
Database Systems Journal vol. VI, no. 4/2015 27

Optimizing memory use in Java applications, garbage collectors

Ștefan PREDA
Oracle, Bucharest, Romania

spreda2003@yahoo.com

Java applications are diverse, depending by use case, exist application that use small amount
of memory till application that use huge amount, tens or hundreds of gigabits. Java Virtual
Machine is designed to automatically manage memory for applications. Even in this case due
diversity of hardware, software that coexist on the same system and applications itself, these
automatic decision need to be accompanied by developer or system administrator to triage
optimal memory use. After developer big role to write optimum code from memory allocation
perspective , optimizing memory use at Java Virtual Machine and application level become in
last year’s one of the most important task. This is explained in special due increased demand
in applications scalability.
Keywords: Java Virtual Machine, garbage collector, Concurrent Mark Sweep (CMS), G1
GC, Shenandoah an Ultra-Low-Pause-Time Garbage Collector.

Introduction
Java applications run in a Java Virtual
Machine (JVM or Java HotSpot VM).

Memory management is assured
automatically based on a set of rules,
grouped in a set named garbage collector
(GC). In Java Virtual Machine can run a
variety of applications from small applets
that run in browser through web-services
that responds to huge number of requests
per time unit, and which runs on big
server. From this reason Java Virtual
Machine has by default many garbage
collectors, each one appropriate to a
specific application type.
Java Virtual Machine selects automatically
a garbage collector based on application
and on a hardware on which is running.
Often, chosen GC may not be suitable for
application performance, and in such cases
developer need to select a specific GC and
to make supplementary tuning.
One target in memory optimization is to
provide good JVM performance with
minimum parameter tuning, this feature is
named ergonomics. Using ergonomics
JVM try in specified criteria from above to
select for application, one of the best:
garbage collector, heap size and run-time
compiler.
Java Heap is a memory area created by
Java Virtual Machine at start-up. From

heap is allocated memory to all instances
of objects and to arrays allocated. Heap is
shared between threads that run inside Java
Virtual Machine.
Heap can be fixed size or variable size,
means it can be expanded based on
application demand. Initial heap size is
controlled by option -Xms. Maximum java
heap size is controlled by option -Xmx.

2 Garbage collector
Objects are not explicitly released and
reallocated from Heap, this task is
performed automatically by GC. A simple
description for GC [3] is that it searches
for objects that are not in use and free
memory occupied by those. Free space is
used further to allocate other objects. After
releasing unused objects, memory space
can become fragmented, from this reason
allocation for big objects can be a problem.
To overcome this, GC do compaction after
memory free. All GC do: search for unused
objects, free space and compact it.
Differentiation between GC's consists in
approach on how those operations are
performed. Like a basic principle garbage
collection is based on fact that when a
previously allocated memory is no
referenced by any pointers it can be
reclaimed for new use. GC find and
recycle those memory locations.

1

28 Optimizing memory use in Java applications, garbage collectors

GC work is multiple threads and usual
application is multi threads, when moving
objects for GC a challenge is to move
objects while no application access to
those is. From this reason sometime there
are pauses when all application threads are
stopped (and GC do his job of moving
objects) and from here one of the most
important aspect of GC tuning: minimize
pauses. Pauses are named usual as “stop-
the-world pauses”.
Generations in garbage collectors. Some
Java objects are used for short time, other
for some more time and there may exist
objects that are used for long time, thus
heap is organized in areas named
generations. We have:
• old (tenured) generation
• young generation
• eden
• survivor spaces
A Java application usual have many
temporary objects, thus those are stored in
young generation. According with [1]
Objects in general are allocated initial in
young generation, more exactly in eden
space. Survivor space is empty always, it
serve only like a destination from where
object will be moved to a next place (or to
the tenured space). When young generation
is filled, garbage collector stop (pause)
application threads, objects that are not in
use from young generation are discarded
and those that are still in use are moved to
other place. Operation is named “minor
GC”, term minor is because operation is
fast due fact that young generation
represent only a part of entire heap area,
pause will be shorter than situation when
garbage collector work with entire heap.

3 Garbage collector types
Java Virtual Machine depending by
necessary application scalability and
hardware can use one of the following
collectors:
• Serial collector
• Parallel collector
• Mostly concurrent collector

• Concurrent Mark Sweep (CMS)
Collector

• Garbage-First Garbage Collector (G1
GC)

• Shenandoah: An Ultra-Low-Pause-
Time Garbage Collector

Serial collector. It use a single thread to
perform memory management task, this
collector is good for applications with
small data set (less than 100Mb), having
only one thread, managing inter – threads
communications does not apply, from this
reason it is relative efficient for small
applications. It is good for machines also
with a single processor. Like drawback it is
not suitable for multiprocessor hardware
due single thread work. Collector is
selected automatically on specific
hardware like single CPU systems, or it
can be selected automatically using
-XX:+UseSerialGC option.
Parallel collector or throughput collector
performs many minor collections in
parallel, reducing Garbage Collection
overhead. Parallel collector is suitable and
is automatically selected if hardware is
multiprocessor, multithreaded and or
application is medium or large. We can
choose parallel collector explicit starting
Java Virtual Machine with option:
-XX:+UseParallelGC.
Once used parallel collector it enable
implicit parallel compacting. Running
parallel compacting, major collections are
also multi thread. Parallel compactation
can be disabled using option:
 -XX:-UseParallelOldGC.
Very important, this is not recommended
because it make major collection single
thread which is not suitable for medium-
large applications. If we need good
performance and garbage collector pauses
around 1 seconds are acceptable, then
parallel collector is suitable.
Mostly concurrent collector, it make GC
tasks simultaneous (or concurrent) while
application is running, resulting in very
short GC pauses. This collector is for big
applications or for medium applications
that need fast response. In Java

Database Systems Journal vol. VI, no. 4/2015 29

Development Kit (JDK) 8 we have two
kind of mostly concurrent collectors:
- Concurrent Mark Sweep (CMS) Collector
- Garbage-First Garbage Collector (G1
GC)

Concurrent Mark Sweep (CMS)
Collector. This collector has minor and
major collections. Major collections are
performed using separate threads to track
heap objects concurrently with application
execution threads resulting thus small
pauses time. During a major collection
there is a small pause at the beginning (all
applications threads are paused, this pause
is named initial mark pause), and a second
pause, a little longer, near the middle of
the collection time (this is named remark
pause). Running concurrently GC threads
and applications threads, application
throughput may decrease because part of
the CPU's threads are used by GC in
detriment of application threads, thus CMS
is suitable for multi processor and multi
threads architectures.
Running garbage collector threads
simultaneously with application threads is
needed such as collection of tenured
objects to finish before it become full. If
this is not happening we have concurrent
mode failure, in this case application
threads are paused till collection is
completed. Concurrent mode failure event
is a sign that GC CMS parameters need to
be changed or tuned.
 Time spent with garbage collection, ideal
should be as small as possible, while
percent of heap recovered need to be as
much as possible. When more than 98%
time is spent with garbage collection, but
less than 2% heap size is recovered, then
OutOfMemoryError is thrown.
This can be disabled using option:
-XX:-UseGCOverheadLimit.
This is not recommended because
mentioned percents 98%, 2% usual show
that application is running without
progressing and this need to be fixed by
tuning. Usually long time spent with
garbage collector is associated with

concurrent mode failure events. Concurrent
collection in CMS start when tenured
generation increase over 92%. This
threshold depend by JDK release, value
can be adjusted using option
XX:CMSInitiatingOccupancyFraction=<p
ercent>
CMS collector use one or more CPU
during object tracing process, also one
CPU is used during concurrent sweep
phase, CPU is not released voluntary to the
application, this can influence application
throughput and response time. To solve
this problem CMS have incremental mode
or i-cms mode, this mode break up
concurrent phases in short bursts scheduled
at midway of minor pauses.
CMS voluntary release CPU to application
after a percentage of time between young
generation collections, this percent is
named duty cycle. Midway is default, this
can be changed using option:
XX:CMSIncrementalOffset=<N>
To enable incremental mode we use
option: -XX:+CMSIncrementalMode
Sample combination of options for CMS:
-XX:+UseConcMarkSweepGC \
 -XX:+CMSIncrementalMode \
-XX:+PrintGCDetails \
-XX:+PrintGCTimeStamps
Here option UseConcMarkSweepGC
enable CMS, CMSIncrementalMode
enable i-cms, PrintGCDetails and
PrintGCTimeStamps print GC activity
details for troubleshooting purposes.
Garbage-First Garbage Collector (G1
GC). This collector is suitable for
programs that have very large heap which
run on multiprocessor servers. The
challenge for memory management in case
of applications that require very large
amount of memory is that garbage
collector heap operations can take big time
while heap increase, is such situation
interruptions can become proportional with
heap or data size.
To overcome this G1 GC use similar
technique like CMS, i.e. garbage collector
heap operations threads are performed
concurrently with application threads, and

30 Optimizing memory use in Java applications, garbage collectors

supplementary G1 GC use heap
partitioning.
Heap is partitioned in equal contiguous
memory regions. G1 GC concurrently
checks each regions marking in this way if
objects are still live. After this phase G1
collect regions that are empty or almost
empty resulting a big free space. As
collector concentrate first on doing
collection and compaction on regions that
are almost full with garbage objects it is
named “Garbage-First” or G1.
To fulfil pause time demanded by
application, G1 GC use a prediction model
to select that regions and number of those
such as resulting pause do not increase
over imposed application limit.
After marking regions, collector copies
objects from selected regions to a single
heap region and in the same time compact
it, reduce fragmentation and free up space,
doing this simultaneous, result is a
decreased pause time and better
throughput. As G1 GC use a prediction
model, it is not a real-time collector,
means pause time target is not strictly
fulfilled, it is just realized with a high
probability.
Probability is accurate. G1 collector can
provide a good memory management for
applications which need large heap and
small garbage collector latency, for
example a 6 GB application can run with a
estimated pause time under 0.5 seconds.
Based on [1] CMS and G1 GC collectors
are comparable and specific applications
can benefit of both. Both collectors are
good for applications that have traits like:
• more than 50% heap is occupied by

data
• object allocation or promotion rate vary

in time
• applications is experiencing long GC or

compactation pauses (between 0.5 – 1
second)

Because G1 is a compacting collector and
G1 predicted pauses are very good
predictable, according with [1] in the
future intention is that G1 GC will replace
CMS.

G1 collections are running usual
simultaneous with application, due this
exist probability that application allocate
object faster that GC relocate and free
space, this event is named “Allocation
(Evacuation) Failure” it is very similar
with CMS “Concurrent Mode Failure”.
When “Allocation (Evacuation) Failure” is
happening there can be no space for
application to allocate live objects, in this
case GC G1 will start a full GC collection.
An object can die during G1 collection,
and thus not be collected, that can result in
improper space released. To prevent this
G1 GC consider that any object that is live
at start of concurrent marking is considered
live for collection (this technique is named
snapshot-at-the-beginning (SATB)). SATB
allow floating garbage similar with CMS
incremental.
G1 GC keeps information about old
generations pointers to young generation
objects in a data structure named a
remembered set. A particular kind of
remembered set is named card table,
which is an array of bytes. Each byte is
referred as a card that corresponds to a
range of heap addresses. When such byte is
changed such as to contain a new pointer
from the old generation to the young
generation, operation is named “dirtying a
card”, and value of changed byte is named
“dirty value”.
Having “old generation to young
generation pointer” information GC G1
can do something with this information, for
example transferring it to other data
structure, operation is named “Processing a
card”.
For GC G1 a concurrent marking phase
(marking all live objects from heap) when
heap is occupied over a specific percent.
This is controlled by a parameter named
InitiatingHeapOccupancyPercent means by
option:
XX:InitiatingHeapOccupancyPercent=<N
N>
By default
InitiatingHeapOccupancyPercent is 45.

Database Systems Journal vol. VI, no. 4/2015 31

The other important parameters of GC G1
are:
MaxGCPauseMillis which represent a
maximum pause time accepted and
GCPauseIntervalMillis which is time
interval during which pause can occur.

Shenandoah: An Ultra-Low-Pause-Time
Garbage Collector. Just looking in
previous discussion about different
garbage collectors, evolution was tight
related to hardware complexity.
The last evolution in hardware is big
machine, like Exadata or Exalogic for
example, with multi-core machines which
should run applications with very large
heaps (about 100 GB, as mentioned in [4])
This evolution conduct to a new garbage
collector: Shenandoah Ultra-Low-Pause-
Time Garbage Collector. Shenandoah
garbage collector is still in draft according
with [5]. Shenandoah is designed to
manage applications that have over 100GB
heaps with pause less than 10ms.
Shenandoah garbage collector is similar
with G1 GC, a “region-based” collector, it
works also in phases. First is marking
phase when all live objects from heap are
marked, a count also of live objects in
every region is maintained. In second
phase, is similar like in G1 collector,
evacuation phase where live objects from
best regions to collect are copied to new
regions. Then follow concurrent marking
phase and then phase where evacuated
regions are reclaimed concurrently.
Concurrent evacuation is based on fact that
application threads and garbage collector
threads know and agree about the location
of objects. To achieve this Shenandoah
garbage collector use “brooks forwarding
pointer”. Application threads reads are
accomplished indirectly via forwarding
pointer. Writes of objects in targeted
regions copy objects and then writes those
in new location. Forwarding pointer is
main difference compared with G1 GC.
Shenandoah using forwarding pointer is
focused on working with regions with most

garbage regardless by age (it is not focused
on young generation like other collectors).
Referring to huge systems, similar
collector with Shenandoah is Zing/Azul
collector [6]. This collector have similar
features: is a predictable garbage collector,
have comparable response time with
Shenandoah, scale to huge heap sizes
(hundreds of GB's), good application
scalability.

4. About garbage collectors in embedded
or limited devices.
According with [7] embedded devices have
limited resources thus garbage collectors
are rarely used! Nevertheless is very
important to mention that such kind of
devices that use Java Platform, Micro
Edition are embedded software devices and
use Garbage Colector, usually garbage
collector from Java ME is a serial
collector.
Initial using garbage collector in embedded
devices was introduced very slow because
Garbage Collection come with a
performance cost, garbage collector use
between 30-150% more address space than
a classic memory management algorithm.
Also garbage collector can sometime, on
embedded or limited devices, to increase
high water mark of memory usage and also
to lead to high CPU usage. This was one
reason why garbage collector was not
introduced early on mobile platforms.
Based on [8] new embedded JVM handle
garbage collector more efficiently, main
improvement area is to perform garbage
collection faster. For this is used a “hybrid
garbage collection approach”, thus
memory is divided in multiple regions,
there will be frequent generation garbage
collections in “nursery” followed by mark-
and-sweep stage over all regions. garbage
collector needs is anticipated using
heuristics algorithms. Garbage collector
can be tailored according with application
needs.

32 Optimizing memory use in Java applications, garbage collectors

5 Conclusions.
Memory optimization in java application is
a complex problem which depends by
many factors: hardware, CPU, memory,
application itself, connectivity, etc.
Garbage collector try to make this
optimization automatically. JVM have
many garbage collectors available, based
on the application and on hardware system,
a specific garbage collector is selected
automatically for the application.
This automatic selection simplifies
considerable programmer and system
administrator work. Nevertheless it is only
a first steps, every garbage collector can
require parameter tuning, a simple
explanation is that even if the systems are
identical like hardware, applications aren't,
and even if we will presume that we have
the same applications on two systems,
there may exist different other applications
that are running, or there will be
differences, which explain why those
garbage collector will beehive different.
Apart from tuning we mention that the
main task still remain for programmers:
means to write code that consume as less
memory as possible. Garbage collector
evolution was in to main directions first to
assure scalability on hardware that become
more and more complex like CPU and
memory resources. The second, a new
direction in last year's is to include also
garbage collector in embedded or limited
devices.

References
[1] Java Platform, Standard Edition
HotSpot Virtual Machine Garbage
Collection Tuning Guide
https://docs.oracle.com/javase/8/docs/techn
otes/guides/vm/gctuning/
[2] The Java® Language Specification.
Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8
/html/index.html
[3] Java Performance: The Definitive
Guide, By: Scott Oaks, Publisher: O'Reilly
Media, Inc.
Pub. Date: April 21, 2014, Print ISBN-13:
978-1-4493-5845-7
[4] GC Algorithms: Implementations
https://plumbr.eu/handbook/garbage-
collection-algorithms-
implementations#shenandoah
[5] OpenJDK JEP 189: Shenandoah: An
Ultra-Low-Pause-Time Garbage Collector
http://openjdk.java.net/jeps/189
[6] Pauseless Garbage Collection for Java
https://www.azul.com/products/zing/pgc/
[7] Garbage collection (computer science)
https://en.wikipedia.org/wiki/Garbage_coll
ection_%28computer_science%29
[8] Real-Time Garbage Collection Speeds
Embedded Java
http://electronicdesign.com/embedded/real-
time-garbage-collection-speeds-embedded-
java

Stefan PREDA graduated the Faculty of Economic Cybernetics, Statistics and
Informatics, with a bachelor degree in Economic Informatics in 2013. In 2015
he got his master degree from the same faculty of the Bucharest University of
Economic Studies, specialization in Databases Support for Business. Currently
he is working on Oracle Corporation, like Principal Technical Support
Engineer, software analyst, in Fusion Middleware, EMEA Identity
Management team.

