
Database Systems Journal vol. VI, no. 4/2015 3

NoSQL Key-Value DBs Riak and Redis

Cristian Andrei BARON
University of Economic Studies, Bucharest, Romania

andrei.baron30@gmail.com

In the context of today’s business needs we must focus on the NoSQL databases because they
are the only alternative to the RDBMS that can resolve the modern problems related to
storing different data structures, processing continue flows of data and fault tolerance. The
object of the paper is to explain the NoSQL databases, the needs behind their appearance, the
different types of NoSQL databases that current exist and to focus on two key-value
databases, Riak and Redis.
Keywords: NoSQL Databases, Key-Value, Riak, Redis, RDBMS

Introduction
 Nowadays, we talk more and more
about NoSQL (Not Only SQL)

databases because we are dealing with
very large volumes of information from
different sources that have to be stored
and analyzed in real time. For the last
decades, the relational model has been
the first and maybe for some times the
only viable solution for both small and
big companies. In the last years some of
the biggest Internet companies such as
Google, Facebook and Amazon have
invested a lot of money in developing
alternative solutions for the RDBMS to
fulfill their needs. We don’t consider that
the RDBMS will disappear in the future
years because there is a strong
community based on this type of
databases, and big companies that are
using enterprise applications will
continue to use RDBMS mostly because
of the support that the RDBMS vendors
are offering. But a big part of the rest of
companies and individuals will search to
discover alternatives options, like
schema-less, high availability,
MapReduce, alternative data structures
and horizontal scaling that are supported
by the various types of NoSQL databases.
When a new application that will need a
storing and retrieval data mechanism,
begins to be developed, we should first
analyze deeply the business needs of the
enterprise, the structure, amount and
speed of the data that will be managed

and decide if we will proceed with the
standard RDBMS or we will choose a type
or a combination of NoSQL data store types.
The NoSQL databases are divided in a
variety of genres, many of them are part of
one of these major categories: key-value,
wide column, graph, and document-based. It
is important to learn for what kinds of
problems they are best suited, what aspects
they resolve that the RDBMS cannot, if they
are focused on flexible schemas and
querying mechanism or they are focused on
storing large amounts of data across several
machines. When choosing the correct
NoSQL database there are several questions
that we must answer.
First one refers to the way that you can talk
to the database, this means that you must
check the variety of connections, if it has or
not a command-line interface, in what
programming language is written (C, Erlang,
JavaScript) and what protocols it supports
(REST, Thrift).
A second question can refer to the aspects
that make the NoSQL database unique,
some can allow querying on arbitrary fields;
others can provide indexing for rapid lookup
or support ad hoc queries.
The last questions can refer to performance
and scalability; this aspects are in strong
relationship with the unique qualities of
NoSQL databases because sometimes we
may be constrained to give up from
performance or scalability in order to enjoy
some unique functionality. Aspects related
to performance may include supporting

1

4 NoSQL Key-Value DBs Riak and Redis

sharding, replication or ability for tuning
reading, writing or some other operations,
where scalability refers mainly to the
supported type: horizontal scaling (Riak,
MongoDB or HBase), traditional vertical
scaling (Redis, Postgres or Neo4J) or a
combination of this two types [1] .

2 Classification of NoSQL Databases
The NoSQL databases can be divided
based on the optimization strategy and on
the different kinds of tasks that they
resolve in four groups: key-value,
document-based, wide column and graph,
pictured in Fig. 1.

Fig. 1. NoSQL classification [5]

The “Key-Value” model presented in Fig.
2. stores data as simple identifiers (keys)
and the associated values in standalone
tables, called often “hash tables” where
data retrieval is usually performed using
the associated keys. The values can be of
different types, from simple text strings
to complex lists or sets, but the queries
can be run only against keys, and are
limited to exact matches and because of
their simplicity, they are ideal to be used
for highly scalable retrieval of values [2].

Example of key-value databases: Redis,
Riak, Dynamo (Amazon),
Voldemort(LinkedIn)

Key:
100

Badge
:
11235
5

Name
: John

Age
: 45

Nicknam
e: J

Key:
101

Username:
alice.walker

Password:
A12345

Key:
102

Google
Account:
james@gmai
l.com

Id:
456

Location:
Bucharest

Fig. 2. Key-Value Model

The “Document-based” model main concept
is the idea of a “document”, depicted in Fig.
3.
There are many document-oriented database
implementations but all of them encapsulate
and encode information in a standard format
or encoding like XML, JSON (Javascript
Option Notation), YAML or a binary format
BSON. This model consists basically of
version documents that are collections of
other key-value collections. This model
represents the next iteration of key-value,
allowing nested values associated with each
key and supporting a more efficiently query
mechanism [4]. Unlike the simpler version
of key-value stores, in this type of store, the
value column contains semi-structured data,
mainly pairs of attribute names and values.
The value of a column can reach hundreds
of attribute pairs, where the type and the
number of attributes can vary from one row
to other, but in the same time both keys and
values remain fully searchable [2] .
Example of Document databases: CouchDB
(JSON), MongoDB(BSON)

Database Systems Journal vol. VI, no. 4/2015 5

Fig. 3. Document-based model [6]

“Wide Column” model pictured in Fig.
4., also known as “Column-Family” or
“Big Table implementation” has a
database structure that is similar to the
standard RDBMS because all the data is
stored under sets of columns and rows.
One important functionality is the
grouping of the often used columns in

column family [3]. This model is best to be
used for distributed data storage, large-scale,
batch-oriented data processing like sorting,
parsing, conversions between hexadecimal,
binary and decimal code and predictive
analytics [2].
Example of wide column databases:
Cassandra, HBase, BigTable(Google)

Fig. 4. Wide Column model [7]

The “Graph” model is designed to store
data and the relations between them that

can be easily represented as a graph
consistent of interconnected elements with a

6 NoSQL Key-Value DBs Riak and Redis

limited number of relations between
them. This model pictured in Fig. 5. is
very useful for social networking, road
maps or transport routes, generating
recommendations (suggestions) or pattern
detection where you are more
concentrated on the relationships between
data than in the data itself. Graph
databases have a different terminology
compared to the other NoSQL databases
that were presented earlier, mainly
because they are designed based on the
graph architecture. We can identify
“edges” that are kind of joins between
different rows of a table and “nodes” that
can have properties and values and are
similar to the table rows [2].
Example of graph databases: Neo4j,
InfoGrid, Sones GraphDB,
AllegroGraph, InfiniteGraph.

Fig. 5. Graph model [8]

3 Riak Database
Riak represents a distributed key-value
database that can store any type of values,
from plain text, JSON, XML to images or
video clips that can be accessible by a
simple HTTP interface. Riak supplies an
HTTP REST interface where you are able
to query via URLs, headers, and verbs
and receive standard HTTP response
codes. REST comes from Representation
State Transfer and it is used to map
resources to URLs and interact with them
using the CRUD set of verbs: Create
(POST), Read (GET), Update (PUT) and
Delete (DELETE).

Because Riak is a key-value store, it has
implemented a mechanism to avoid key
collisions. This mechanism comes in the
form of “buckets”, where it is possible to
have the same key multiple times, but only
one time in each “bucket”. It is not
mandatory to explicitly create a bucket if
you don’t have a bucket created; putting the
first value into a bucket name will create
it.The Riak HTTP REST interface follows
this pattern:
http://SERVER:PORT/riak/BUCKET/K
EY
There are two ways of populating a Riak
bucket and the first one is to know your key
in advance and add the key/value pair
through a PUT request and you will receive
a HTTP 204 No Content response code. The
second one is without specifying the key
through a POST request, where Riak will
generate a key for the newly added resource
and will return a HTTP 201 Created
response together with the generated key as
part of the header under location flag. [1]

PUT
http://localhost:8091/riak/cars/
bmw Header: "Content-Type:
application/json"
Body: '{"model" : "520", "year"
: "2014"}'

Response:
HTTP/1.1 200 OK

POST
http://localhost:8091/riak/cars
Header: "Content-Type:
application/json"
Body: '{"model" : "A4", "year" :
"2010"}'

Response:
HTTP/1.1 201 Created
Location: /riak/cars/
9cBK3o9zlXq7B45kJrm1S0Ma3PO

To retrieve the value of a resource you can
simply send a GET request to the specific
location. Example: GET
http://localhost:8091/riak/cars/
bmw

Database Systems Journal vol. VI, no. 4/2015 7

To remove a key/value pair, simply send
a DELETE request to the specific
location and you will receive a HTTP 204
response code in case of success or a
HTTP 404 in the case of error.
Example:DELETE
http://localhost:8091/riak/car
s/bmw

Riak databases introduce the “Links”
concept in order to support relations
between keys. A “Link” is a metadata
that associates multiple keys and it
consist of two parts: the key where the
value links to, and a string tag describing
how the link relates to this value.
(Link: </riak/bucket/key>;
riaktag="contains")

PUT
http://localhost:8091/riak/d
ealer/bmwShop

 Header:
"Content-Type:
application/json"
”Link: </riak/cars/bmw>;
riaktag="contains")”

Body: '{"cars" : "20",
"address" : "Bucharest,
Street Paris, Number 10"}'

MapReduce is an algorithm and a
programming model to process and
generate large data sets. The associated
implementation breaks the problem into
two parts. The first part is to specify a
map() function that can process a
key/value pair to generate a set of
intermediate key/value pairs and the
second part is a reduce() function that
converts the second list of intermediate
key/value pairs into one or more scalar
values [9]. Following this pattern, Riak
allows a system to divide tasks into
smaller components and run them across
a massive cluster of servers in parallel.
When it comes to availability and
scalability, Riak exceeds some of the
RDBMS such as MySQL and document
databases like CouchDB, maintaining

replication of data on a number of its nodes,
controlled by a value called the N-Value. By
default for Riak the value of N is 3 for all
the nodes, which means that Riak will
replicate all the information for three times,
but with Riak this value can be overridden
on each bucket. Riak databases are designed
to be used as distributed systems and by
adding nodes to the cluster, the data read
and write, as well as the execution of the
map/reduce queries will be faster [10].

4 Redis database
Redis database if part of the Key-Value
NoSQL database group that supports data
structures more advanced than the Riak
database, but less than a document-oriented
database and it supports a set-based query
operations.
It is one of the fastest NoSQL databases
trading durability over speed. Redis can be
considered more a toolkit of useful data
structure algorithms than an ordinary
member of a database group because it
contains a list of processes and
functionalities like a blocking queue or
stack, a publisher-subscriber system and a
list of configurable features as expiry
policies, durability levels and replication
options [1].
In Redis, the operations to create and update
data are made using the SET and MSET
keywords. The syntax follows this patterns:
SET <key> <value> or MSET <key1>
<value1> <key2> <value2>. MSET
keyword is used to specify a multiple set
operation provided by Redis for reducing the
traffic. In the case of successful adding or
updating the data, the Redis server will
respond with an “OK” message. Example:
“SET bmw 320i” vs “MSET bmw 320i
audi A4”
For data retrieval we have the counterpart
keywords GET and MGET using the
following syntax: “GET <key> ” vs “MGET
<key1> <key2> ”
Redis can store not only string text values
but also numeric ones and will recognize
integers and will provide some simple
operations for them, like INCR/INCRBY

8 NoSQL Key-Value DBs Riak and Redis

(increment / increment by) and
DECR/DECRBY (decrement /decrement
by).
In comparison to Riak, the previous key-
value database type presented, Redis add
the transaction concept using the MULTI
block atomic commands that offer the
possibility to execute multiple operations
like SET or INCR in a single block that
will complete either successfully or not at
all. Different from the traditional
transaction concept from RDBMS, in
Redis when it is decided to stop a
transaction with the DISCARD command
there will be no rollback triggered and no
reverts in the database because the
commands will not have been executed.
The effects are the same, even though
there is a different mechanism
(transaction rollback vs operation
cancellation).
Redis popularity does not rise from
running operations with simple types like
text strings or integers, but from
processing operations with complex data
types as lists, hashes, sets and sorted sets
over a huge number of values up to 232
elements per each key. Hashes can take

any number of key/value pairs and help to
avoid storing data with artificial key
prefixes. In the case of hashes, all the
commands are prefixed by the H character.
To create a hash that contains key/value
pairs, run the HMSET command as it
follows: HMSET <hash> <key1>
<value1> <key2> <value2>.<keyN>
<valueN> . To retrieve all values from a
hash, run: HVALS <hash> and to check all
the keys, run HKEYS <hash> . To get a
single value, run: HGET <hash> <key> .
Lists contain multiple ordered values that
can be stored and retrieved like FIFO (First
in, First out) in the case of queues or like
LIFO (Last in, First out) in the case of stack.
It also has specific insert operations, for
example insert on the right (end) of a list
(RPUSH), insert on the left (begin) of a list
or insert in the middle of a list. Sets are
represented by unordered collections that do
not have duplicated values and are an
excellent choice for running complex
operations between more key values, as
unions or intersections [1].

5 Comparison between Riak and Redis
databases

Table 1. Summary of Riak and Redis characteristics [11] [12] [13]

Characteristic Riak Redis
Official Product
Name

Riak Redis

Company/
Maintainer/Builder

Basho Technologies
(http://docs.basho.com
/)

Salvadore Sanfilippo (http://redis.io/)

License Apache BSD
Protocols HTTP RESTful and

custom binary
Telnet-like Proprietary

Replication/
Clustering

Masterless Master / Slave Replication

Language/
Frameworks

Erlang / C C/C++

Key Feature Fault tolerant Very fast
Category Database Database In-Memory Data Managment
Database model Key-Value

Schema-less
Key-Value
Schema-less
Publish/Subscriber

Query language HTTP
JavaScript

API calls

Database Systems Journal vol. VI, no. 4/2015 9

REST
Erlang

Data types Binary/Data
structures/JSON

Data structures

MapReduce Yes No
ACID properties CID (Consistency,

Isolation and
Durability)

ACID(Atomicity, Consistency, Isolation
and Durability)

Transactions No Yes
Server operating
systems

Linux, OS X, BSD, Linux, OS X, Windows

Has hashes, sets and
lists

No Yes

Buckets Yes No
Best for High availability,

Partition tolerance,
Persistence

For rapidly changing data, Frequently
written, rarely read statistical data

Table 1 describes the comparisons
between the main characteristics of two
key-value database types: Riak vs Redis.
It can be observed the programming
language they are written in, Erlang/C
for Riak and C/C++ for Redis, the main
protocols used to communicate; Riak is
using a more friendly HTTP RESTful
interface. The main features of both
databases are presented, Riak excels at
high availability, partition tolerance and
on the other hand Redis is well known as
very fast database used in scenarios
where we have rapidly changing data.

5 Conclusions
Even if NoSQL databases have been
present in our business from some years
they are still in a continuing
development process, mainly because of
the problem’s that the real world is
having managing real-time data flows
that are evolving every day. We are
living in some interesting days where
many new products, devices are invented
each day and devices produce new data
with some new structures that have to be
stored in some database. This structures
will probably be stored in a well-known
NoSQL database or a new model will be
developed to fulfill the needs of the
modern life.

The key-value model of NoSQL databases
can resolve most of the actual common
problems to store data, provide
functionalities like schema-less,
MapReduce and high availability. Redis
and Riak databases are two of the most
popular key-value NoSQL databases.
Redis is the type that you choose when you
need to move data with fast speed but it is
not the ideal solution when you store data.
On the other hand, Riak is not so fast but is
fault tolerant, maintains the integrity of
data and supports tuning for writes and
reads [11]. When choosing the right type
of key-value database you have to analyze
first the business requirements that you
need to fulfill and then properly analyze
the unique functionalities of each type of
database.

References
[1] Eric Redmond, Jim R. Wilson.

“ Seven Databases in Seven Weeks,
A Guide to Modern Databases and
the NoSQL Movement”. Dallas,
Texas, North Carolina: The
Pragmatic Bookshelf, May 2012.
pp. 1-7, 51-99,261-307. ISBN-
13:978-1-93435-692-0.

[2] A.B.M. Moniruzzaman, Syed
Akther Hossain, NoSQL Database:

10 NoSQL Key-Value DBs Riak and Redis

New Era of Databases for Big data
Analytics - Classification,
Characteristics and Comparison,
International Journal of Database
Theory and Application Vol. 6,
No. 4. 2013.

[3] Veronika Abramova , Jorge
Bernardino, Pedro Furtado,
Experimental Evaluation Of
NoSQL Databases, International
Journal of Database Management
Systems (IJDMS) Vol.6, No.3,
June 2014

[4] A SHORT HISTORY OF
DATABASES: FROM RDBMS
TO NOSQL & BEYOND.
www.3pillarglobal.com.[Read: 16
April 2016.]
http://www.3pillarglobal.com/insig
hts/short-history-databases-rdbms-
nosql-beyond.

[5] NOSQL DATABASES.
www.sqrrl.com.[Read: 15 April
2016.]
https://sqrrl.com/product/nosql/

[6] Mahdi Atawneh, “01 NoSql and
multi model database”,
http://www.slideshare.net/MahdiAt
awneh. [Read: 15 April 2016.]
http://www.slideshare.net/MahdiA
tawneh/01-nosql-and-multi-model-
database

[7] Sandip Shinde, “What is Wide
Column Stores?”, SQL Server
Business Intelligence and Big
Data, [Read: 16 April 2016.],
https://bi-
bigdata.com/2013/01/13/what-is-
wide-column-stores/

[8] Sandip Shinde,” What is Graph
Databases?”, SQL Server Business

Intelligence and Big Data, [Read:
16 April 2016.], https://bi-
bigdata.com/2013/01/14/what-is-
graph-databases/

[9] Jeffrey Dean, Sanjay Ghemawat,
“MapReduce: Simplified Data
Processing on Large Clusters”,
Google Research Publications,
http://research.google.com/archive
/mapreduce.html

[10] Yousaf Muhammad, “Evaluation
and Implementation of Distributed
NoSQL Database for MMO
Gaming Environment”, October
2011, Department of Information
Technology, http://www.diva-
portal.org/smash/get/diva2:447210
/FULLTEXT01.pdf

[11] “Not So Versus, Riak Versus
Redis”,
https://compositecode.com/,
[Read: 16 April 2016.],
https://compositecode.com/2013/0
2/10/riak-redis/

[12] Riak vs Redis, http://vschart.com/
[Read: 16 April 2016.],
http://vschart.com/compare/riak/vs
/redis-database

[13] Ahmed Oussous , Fatima-Zahra
Benjelloun , Ayoub Ait Lahcen ,
Samir Belfkih, Comparison and
Classification of NoSQL
Databases for Big Data., [Read:
16 April 2016.],
https://www.researchgate.net/profi
le/Ayoub_Ait_Lahcen/publication/
278963532_Comparison_and_Clas
sication_of_NoSQL_Databases_fo
r_Big_Data/links/55880d3408ae65
ae5a4dfa26.pdf

Cristian Andrei Baron has graduated the Faculty of Economic
Cybernetics, Statistic and Informatics of the Bucharest University of
Economic Studies in 2011. In 2013, he graduated the master program
“Economic Informatics” at Faculty of Economic Cybernetics, Statistic
and Informatics of the Bucharest University of Economic Studies. At
present he is studying for the doctor's degree at the Academy of
Economic Studies from Bucharest.

