, when there are more threads that 
have to store their result in the same area 
of memory, the use of atomic operations 
assures the fact that different operations 
will be executed just as if they were a 
whole serial one.   
Until recently, the problem of memory 
leaks was in strict conjunction with the 
CPU code. However, the same stands true 
when developing applications for the 
Compute Unified Device Architecture. 
Just like in the case of the CPU code, if a 
programmer allocates memory 
dynamically in CUDA, he must also 
deallocate it explicitly when the 
application no longer needs it.  
There are some situations involving 
streams and events, where the Compute 
Unified Device Architecture runtime 
allocates the necessary memory the first 
time they are created. The programmer 
must use explicit instructions to 
deallocate the memory 
(cudaStreamDestroy, cudaEventDestroy), 
otherwise the Compute Unified Device 
Architecture runtime is not signalled to 
deallocate the memory [1].  
When developing the two approaches, the 
"cuda-memcheck" tool has been used in 
order to identify and later solve problems 
related to memory leaks and memory 
usage.  
The dynamic parallelism feature which is 
available on the Pascal architecture 
makes it possible for a CUDA kernel to 
invoke and synchronize additional child 

CUDA kernel functions. Until this feature 
was implemented in the Kepler architecture, 
the programmer had to invoke more kernel 
functions or to make sure that some threads 
within the block are left idle in order to be 
used later on. These techniques consumed 
high amount of resources and rendered 
inefficient results, especially when 
processing huge volumes of data.  
The graphics processing unit was not used 
appropriately and the kernel functions 
couldn't store their data in the shared 
memory area because this type of memory 
exists only while the kernel does.  In 
essence, a child kernel function can be 
invoked by a parent one and it is offered the 
possibility to synchronize the results when 
the child kernel has finished processing its 
task.  The parent kernel function can make 
use of the result received from the child 
kernel function, with no implication of the 
Central Processing Unit.   
A significant advantage that the dynamic 
parallelism feature brings to the developer 
consists in the fact that he no longer has to 
marshal and move the data that needs to be 
processed. Supplementary parallelism is 
obtained and can be made available 
dynamically to the Graphics Processing 
Unit's scheduling and load balancing 
mechanisms, in accordance to the volume of 
data that has to be processed. Up to the 
introduction of this feature, developers were 
compelled to remove recursion techniques 
when building algorithms and any other type 
of looping elements that did not comply to a 
single and flat-level of parallelism [12].  
The Compute Unified Device Architecture 
dynamic parallelism feature makes it 
possible to set up and execute grids of thread 
blocks, in addition to delay action until the 
grids have completed the execution up to the 
threads that are already processing inside a 
grid of blocks. This means a certain thread 
that belongs to a grid of blocks and 
processes data can set up and execute 
another grid of blocks, called child grid, 
which will be owned by the parent grid of 
blocks.  
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A mechanism of nesting is in place, 
signifying that the finalization of the 
parent cannot be finished while waiting 
for the child grids to finalize. The 
Compute Unified Device Architecture 
runtime assures an implied 
synchronization among the parent kernel 
and the child kernel functions. 
 
4 The CUDA implementation of the 
inner JOIN operator  
The inner JOIN operator has been 
implemented in the latest Pascal CUDA 
architecture using two approaches 
developed in the CUDA Toolkit 8.0.  
In the first classical approach, a thread 
selects from the first table one element 
and performs a binary search in parallel 
according to the method described in [1], 
in order to identify the corresponding 
keys that reside in the second table.  
The second approach implements the 
dynamic parallelism feature of the Pascal 
architecture for solving the problem of 
task processing unbalance that is likely to 
occur when the number of corresponding 
elements is different along the threads. 
The Compute Unified Device 
Architecture dynamic parallelism feature 
is used for invoking a supplementary 
kernel function that builds in parallel the 
final output set of elements. This 
approach uses the parent thread from the 
GPU to invoke a child kernel function.  
The CUDA dynamic parallelism feature 
has been implemented in the second 
approach instead of the parallel looping 
structures that were implemented in the 
classical one.  
The child kernels are allocated 
dynamically by the parent threads in 
order to process in parallel the tasks. In 
contrast with the dynamic parallelism 
approach, in the classical approach, a 
loop structure is used by the threads 
within the warps to process the data in a 
different number of iterations, 
corresponding to the workload and the 
available resources.  
One of the major advantages of the 

dynamic parallelism approach is that the 
resources of the graphics processing unit are 
better employed and a higher occupancy 
level of the GPU's resources is obtained 
because the parent threads invoke child 
kernel functions that process the tasks in 
parallel by means of minimal or even no 
control divergence.  
A frequent problem when using this 
approach can arise due to a lack of 
parallelism (when the dataset has a small 
dimension), that makes it unfeasible to 
invoke the child kernel CUDA function. In 
this case, the processing takes place in the 
parent kernel function.  
The patterns of memory access are different 
in the two developed approaches. In the 
classical approach, a thread accesses the 
memory using more loop iterations, while in 
the second approach, by using a single 
instruction, the threads of the child kernel 
function are contiguous and process the data 
in memory more efficiently, thus improving 
the alignment of memory and obtaining 
optimal coalesced memory operations along 
with an improved hit rate of the L1 cache.   
In the case of the second approach, the 
Compute Unified Device Architecture 
dynamic parallelism feature allows to 
execute the same kernel function 
recursively, while in the case of the first 
approach the repeated execution of the same 
kernel function is achieved through multiple 
looped iterations. 
The dynamic parallelism feature makes it 
possible for the parent kernel to invoke 
multiple child kernel functions separately 
that are processing the data in parallel. The 
execution of the child kernel functions is 
achieved by using a CUDA stream for every 
child launch in order to strengthen the 
chances of concurrent execution of the child 
kernel functions [13].  
In both the approaches, the tasks are 
partitioned to multiple blocks of threads. In 
the experimental tests, different sizes were 
tested for both the number of blocks and 
threads within a block and the best results 
were obtained using the following allocation 
of resources: the number of allocated thread 
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blocks is the smallest integer greater than 
or equal to the ratio between the number 
of records and 1024; if the number of 
thread blocks is greater than 1, the size of 
a thread block is 1024; otherwise, the 
number of threads per block equals the 
number of records that have to be 
processed.  
In the dynamic parallelism approach, the 
best results are obtained when the thread 
block size is a multiple of a warp size as 
this avoids the occurring of divergent 
threads within the warps. If the 
dimension of the thread block is not a 
multiple of a warp size, the parent kernel 
function processes the rest of the threads. 
The child kernels functions cannot 
retrieve data directly from the shared 
memory owned by the parent kernel 
function. Whenever a child kernel 
function has to retrieve the data from the 
parent kernel's shared memory, it can 
receive it as a kernel function argument, 
or the respective value can be stored into 
the global memory.  
Both of these methods have their 
drawbacks, the first one cannot pass an 
increased number of elements as 
arguments of the function, while the 
second method suffers an enormous 
penalty due to the performance 
characteristics of the global memory.  
In the second approach, the 
synchronization process was used only 
when strictly necessary, because even if 
the dynamic parallelism feature offers the 
possibility to synchronize among child 
kernel functions and parent kernel 
functions, the synchronization process 
affects the overall performance of the 
application tremendously.  
As it is stated in the official NVIDIA 
CUDA C Programming Guide 3 , even 
though a single thread synchronizes, the 
process affects all the other threads that 
reside within the same thread block, even 

                                                 
3http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#ixzz4NGV8NesH 
accessed on 10.16.2016, at 19:45 

if they didn't perform a synchronization 
operation.  
A considerable penalty that the dynamic 
parallelism feature brings is due to the fact 
that the device must keep a detailed track of 
the execution and also due to the whole 
dynamic parallelism management 
mechanism.  In the following section, there 
are presented the experimental results and it 
is made an analysis of the two developed 
approaches. 
 
5 Experimental results and performance 
analysis of the developed approaches 
In this section, it is analyzed the 
performance of the two developed 
approaches that implement the inner JOIN 
operator in the latest Pascal Compute 
Unified Device Architecture (CUDA). The 
following hardware and software 
configurations have been used in the testing 
methodology: Intel i7-5960x operating at 3.0 
GHz with 32GB (4x8GB) of 2144 MHz, 
DDR4 quad channel and the GeForce GTX 
1080 NVIDIA graphics card with 8GB 
GDDR5X 256-bit from the Pascal 
architecture, the Windows 10 Educational 
operating system, the CUDA Toolkit 8.0 
with the NVIDIA developer driver.  
The average execution time for both the 
classical approach and the dynamical 
parallelism approach has been calculated 
using the "StopWatchInterface" included in 
the Compute Unified Device Architecture 
application programming interface, in order 
to define, create and manage timestamps and 
timers.  
The set of developed tests computes the 
average execution times obtained in the two 
approaches, when implementing the inner 
JOIN operator, when the input data tables 
have a varying number of records, ranging 
from 64 to 1,048,576 and the output data 
table is the one computed through the JOIN 
operator. The execution time (measured in 
milliseconds) is computed as an average of 
10,000 iterations, that has been calculated 
after eliminating the first ten supplementary 
iterations, as to be sure that the Graphics 
Processing Unit has attained the highest 
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clock frequency. In Table 2 are presented 
the registered experimental results.  
 

Table 2. The registered experimental 
results 

 
 
The second column of this table contains 
the number of total input records (NTIR), 
the third column contains the average 
execution times when developing the 
classical CUDA implementation of the 
inner JOIN operator (CIT), while the last 
column contains the average execution 
times when developing the dynamic 
parallelism CUDA implementation of the 
inner JOIN operator (DPT).  

Of particular interest was to analyze the 
economic efficiency of the two approaches. 
Thus, it was computed the total number of 
processed records, the total CIT time and the 
total DPT time for all the tests, taking into 
account all the 10,000 iterations. 
Afterwards, using a Voltcraft Energy Logger 
4000 meter that measures the consumption 
of energy, it has been measured the system's 
power (expressed in kW) and it has been 
computed the total energy consumption 
(measured in kWh) for each approach.  
 

 
Fig.2. The execution time corresponding to 

the two developed approaches 
 
After having executed the two approaches 
and having analysed the experimental results 
provided by the test suite, one can observe 
the following: in all the cases, the CIT value 
(corresponding to the classical approach) is 
lower than the DPT value (corresponding to 
the dynamic parallelism approach) (Fig.2).  
When running the test suite, the total 
execution time of all the 10,000 iterations 
and the corresponding system power 
consumption of the first approach were 17% 
lower than in the case of the second 
approach, thus the first approach offers an 
improved economic efficiency compared to 
the other one.  
Although the dynamic parallelism feature 
allows the developer to make use of 
consecrated programming techniques, it 
suffers a considerable overhead due to the 
fact that the Graphics Processing Unit must 
monitor in detail the whole execution of the 
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parent and child kernel functions and 
keep a detailed track of their execution, 
due to the way of how the management 
mechanism of the dynamic parallelism is 
implemented. 
 
6 Conclusions 
Both the developed approaches that 
implement in CUDA the JOIN operator 
in the Pascal architecture offer a high 
level of performance when processing 
high volumes of data (1,048,576 records 
processed in 0,1 milliseconds).  
Although the dynamic parallelism feature 
allows a more robust implementation and 
makes it possible to generate work 
directly from the GPU, allowing the 
developer to tackle important 
programming techniques, like recursion, 
directly on the device, in the case of the 
inner JOIN operator the use of the 
dynamic parallelism in the Compute 
Unified Device Architecture creates a 
penalty on performance due to the 
overhead that is generated by invoking 
new child kernels.  
The new Pascal Compute Unified Device 
Architecture offers an effective solution 
for processing huge data sets and data 
operators.  
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