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During recent years, the amounts of data, collected and stored by organizations on a daily 
basis, have been growing constantly. These large volumes of data need to be analyzed, so 
organizations need innovative new solutions for extracting the significant information from 
these data. Such solutions are provided by data mining techniques, which apply advanced 
data analysis methods for discovering meaningful patterns within the raw data. In order to 
apply these techniques, such as Naïve-Bayes classifier, data needs to be preprocessed and 
transformed, to increase the accuracy and efficiency of the algorithms and obtain the best 
results. 
This paper focuses on performing a comparative analysis of the forecasting performance 
obtained with the Naïve-Bayes classifier on a dataset, by applying different data 
discretization methods opposed to running the algorithms on the initial dataset. 
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Introduction 
Nowadays, organizations collect 
large amounts of data every day. 

These data need to be analyzed in order 
to find the meaningful information 
contained by it and reach the best 
conclusions, to support decision making. 
Data mining is an innovative new 
solution, which provides the required 
tools for processing the data in order to 
extract significant patterns and trends. 
Before running data mining algorithms 
against it, the raw data needs to be 
cleaned and transformed. This is 
accomplished through the preliminary 
steps of the Knowledge Discovery in 
Databases process – data preprocessing 
and data transformation. One of the key 
methods used during data transformation 
is data discretization. 
Discretization methods transform the 
continuous values of a dataset attribute to 
discrete ones. It can help improve 
significantly the forecasting performance 
of classification algorithms, like Naïve 
Bayes, that are sensitive to the 
dimensionality of the data. 
Naïve-Bayes is an intuitive data mining 
algorithm that predicts class membership, 
using the probabilities of each attribute 

value to belong to each class. 
Discretization methods needs to be applied 
on datasets before analyzing them, in order 
to transform the continuous variables to 
discrete variables and, thus, to improve the 
accuracy and efficiency of the classification 
algorithm. 
 
2. Naïve-Bayes classifiers: overview 
Classification is a fundamental issue in 
machine learning and statistics. It is a 
supervised data mining technique, with the 
goal of accurately predicting the class label 
for each item in a given dataset. A 
classification model built to predict class 
labels, from the attributes of the dataset, is 
known as a classifier. 
In data mining, Bayesian classifiers are a 
family of probabilistic classifiers, based on 
applying Bayes' theorem. The theorem, 
named after Reverend Thomas Bayes 
(1701–1761), who has greatly contributed to 
the field probability and statistics, is a 
mathematical formula used for calculating 
conditional probabilities. It relates current 
probability to prior probability. 
Bayesian classifiers can predict class 
membership probabilities such as the 
probability that a given tuple belongs to a 
particular class. Studies comparing 
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classification algorithms have found a 
simple Bayesian classifier known as the 
naïve Bayesian classifier to be 
comparable in performance with decision 
tree and selected neural network 
classifiers. Bayesian classifiers have also 
exhibited high accuracy and speed when 
applied to large databases. [1] 
The Naïve-Bayes classifier is an intuitive 
data mining method that uses the 
probabilities of each attribute value 
belonging to each class to predict class 
membership. 
A Bayesian classifier is stated 
mathematically as the following equation: 
[1] 
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where, 

• P(Ci|X) is the probability of dataset 
item X belonging to class Ci; 

• P(X|Ci) is the probability of 
generating dataset item X given 
class Ci; 

• P(Ci) is the probability of 
occurrence of class Ci; 

• P(X) is the probability of 
occurrence of dataset item X. 

Naïve-Bayes classifiers simplify the 
computation of probabilities by assuming 
that the probability of each attribute value to 
belong to a given class label is independent 
of all the other attribute values. 
This method goes by the name of Naïve 
Bayes because it’s based on Bayes’ rule 
and “naïvely” assumes independence—it 
is only valid to multiply probabilities 
when the events are independent. The 
assumption that attributes are 
independent (given the class) in real life 
certainly is a simplistic one. But despite 
the disparaging name, Naïve Bayes works 
very effectively when tested on actual 
datasets, particularly when combined 
with some of the attribute selection 
procedures. [2] 
 
3 Discretization techniques: theoretical 

framework  
The Knowledge Discovery in Databases 
(KDD) process is an iterative process for 
identifying valid, new and significant 
patterns in large and complex datasets. The 
core step of the KDD process is data mining, 
which involves developing the model for 
discovering patterns and trends in the data. 
Data preprocessing and data transformation 
are crucial steps of the KDD process. After 
performing them better data should be 
generated, in a form suitable for the data 
mining algorithms. 
Data transformation methods include 
dimension reduction (such as feature 
selection and extraction, and record 
sampling), and attribute transformation 
(such as discretization of numerical 
attributes and functional transformation). [3] 
Most experimental datasets have attributes 
with continuous values. However, data 
mining techniques often need that the 
attributes describing the data are discrete, so 
the discretization of the continuous 
attributes before applying the algorithms is 
important for producing better data mining 
models. 
The goal of discretization is to reduce the 
number of values a continuous attribute 
assumes by grouping them into a number, n, 
of intervals (bins). [4] 
Mainly there are two tasks of discretization. 
The first task is to find the number of 
discrete intervals. Only a few discretization 
algorithms perform this; often, the user must 
specify the number of intervals or provide a 
heuristic rule. The second task is to find the 
width, or the boundaries, of the intervals 
given the range of values of a continuous 
attribute. [5] 
Data discretization comprises a large variety 
of methods. They can be classified based on 
how the discretization is performed into: 
supervised vs. unsupervised, global vs. 
local, static vs. dynamic, parametric vs. non-
parametric, hierarchical vs. non-hierarchical 
etc. 
There are several methods that can be used 
for data discretization. Supervised 
discretization methods can be divided into 
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error-based, entropy-based or statistics 
based. Among the unsupervised 
discretization methods there are the ones 
like equal-width and equal-frequency. 

• Equal-width discretization 
This method consists of sorting the 
values of the dataset and dividing them 
into intervals (bins) of equal range. The 
user specifies k, the number of intervals 
to be calculated, then the algorithm 
determined the minimum and maximum 
values and divides the dataset into k 
intervals. 
Equal-width interval discretization is a 
simplest discretization method that 
divides the range of observed values for a 
feature into k equal sized bins, where k is 
a parameter provided by the user. The 
process involves sorting the observed 
values of a continuous feature and finding 
the minimum, Vmin and maximum, Vmax, 
values. [5] 
The method divides the dataset into k 
intervals of equal size. The width of each 
interval is calculated using the following 
formula: 
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The boundaries of the intervals are 
calculated as: Vmin, Vmin+Width, 
Vmin+2Width, ... , Vmin+(k-1)Width, Vmax. 
 
The limitations of this method are given 
by the uneven distribution of the data 
points: some intervals may contain much 
more data points than other. [5] 

• Equal-frequency discretization 
This method is based on dividing the 
dataset into intervals containing the same 
number of items. Partitioning of data is 
based on allocating the same number of 
instances to each bin. The user supplies k, 
the number of intervals to be calculated, 
then the algorithm divides n, the total 
number of items belonging to the dataset, 
by k. 
Equal-Frequency Discretization 
predefines k, the number of intervals. It 
then divides the sorted values into k 

intervals so that each interval contains 
approximately the same number of training 
instances. Suppose there are n training 
instances, each interval then contains n/k 
training instances with adjacent (possibly 
identical) values. [3] 
The method divides the dataset into k 
intervals with equal number of instances. 
The intervals can be computed using the 
following formula: 
 

k

n
Interval=     (3) 

 
Equal-frequency binning can yield excellent 
results, at least in conjunction with the Naïve 
Bayes learning scheme, when the number of 
bins is chosen in a data-dependent fashion by 
setting it to the square root of the number of 
instances. [2] 

• Entropy-based discretization 
One of the supervised discretization 
methods, introduced by Fayyad and Irani, is 
called the entropy-based discretization. An 
entropy-based method will use the class 
information entropy of candidate partitions 
to select boundaries for discretization. [5] 
The method calculates the entropy based on 
the class labels and finds the best split-points, 
so that most of the values in an interval fit the 
same class label – the split-points with the 
maximal information gain. 
The entropy function for a given set S is 
calculated using the formula: [5] 
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Based on this entropy measure, the 
discretization algorithm can find potential 
split-points within the existing range of 
continuous values. The split-point with the 
lowest entropy is chosen to split the range 
into two intervals, and the binary split is 
continued with each part until a stopping 
criterion is satisfied. [5] 
Many other discretization methods may be 
applied on raw data, both supervised and 
unsupervised. Among the supervised 
methods we can mention Chi-Square based 
discretization, while a sophisticated 
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unsupervised method is k-means 
discretization, based on clustering 
analysis.  
Discretization techniques are generally 
considered to improve the forecasting 
performance of data mining techniques, 
particularly classification algorithms like 
Naïve-Bayes classifier, and, at the same 
time, it is thought that, choosing one 
discretization algorithm over another, 
influences the significance of the 
forecasting improvement. 
 
4. Case study: Evaluating the 
performance of Naïve-Bayes classifiers 
on discretized datasets 
 
This case study focuses on presenting the 
experimental results obtained by 
forecasting the class label for the Credit 
Approval dataset, using the Naïve-Bayes 
classifier.  
The algorithm was applied to the original 
data, as well as to each transformed 
dataset, obtained by using each of the 
discretization methods described in this 
paper. 
The dataset used for the experimental 
study concerns credit card applications 
and it was obtained from UCI Machine 
Learning Repository [6].  
The Credit Approval dataset comprises 
690 instances, characterized by 15 
attributes and a class attribute. The values 
of the class attribute in the dataset can be 
“+” (positive) or “-“ (negative) and they 
indicate the credit card application status 
for each submitted application. 
This experimental study was performed 
using RapidMiner Software [7]. 
RapidMiner is a software platform, 
developed by the company of the same 
name, which provides support for all 
steps of the data mining process. 

RapidMiner Software supports data 
discretization through its discretization 
operators. Five discretization methods are 
provided by RapidMiner: Discretize by 
Binning, Discretize by Frequency, 
Discretize by Size, Discretize by Entropy 
and Discretize by User Specification.  
Among these, three methods were used 
during the case study, corresponding to the 
ones described in the paper: [7] 

• Discretize by Binning – this operator 
discretizes the selected numerical 
attributes into user-specified number 
of bins. Bins of equal range are 
automatically generated, the number of 
the values in different bins may vary; 

• Discretize by Frequency – this 
operator converts the selected 
numerical attributes into nominal 
attributes by discretizing the numerical 
attribute into a user-specified number 
of bins. Bins of equal frequency are 
automatically generated, the range of 
different bins may vary; 

• Discretize by Entropy – this operator 
converts the selected numerical 
attributes into nominal attributes. The 
boundaries of the bins are chosen so 
that the entropy is minimized in the 
induced partitions. 

During the experiment I defined a data 
mining process in RapidMiner. This process 
applied Naïve-Bayes classifier on the Credit 
Approval dataset, first on the original data 
and afterwards on the datasets obtained by 
applying each discretization method. I 
obtained performance indicators for each of 
these cases and I performed a comparative 
analysis on the results achieved without 
discretization and the results achieved with 
each discretization method. 
The process flow defined in RapidMiner, for 
applying the Naïve-Bayes classifier, is 
presented in figure 1:  
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Fig. 1. Naïve-Bayes process flow in RapidMiner 

 
The process defined for evaluating the 
performance of Naïve-Bayes classifier 
includes the following RapidMiner operators: 
• Read ARFF – this operator is used for 

reading an ARFF file, in our case the 
file credit-a.arff; 

• Set Role – this operator is used to change 
the role of one or more attributes; 

• Discretize – this operator discretizes 
the selected numerical attributes to 
nominal attributes. RapidMiner 
supports applying all three 
discretization methods described in 
this paper: for equal-width 
discretization we can use Discretize 
by Binning, for equal-frequency 
discretization we can use Discretize 
by Frequency and for entropy-based 
discretization we can use Discretize 
by Entropy. 

• Naïve-Bayes – this operator generates 
a Naive Bayes classification model. A 
Naive Bayes classifier is a simple 
probabilistic classifier based on 
applying Bayes' theorem (from 
Bayesian statistics) with strong 
(naive) independence assumptions. A 
more descriptive term for the 
underlying probability model would 
be “'independent feature model”. In 
simple terms, a Naive Bayes classifier 
assumes that the presence (or 
absence) of a particular feature of a 
class (i.e. attribute) is unrelated to the 

presence (or absence) of any other 
feature [7]; 

• Apply Model – this operator applies an 
already learnt or trained model, in this 
case Naïve-Bayes, on a dataset, for 
prediction purposes; 

• Performance – this operator is used for 
performance evaluation, through a 
number of statistical indicators. For 
my case study I chose to use accuracy, 
kappa and root mean squared error 
(RMSE). 

The process described above was executed 
first without the Discretize operator, on the 
original Credit Approval dataset, and 
afterwards including the Discretize operator, 
for each discretization method. By executing 
the results, in each case, the process 
generated results for evaluating the 
performance of the Naïve-Bayes classifier 
on the dataset. Discretization methods 
should increase the efficiency of Naïve-
Bayes classifiers. For performance 
evaluation I compared the results obtained in 
terms of accuracy, kappa and root mean 
square error. In order to establish which 
discretization technique was better for 
transforming the dataset, the accuracy of the 
classification should be as higher, as well as 
kappa, while the root mean square error 
should be as low as possible. A comparative 
analysis of the performance achieved, for the 
Naïve-Bayes classifier, with each discretization 
method, is shown in table 1: 

 
Table 1. Comparative analysis of the Naïve-Bayes classifier performance with discretization methods 

Discretization method 
Performance indicator 

Accuracy Kappa Root mean squared error 
None 78.26% 0.546 0.432 
Equal-width discretization 87.83% 0.754 0.314 
Equal-frequency discretization 84.06% 0.677 0.346 
Entropy-based discretization 86.96% 0.733 0.325 
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Based on the results in the table above, it 
is obvious that applying discretization 
methods to the dataset, before running the 
Naïve-Bayes classifier, has significantly 
improved the performance of the 
classification algorithm and increased the 
accuracy of the results obtained. 
Among the discretization methods 
applied as part of the experimental study, 
equal-width discretization produces the 
lowest root mean squared error, 0.314, 
compared to the other two methods. 
Equal-frequency discretization generates 
the highest root mean squared error, of 
0.346. 
The prediction accuracy of the Naïve-
Bayes classifier has the highest value 
when applying equal-width discretization 
- 87.83%, while equal-frequency 
discretization has an accuracy of 84.06%. 
Performance indicator kappa compares 
the observed accuracy with the expected 
accuracy of the classifier. Thus, the best 
discretization method is the one 
generating the highest kappa. The 
discretization method producing the 
highest kappa, of 0.754, is equal-width 
discretization. Applying equal-frequency 
discretization generates the lowest kappa, 
0.677. 
My experiment compares the quality of 
the classification achieved through the 
Naïve-Bayes classifier, on the Credit 
Approval dataset, without performing 
discretization on the raw data and after 
applying discretization methods on the 
data. Through this experiment I am also 
comparing the performance obtained by 
applying each of the discretization 
methods, against each other. 
Based on the previous statements, all 
three discretization methods improve the 
quality of the classification, compared to 
running the classification on the initial 
dataset. Among the methods, the best 
quality classification is obtained by 
applying equal-width discretization, 
opposed to equal-frequency 
discretization, which generates the lowest 
quality classification. 

5. Conclusions 
Discretization is a very important 
transformation step for data mining 
algorithms that can only handle discrete 
data. The results of my tests confirm that the 
performance of Naïve-Bayes classifier is 
improved when discretization methods are 
applied on the dataset used in the analysis. 
In this paper, I have studied the effect that 
applying different discretization methods, 
can have on the results obtained by 
performing a classification analysis, with the 
Naïve-Bayes classifier. The conclusion, 
based on the results obtained, is that 
applying the discretization methods prior to 
running the classification algorithm is 
beneficial for the analysis, since better 
performance indicators have been obtained 
on the discrete data. 
Based on the experimental results, I can 
assert that Naïve-Bayes classifier generates 
better results on discrete datasets and, also, 
that for the particular dataset we used, the 
most efficient discretization method was 
equal-width discretization, while equal-
frequency discretization was the least 
efficient for improving the classification 
efficiency and accuracy of the Naïve-Bayes 
classifier. 
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