
Database Systems Journal vol. VII, no. 1/2016 3

Tuning I/O Subsystem: A Key Component
in RDBMS Performance Tuning

Hitesh Kumar SHARMA1, Christalin NELSON. S2, Dr. Sanjeev Kumar SINGH3

1Assistant Professor (SS), University of Petroleum & Energy Studies
2Assistant Professor (SG), University of Petroleum & Energy Studies

3Associate Professor, Galgotia University Noida

hkshitesh@gmail.com, cnelson@ddn.upes.ac.in, sksingh8@gmail.com

Abstract: In a computer system, the fastest storage component is the CPU cache, followed by
the system memory. I/O to disk is thousands of times slower than an access to memory. This
fact is the key for why you try to make effective use of memory whenever possible and defer
I/Os whenever you can. The majority of the user response time is actually spent waiting for a
disk I/O to occur. By making good use of caches in memory and reducing I/O overhead, you
can optimize performance. The goal is to retrieve data from memory whenever you can and to
use the CPU for other activities whenever you have to wait for I/Os. This paper examines
ways to optimize the performance of the system by taking advantage of caching and effective
use of the system’s CPUs.

Keywords: Tuning, I/O, RDBMS.

Introduction
I/O is probably one of the most
common problems facing RDBMS

users. In many cases, the performance of
the system is entirely limited by disk I/O.
In some cases, the system actually
becomes idle waiting for disk requests to
complete. We say that these systems are
I/O bound or disk bound. Disks have
certain inherent limitations that cannot be
overcome. Therefore, the way to deal
with disk I/O issues is to understand the
limitations of the disks and design your
system with these limitations in mind.
Knowing the performance characteristics
of your disks can help you in the design
stage. Optimizing your system for I/O
should happen during the design stage.
Different types of systems have different
I/O patterns and require different I/O
designs. Once the system is built, you
should first tune for memory and then
tune for disk I/O. The reason you tune in
this order is to make sure that you are not
dealing with excessive cache misses,
which cause additional I/Os. The strategy
for tuning disk I/O is to keep all drives
within their physical limits. Doing so

reduces queuing time and thus increases
performance. In your system, you may find
that some disks process many more I/Os per
second than other disks. These disks are
called “hot spots.” Try to reduce hot spots
whenever possible. Hot spots occur
whenever there is a lot of contention on a
single disk or set of disks.

2. Understanding Disk Contention
Disk contention occurs whenever the
physical limitations of a disk drive are
reached and other processes have to wait.
Disk drives are mechanical and have a
physical limitation on both disk seeks per
second and throughput. If you exceed these
limitations, you have no choice but to wait.
You can find out if you are exceeding these
limits both through Oracle’s file I/O
statistics and through operating system
statistics. Although the Oracle statistics give
you an accurate picture of how many I/Os
have taken place for a particular data file,
they may not accurately represent the entire
disk because other activity outside of Oracle
may be incurring disk I/Os. Remember that
you must correlate the Oracle data file to the
physical disk on which it resides.

1

4 Tuning I/O Subsystem: A Key Component in RDBMS Performance Tuning

Information about disk accesses is kept in
the dynamic performance table
V$FILESTAT.

Important information in this table is
listed in the following columns:

 PHYRDS: The number of physical
reads done to the data file.

 PHYWRTS: The number of
physical writes done to the data file.

The information in V$FILESTAT is
referenced by file number. The dynamic
performance table V$DATAFILE
contains a reference to this number as well
as other useful information such as this:

 NAME: The name of the data file.
 STATUS: The type of file and its

current status.
 BYTES: The size of the data file.

Together, the V$FILESTAT and
V$DATAFILE tables can give you an
idea of the I/O usage of your data files.
Use the following query to get this
information:

SQL> SELECT substr(name,1,40),
phyrds, phywrts, status, bytes
2 FROM v$datafile df, v$filestat fs
3 WHERE df.file# = fs.file#;
SUBSTR(NAME,1,40) PHYRDS
PHYWRTS STATUS BYTES
-- -------- -
------- ------ --------
C:\UTIL\ORAWIN\DBS\wdbsys.ora 221
7 SYSTEM 10485760
C:\UTIL\ORAWIN\DBS\wdbuser.ora 0 0
ONLINE 3145728
C:\UTIL\ORAWIN\DBS\wdbrbs.ora 2 0
ONLINE 3145728
C:\UTIL\ORAWIN\DBS\wdbtemp.ora 0
0 ONLINE 2097152

The total I/O for each data file is the sum
of the physical reads and physical writes.
It is important to make sure that these
I/Os don’t exceed the physical limitations

of any one disk. I/O throughput problems to
one disk may slow down the entire system
depending on what data is on that disk. It is
particularly important to make sure that I/O
rates are not exceeded on the disk drives.

3. Identifying Disk Contention Problems
To identify disk contention problems, you
must analyze the I/O rates of each disk drive
in the system. If you are using individual
disks or disk arrays, the analysis process is
slightly different. For individual disk drives,
simply invoke your operating system or
third-party tools and check the number of
I/Os per second on an individual disk basis.
This process gives you an accurate
representation of the I/O rates on each drive.
A general rule of thumb is not to exceed 50
I/Os per second per drive with random
access, or 100 I/Os per second per drive
with sequential access. If you are
experiencing a disk I/O problem, you may
see excessive idle CPU cycles and poor
response times. For a disk array, also invoke
your operating system or third-party tools
and check the same items specifically the
number of I/Os per second per disk. The
entire disk array appears as one disk. For
most popular disk arrays on the market
today, it is accurate to simply divide the I/O
rate by the number of disks to get the I/Os
per second per disk rate. The next step in
identifying a disk contention problem is to
determine the I/O profile for your disk. It is
sufficient to split this into two major
categories: sequential and random I/O. Here
is what to look for:

 Sequential I/O. In sequential I/O,
data is written or read from the disk
in order, sovery little head movement
occurs. Access to the redo log files is
always sequential.

 Random I/O. Random I/O occurs
when data is accessed in different
places on the disk, causing head
movement. Access to data files is
almost always random. For database
loads, access is sequential; in most
other cases (especially OLTP), the

Database Systems Journal vol. VII, no. 1/2016 5

access patterns are almost always
random.

With sequential I/O, the disk can operate
at a much higher rate than it can with
random I/O. If any random I/O is being
done on a disk, the disk is considered to
be accessed in a random fashion. Even if
you have two separate processes that
access data in a sequential manner, the
I/O pattern is random.

With random I/O, there is not only access
to the disk but a large amount of head
movement, which reduces the
performance of the disks.

Finally, check these rates against the
recommended I/O rates for your disk
drives. Here are some good guidelines:

 Sequential I/O. A typical SCSI-II
disk drive can support
approximately 100 to 150
sequential I/Os per second.

 Random I/O. A typical SCSI-II
disk drive can support
approximately 50 to 60 random
I/Os per second.

4. Solving Disk Contention Problems
There are a few rules of thumb you should
follow in solving disk contention problems:

 Isolate sequential I/Os. Because
sequential I/Os can occur at a much
higher rate, isolating them lets you
run these drives much faster.

 Spread out random I/Os as much
as possible. You can do this by
striping table data through Oracle
striping, OS striping, or hardware
striping.

 Separate data and indexes. By
separating a heavily used table
from its index, you allow a query
to a table to access data and
indexes on separate disks
simultaneously.

 Eliminate non-Oracle disk I/O
from disks that contain database
files. Any other disk I/Os slow down
Oracle access to these disks.

The following sections look at each of these
solutions and determine how they can be
accomplished.

4.1 Isolate Sequential I/Os
Isolating sequential I/Os allows you to drive
sequentially accessed disks at a much higher
rate than randomly accessed disks. Isolating
sequential I/Os can be accomplished by
simply putting the Oracle redo log files on
separate disks. Be sure to put each redo log
file on its own disk—especially the mirrored
log file (if you are mirroring with Oracle). If
you are mirroring with OS or hardware
mirroring, the redo log files will already be
on separate volumes. Although each log file
is written sequentially, having the mirror on
the same disk causes the disk to seek
between the two log files between writes,
thus degrading performance. It is important
to protect redo log files against system
failures by mirroring them. You can do this
through Oracle itself, or by using OS or
hardware fault tolerance features.

4.2 Spread Out Random I/Os
By the very nature of random I/Os, accesses
are to vastly different places in the Oracle
data files. This pattern makes it easy for
random I/O problems to be alleviated by
simply adding more disks to the system and
spreading the Oracle tables across these
disks. You can do this by striping the data
across multiple drives or (depending on your
configuration) by simply putting tables on
different drives. Striping is the act of
transparently dividing the contents of a large
data source into smaller sources. Striping
can be done through Oracle, the OS, or
through hardware disk arrays.

4.3 Oracle Striping
Oracle striping involves dividing a table’s
data into small pieces and further dividing
these pieces among different data files.

6 Tuning I/O Subsystem: A Key Component in RDBMS Performance Tuning

Oracle striping is done at the tablespace
level with the CREATE TABLESPACE
command. To create a striped tablespace,
use a command similar to this one:

SQL> CREATE TABLESPACE
mytablespace
2 DATAFILE ‘file1.dbf’ SIZE 500K,
3 ‘file2.dbf’ SIZE 500K,
4 ‘file3.dbf’ SIZE 500K,
5 ‘file4.dbf’ SIZE 500K;
Tablespace created.

To complete this task, you must then
create a table within this tablespace with
four extents. This creates the table across
all four data files, which (hopefully) are
each on their own disk.

Create the table with a command like this
one:

SQL> CREATE TABLE mytable
2 (name varchar(40),
3 title varchar(20),
4 office_number number(4))
5 TABLESPACE mytablespace
6 STORAGE (INITIAL 495K NEXT
495K
7 MINEXTENTS 4 PCTINCREASE 0);
Table created.

In this example, each data file has a size
of 500K. This is called the stripe size. If
the table is large, the stripes are also large
(unless you add many stripes). Large
stripes can be an advantage when you
have large pieces of data within the table,
such as BLOBs. In most OLTP
applications, it is more advantageous to
have a smaller striping factor to distribute
the I/Os more evenly. The size of the data
files depends on the size of your tables.
Because it is difficult to manage hundreds
of data files, it is not uncommon to have
one data file per disk volume per
tablespace. If your database is 10
gigabytes in size and you have 10 disk
volumes, your data file size will be 1

gigabyte. When you add more data files of a
smaller size, your I/Os are distributed more
evenly, but the system is harder to manage
because there are more files. you can
achieve both manageability and ease of use
by using a hardware or software disk array.
Oracle striping can be used in conjunction
with OS or hardware striping.

4.4 OS Striping
Depending on the operating system, striping
can be done at the OS level either through
an operating system facility or through a
third-party application. OS striping is done
at OS installation time. OS disk striping is
done by taking two or more disks and
creating one large logical disk. In sequence,
the stripes appear on the first disk, then the
second disk, and so on (see Figure 1).

The size of each stripe depends on the OS
and the striping software you are running.
To figure out which disk has the desired
piece of data, the OS must keep track of
where the data is. To do this, a certain
amount of CPU time must be spent
maintaining this information. If fault
tolerance is used, even more CPU resources
are required. Depending on the software you
are using to stripe

Fig 1: OS Striping

the disks, the OS monitoring facilities may
display disk I/O rates on a per-disk basis or

Database Systems Journal vol. VII, no. 1/2016 7

on a per-logical-disk basis. Regardless of
how the information is shown, you can
easily determine the I/O rate per disk.
Many of the OS-striping software
packages on the market today can also
take advantage of RAID technology to
provide a measure of fault tolerance. OS
striping is very good; however, It does
consume system resources that hardware
striping does not.

4.5 Hardware Striping
Hardware striping has a similar effect to
OS striping. Hardware fault tolerance is
obtained by replacing your disk controller
with a disk array. A disk array is a
controller that uses many disks to make
one logical disk. The system takes a
small slice of data from each of the disks
in sequence to make up the larger logical
disk (see Figure 2).

Hardware fault tolerance has the
advantage of not taking any additional
CPU or memory resources on the server.
All the logic to do the striping is done at
the controller level. As with OS striping,
hardware striping can also take advantage
of RAID technology for fault tolerance.
As you can see in Figures 1 and 2, to the
user and the RDBMS software, the effect
is the same whether you use OS or
hardware disk striping.

Fig 2: Hardware Striping

The main difference between the two is
where the actual overhead of maintaining
the disk array is maintained.

4.6 Review of Striping Options
Whether you use Oracle striping, OS
striping, or hardware striping, the goal is the
same: distribute the random I/Os across as
many disks as possible. In this way, you can
keep the number of I/Os per second
requested within the bounds of the physical
disks. If you use Oracle striping or OS
striping, you can usually monitor the
performance of each disk individually to see
how hard they are being driven. If you use
hardware striping, remember that the OS
monitoring facilities typically see the disk
volume as one logical disk. You can easily
determine how hard the disks are being
driven by dividing the I/O rate by the
number of drives. With hardware and OS
striping, the stripes are small enough that the
I/Os are usually divided among the drives
fairly evenly. Be sure to monitor the drives
periodically to verify that you are not up
against I/O limits.

Use this formula to calculate the I/O rate per
drive:

I/Os per disk = (Number of I/Os per second
per volume) / (Number of drives in the
volume)

Suppose that you have a disk array with four
drives generating 120 I/Os per second. The
number of I/Os per second per disk is
calculated as follows:

I/Os per disk = 120 / 4 = 30 I/Os per second
per disk

For data volumes that are accessed
randomly, you don’t want to push the disks
past 50 to 60 I/Os per second per disk.
To estimate how many disks you need for
data volumes, use this formula:

Number of disks = I/Os per second needed /
60 I/Os per second per disk

8 Tuning I/O Subsystem: A Key Component in RDBMS Performance Tuning

If your application requires a certain data
file to supply 500 I/Os per second (based
on analysis and calculations), you can
estimate the number of disk drives
needed as follows:

Number of disks = 500 I/Os per second /
60 I/Os per second per disk = 16 2/3
disks or 17 disks

This calculation gives you a good
approximation for how large to build the
data volumes with no fault tolerance.

4.7 Separate Data and Indexes
Another way to reduce disk contention is
to separate the data files from their
associated indexes. Remember that disk
contention is caused by multiple
processes trying to obtain the same
resources. For a particularly “hot” table
with data that many processes try to
access, the indexes associated with that
data will be “hot” also.
Placing the data files and index files on
different disks reduces the contention on
particularly hot tables. Distributing the
files also allows more concurrency by
allowing simultaneous accesses to the
data files and the indexes. Look at the
Oracle dynamic performance tables to
determine which tables and indexes are
the most active.

4.8 Eliminate Non-Oracle Disk I/Os
Although it is not necessary to eliminate
all non-Oracle I/Os, reducing significant
I/Os will help performance. Most systems
are tuned to handle a specific throughput
requirement or response time
requirement. Any additional I/Os that
slow down Oracle can affect both these
requirements. Another reason to reduce
non-Oracle I/Os is to increase the
accuracy of the Oracle dynamic
performance table, V$FILESTAT. If only
Oracle files are on the disks you are
monitoring, the statistics in this table
should be very accurate.

5. Reducing Unnecessary I/O Overhead
Reducing unnecessary I/O overhead can
increase the throughput available for user
tasks. Unnecessary overhead such as
chaining and migrating of rows hurts
performance. Migrating and chaining occur
when an UPDATE statement increases the
size of a row so that it no longer fits in the
data block. When this happens, Oracle tries
to find space for this new row. If a block is
available with enough room, Oracle moves
the entire row to that new block. This is
called migrating. If no data block is
available with enough space, Oracle splits
the row into multiple pieces and stores them
in several data blocks. This is called
chaining.

6. Migrated and Chained Rows
Migrated rows cause overhead in the system
because Oracle must spend the CPU time to
find space for the row and then copy the row
to the new data block. This takes both CPU
time and I/Os. Therefore, any UPDATE
statement that causes a migration incurs a
performance penalty. Chained rows cause
overhead in the system not only when they
are created but each time they are accessed.
A chained row requires more than one I/O to
read the row. Remember that Oracle reads
from the disk data blocks; each time the row
is accessed, multiple blocks must be read
into the SGA.
You can check for chained rows with the
LIST CHAINED ROWS option of the
ANALYZE command.
You can use these SQL statements to check
for chained or migrated rows:

SQL> Rem
SQL> CREATE TABLE chained_rows (
2 owner_name varchar2(30),
3 table_name varchar2(30),
4 cluster_name varchar2(30),
5 head_rowid rowid,
6 timestamp date);
Table created.
SQL> Rem
SQL> Rem Analyze the Table in Question

Database Systems Journal vol. VII, no. 1/2016 9

SQL> Rem

SQL> ANALYZE
2 TABLE scott.emp LIST CHAINED
ROWS;
Table analyzed.
SQL> Rem
SQL> Rem Check the Results
SQL> Rem
SQL> SELECT * from chained_rows;
no rows selected

If any rows are selected, you have either
chained or migrated rows. To solve the
problem of migrated rows, copy the rows
in question to a temporary table, delete
the rows from the initial table, and
reinsert the rows into the original table
from the temporary table. Run the
chained-row command again to show
only chained rows. If you see an
abundance of chained rows, this is an
indication that the Oracle database block
size is too small. You may want to export
the data and rebuild the database with a
larger block size. You may not be able to
avoid having chained rows, especially if
your table has a LONG column or long
CHAR or VARCHAR2 columns. If you
are aware of very large columns, it can be
advantageous to adjust the database block
size before implementing the database. A
properly sized block ensures that the
blocks are used efficiently and I/Os are
kept to a minimum. Don’t over-build the
blocks or you may end up wasting space.
The block size is determined by the
Oracle parameter DB_BLOCK_SIZE.
Remember that the amount of memory
used for database block buffers is
calculated as follows:

Memory used = DB_BLOCK_BUFFERS
(number) * DB_BLOCK_SIZE (bytes)

Be careful to avoid paging or swapping
caused by an SGA that doesn’t fit into
RAM.

7. Dynamic Extensions

Additional I/O is generated by the extension
of segments. Remember that segments are
allocated for data in the database at creation
time. As the table grows, extents are added
to accommodate this growth. Dynamic
extension not only causes additional I/Os, it
also causes additional SQL statements to be
executed. These additional calls, known as
recursive calls, as well as the additional I/Os
can impact performance.
You can check the number of recursive calls
through the dynamic performance table,
V$SYSSTAT.

Use the following command:

SQL> SELECT name, value
2 FROM v$SYSSTAT
3 WHERE name = ‘recursive calls’;
NAME VALUE

recursive calls 5440

Check for recursive calls after your
application has started running and then 15
to 20 minutes later. This information will
tell you approximately how many recursive
calls the application is causing. Recursive
calls are also caused by the following:

 Execution of Data Definition
Language statements.

 Execution of SQL statements within
stored procedures, functions,
packages, and anonymous PL/SQL
blocks.

 Enforcement of referential integrity
constraints.

 The firing of database triggers.
 Misses on the data dictionary cache.

As you can see, many other conditions can
also cause recursive calls. One way to check
whether you are creating extents
dynamically is to check the table
DBA_EXTENTS. If you see that many
extents have been created, it may be time to
export your data, rebuild the tablespace, and
reload the data. Sizing a segment large
enough to fit your data properly benefits you
in two ways:

10 Tuning I/O Subsystem: A Key Component in RDBMS Performance Tuning

 Blocks in a single extent are
contiguous and allow multiblock
reads to be more effective, thus
reducing I/O.

 Large extents are less likely to be
dynamically extended.

Try to size your segments so that
dynamic extension is generally avoided
and there is adequate space for growth.

8. Conclusion
In this paper we have explained the
impact of efficient configuration of I/O
for enhancing the performance of
RDBMS. For practical explanation we
have used one of the popular RDBMS i.e.
oracle 10g. We have suggested many
parts of I/O subsystem those impact the
performance of RDBMS.

 References
[1]. Lightstone, S. et al., “Toward

Autonomic Computing with DB2
Universal Database”, SIGMOD
Record, Vol. 31, No.3, September
2002.

[2]. Xu, X., Martin, P. and Powley, W.,
“Configuring Buffer Pools in DB2
UDB”, IBM Canada Ltd., the
National Science and Engineering
Research Council (NSERC) and
Communication and Information
Technology Ontario (CITO), 2002.

[3]. Chaudhuri, S. (ed). Special Issue on,
“Self-tuning Databases and
Application Tuning”, IEEE Data
Engineering, Bulletin 22(2), June
1999.

[4]. Bernstein, P. et al., "The Asilomar
Report on Database Research", ACM
SIGMOD Record 27(4), December
1998, pp. 74 - 80.

[5]. Nguyen, H. C., Ockene, A., Revell,
R., and Skwish, W. J., “The role of
detailed simulation in capacity
planning”. IBM Syst. J. 19, 1 (1980),
81-101.

[6]. Seaman, P. H., “Modeling
considerations for predicting

performance of CICS/VS systems”, IBM
Syst. J. 19, 1 (1980), 68-80.

[7]. Foster, D. V., Mcgehearty, P. F.,
Sauer, C. H., and Waggoner, C. N., “A
language for analysis of queuing
models”, Proceedings of the 5th
Annual Pittsburgh Modeling and
Simulation Conference (Univ. of
Pittsburgh, Pittsburgh, Pa., Apr. 24-
26). 1974, pp. 381-386.

[8]. Reiser, M., and Sauer, C. H., “Queuing
network models: Methods of solution
and their program implementation”,
Current Trends in Programming
Methodology. Vol. 3, Software
Modeling and Its Impact on
Performance, K. M. Chandy and R. T.
Yeb, Eds. Prentice-Hall, Englewood
Cliffs, N. J., 1978, pp. 115-167.

[9]. Borovits, I., and Neumann, S.,
“Computer Systems Performance
Evaluation”, D.C. Heath and Co.,
Lexington, Mass., 1979.

[10]. Enrique Vargas, “High Availability
Fundamentals”, Sun BluePrints™
OnLine, November 2000,
http://www.sun.com/blueprints

[11]. Harry Singh, “Distributed Fault-
Tolerant/High-Availability Systems”,
Trillium Digital Systems, a division of
Intel Corporation, 12100 Wilshire
Boulevard, Suite 1800 Los Angeles, CA
90025-7118 U.S.A. Document Number
8761019.12.

[12]. David McKinley, “High availability
system. High availability system
platforms”, Dedicated Systems Magazine
- 2000 Q4 (http://www.dedicated-
systems.com)

[13]. Sasidhar Pendyala, “Oracle’s
Technologies for High Availability”,
Oracle Software India Ltd., India
Development Centre.

[14]. James Koopmann, “Database
Performance and some Christmas
Cheer”, an article in the Database
Journal, January 2, 2003.

[15]. Frank Naudé, “Oracle Monitoring
and Performance Tuning”,
http://www.orafaq.com/faqdbapf.htm

Database Systems Journal vol. VII, no. 1/2016 11

[16]. Michael Marxmeier, “Database
Performance Tuning”,

[17]. http://www.hpeloquence.com/sup
port/misc/dbtuning.html

[18]. Sharma H., Shastri A., Biswas R.
“Architecture of Automated Database
Tuning Using SGA Parameters”,
Database System Journal, Romania,
2012

[19]. Sharma H., Shastri A., Biswas R. “A
Framework for Automated Database
TuningUsing Dynamic SGA Parameters
and Basic Operating System Utilities”,
Database System Journal, Romania, 2013

[20]. Mihyar Hesson, “Database
performance Issues”

[21]. PROGRESS SOFTWARE, Progress
Software Professional Services,

Hitesh Kumar Sharma: Author is an Assistant Professor (Senior Scale) in University of
Petroleum& Energy Studies, Dehradun. He has published 30+ research papers in International
Journal and 10+ research papers in National Journals.

Christalin Nelson. S: Author is an Assistant Professor (Selection Grade) in University of
Petroleum& Energy Studies, Dehradun. He has published 40+ research papers in International
Journal and 12 research papers in National Journals. He is Programe Head of the computer
Science Department.

Sanjeev Kumar Singh: Author is an Associate Professor in Galgotias University, Noida. He
has published 35+ research paper in International Journal and 15+ research papers in National
Journals. He is Ph.D. in Mathematics.

