
Database Systems Journal vol. I, no. 2/2010 33

Database Replication

Marius Cristian MAZILU

Academy of Economic Studies, Bucharest, Romania

 mariuscristian.mazilu@gmail.com, mazilix@yahoo.com

For someone who has worked in an environment in which the same database is used for data

entry and reporting, or perhaps managed a single database server that was utilized by too many

users, the advantages brought by data replication are clear. The main purpose of this paper is to

emphasize those advantages as well as presenting the different types of Database Replication

and the cases in which their use is recommended.

Keywords: Database Replication, Snapshot replication, Merge replication, Transactional

replication

Introduction

Imagine a scenario in which you

have to develop an application that all the

company’s staff will use to perform different

tasks. Each person has a laptop and will be

connected to the company’s network.

This type of application can be

developed in two different ways.

One of those is the traditional approach

of separating the tables from the other

objects in the database so that the data can

reside in a back-end database on a network

server, or on the Internet or an intranet,

while the queries, forms, reports, macros,

and modules reside in a separate front-end

database on the user's computer. The objects

in the front-end database are based on tables

that are linked to the back-end database.

When users will retrieve or update

information in the database, they use the

front-end database.

The second way enables you to take a

new approach to building this solution by

creating a single database that contains both

the data and objects. Using Database

replication, you can then make replicas of

the database for each user and synchronize

each replica with the Design Master on a

network server.

In this scenario, you can choose to

replicate only a portion of the data in the

Design Master, and you can replicate

different portions for different users by

creating partial replicas. By using partial

replicas, you can duplicate only the data that

each user actually needs. A complete set of

data is still contained in the Design Master,

but each replica handles only a subset of that

data.

The Design Master is the first member in

a replica set and it is used in the creation of

the first replica in a replica set. You can

make changes to the database structure only

with the Design Master.

Replicas in the same replica set can take

turns being the Design Master, but there can

be only one Design Master at a time in each

replica set.[1]

2 The concept of Replication

To better understand the method behind

Database Replication we start with the term

“Replication” which represents the process

of sharing information to ensure consistency

between redundant resources, such as

software or hardware components, to

improve reliability, fault-tolerance, or

accessibility. It could be data replication if

the same data is stored on multiple storage

devices, or computation replication if the

same computing task is executed many

times.

The access to a replicated entity is

typically uniform with access to a single,

non-replicated entity. The replication itself

should be transparent to an external user. In

addition, in a failure scenario, a failover of

replicas is hidden as much as possible.

In systems that replicate data the

replication itself is either active or passive.

1

34 Database Replication

We talk about an active replication when

the same request is processed at every

replicated instance and about passive

replication when each request is processed

on a single replica and then its state is

transferred to the other replicas.

If at any time one master replica is

designated to process all the requests, then

we are talking about the primary-backup

scheme (master-slave scheme) predominant

in high-availability clusters.

On the other side, if any replica

processes a request and then distributes a

new state, then this is a multi-primary

scheme (called multi-master in the database

field). [2]

Even thought the process of Data

Replication it’s used to create instances of

the same or parts of the same data, we must

not confuse it with the process of backup

since replicas are frequently updated and

quickly lose any historical state. Backup on

the other hand saves a copy of data

unchanged for a long period of time.

3 What is Database Replication
Database replication is the process of

creating and maintaining multiple instances

of the same database and the process of

sharing data or database design changes

between databases in different locations

without having to copy the entire database.

In most implementations of database

replication, one database server maintains

the master copy of the database and the

additional database servers maintain slave

copies of the database. The two or more

copies of a single database remain

synchronized. [3]

The original database is called a Design

Master and each copy of the database is

called a replica. Together, the Design

Master and the replicas make up a replica

set. There is only one Design Master in a

replica set.

Synchronization is the process of

ensuring that every copy of the database

contains the same objects and data. When

you synchronize the replicas in a replica set,

only the data that has changed is updated.

You can also synchronize changes made to

the design of the objects in the Design

Master. [1]

Database writes are sent to the master

database server and are then replicated by

the slave database servers.

Database reads are divided among all of

the database servers, which results in a large

performance advantage due to load sharing.

In addition, database replication can also

improve availability because the slave

database servers can be configured to take

over the master role if the master database

server becomes unavailable. [3]

4 When to chose Database Replication

Implementing and maintaining

replication might not be a simple

proposition. If you have numerous database

servers that need to be involved in various

types of replication, a simple task can

quickly become complex.

Implementing replication can also be

complicated by the application architecture.

However, there are numerous scenarios in

which replication can be utilized.[4]

Database replication is well suited to

business solutions that need to:

• Share data among remote
offices. You can use database replication to

create copies of a corporate database to send

to each satellite office across a wide area

network (WAN). Each location enters data

in its replica, and all remote replicas are

synchronized with the replica at corporate

headquarters. Individual replicas can

maintain local tables that contain

information not included in the other

replicas in the set.

• Share data among dispersed
users. New information that is entered in

the database while users are out of the office

can be synchronized any time the users

establish an electronic link with the

corporate network. As part of their workday

routine, users can dial in to the network,

synchronize the replica, and work on the

most current version of the database.

Because only the incremental changes are

transmitted during synchronization, the time

Database Systems Journal vol. I, no. 2/2010 35

and expense of keeping up-to-date

information are minimized. By using partial

replicas, you can synchronize only specified

parts of the data.

• Make server data more
accessible. If your solution does not need

to have immediate updates to data, you can

use database replication to reduce the

network load on your primary server.

Introducing a second server with its own

copy of the database improves response

time. You determine the schedule for

synchronizing the replicas, and you can

adjust that schedule to meet the changing

needs of your users. Replication requires

less centralized administration of the

database while offering greater access to

centralized data.

• Distribute solution updates. When

you replicate your solution, you

automatically replicate not only the data in

your tables, but also your solution's objects.

If you make changes to the design of the

database, the changes are transmitted during

the next synchronization; you don't have to

distribute complete new versions of the

software.

• Back up data. At first glance,

database replication might appear to be very

similar to copying a database. However,

while replication initially makes a complete

copy of the database, thereafter it simply

synchronizes that replica's objects with the

original objects at regular intervals. This

copy can be used to recover data if the

original database is destroyed. Furthermore,

users at any replica can continue to access

the database during the entire backup

process.

• Provide Internet or intranet
replication. You can configure an Internet

or intranet server to be used as a hub for

propagating changes to participating

replicas.[1]

5 When Database Replication should

not be used

Although database replication has many

benefits and can solve many problems in

distributed-database processing, we should

recognize the fact that in some situations

replication is less then ideal. Database

Replication is not recommended if:

• There are frequent updates of

existing records at multiple replicas.
Solutions that have a large number of record

updates in different replicas are likely to

have more record conflicts than solutions

that simply insert new records in a database.

If changes are made to the same record by

different users and at the same time then

record conflicts will definitely appear. This

can be real time consuming because the

conflicts must be resolved manually.

• Data consistency is critical at all
times. Solutions that rely on information

being correct at all times, such as funds

transfers, airline reservations, and the

tracking of package shipments, usually use a

transaction method. Although transactions

can be processed within a replica, there is no

support for processing transactions across

replicas. The information exchanged

between replicas during synchronization is

the result of the transaction, not the

transaction itself.

6 Methods of performing Database

Replication

Database replication can be performed in

at least three different ways:

• Snapshot replication: Data on one

database server is plainly copied to another

database server, or to another database on

the same server.

• Merging replication: Data from two

or more databases is combined into a single

database.

• Transactional replication: Users

obtain complete initial copies of the

database and then obtain periodic updates as

data changes.

6.1 Snapshot replication

This type of Database Replication is one

of the simplest method to set up, and

perhaps the easiest to understand.

The snapshot replication method

functions by periodically sending data in

bulk format. Usually it is used when the

36 Database Replication

subscribing servers can function in read-

only environment, and also when the

subscribing server can function for some

time without updated data. Functioning

without updated data for a period of time is

referred to as latency.

For example, a retail store uses

replication as a means of maintaining an

accurate inventory throughout the district.

Since the inventory can be managed on a

weekly or even monthly basis, the retail

stores can function without updating the

central server for days at a time. This

scenario has a high degree of latency and is

a perfect candidate for snapshot replication.

Additional reasons to use this type of

replication include scenarios with low-

bandwidth connections. Since the subscriber

can last for a while without an update, this

provides a solution that is lower in cost than

other methods while still handling the

requirements.

Snapshot replication also has the added

benefit of being the only replication type in

which the replicated tables are not required

to have a primary key.

Snapshot replication works by reading

the published database and creating files in

the working folder on the distributor. These

files are called snapshot files and contain the

data from the published database as well as

some additional information that will help

create the initial copy on the subscription

server.[5]

Snapshot replication is often used when

needing to browse data such as price lists,

online catalogs, or data for decision support,

where the most current data is not essential

and the data is used as read-only.

Fig.1. Snapshot Replication

Snapshot replication is helpful when:

• Data is mostly static and does not

change often.

• It is acceptable to have copies of data

that are out of date for a period of time.

• Replicating small volumes of data in

which an entire refresh of the data is

reasonable.

6.2 Merging replication

Merge replication is the process of

distributing data from Publisher to

Subscribers, allowing the Publisher and

Subscribers to make updates while

connected or disconnected, and then

merging the updates between sites when

they are connected.

Merge replication allows various sites to

work autonomously and at a later time

merge updates into a single, uniform result.

The initial snapshot is applied to

Subscribers, and then changes are tracked to

published data at the Publisher and at the

Subscribers. The data is synchronized

between servers continuously, at a scheduled

time, or on demand. Because updates are

made at more than one server, the same data

may have been updated by the Publisher or

by more than one Subscriber. Therefore,

conflicts can occur when updates are

merged.

Merge replication includes default and

custom choices for conflict resolution that

you can define as you configure a merge

publication. When a conflict occurs, a

Database Systems Journal vol. I, no. 2/2010 37

resolver is invoked by the Merge Agent and

determines which data will be accepted and

propagated to other sites.

Merge Replication is helpful when:

• Multiple Subscribers need to update

data at various times and propagate those

changes to the Publisher and to other

Subscribers.

• Subscribers need to receive data,

make changes offline, and later synchronize

changes with the Publisher and other

Subscribers.

• You do not expect many conflicts

when data is updated at multiple sites

(because the data is filtered into partitions

and then published to different Subscribers

or because of the uses of your application).

However, if conflicts do occur, violations of

ACID properties are acceptable.[1]

6.3 Transactional replication

In what could be considered the opposite

of snapshot replication, transactional

replication works by sending changes to the

subscriber as they happen.

As an example, SQL Server processes

all actions within the database using

Transact-SQL statements. Each completed

statement is called a transaction.

In transactional replication, each

committed transaction is replicated to the

subscriber as it occurs. You can control the

replication process so that it will accumulate

transactions and send them at timed

intervals, or transmit all changes as they

occur. You use this type of replication in

environments having a lower degree of

latency and higher bandwidth connections.

Transactional replication requires a

continuous and reliable connection, because

the Transaction Log will grow quickly if the

server is unable to connect for replication

and might become unmanageable.

Transactional replication begins with a

snapshot that sets up the initial copy. That

copy is then later updated by the copied

transactions. You can choose how often to

update the snapshot, or choose not to update

the snapshot after the first copy.

Once the initial snapshot has been

copied, transactional replication uses the

Log Reader agent to read the Transaction

Log of the published database and stores

new transactions in the DISTRIBUTION

Database. The Distribution agent then

transfers the transactions from the publisher

to the subscriber.

Fig.2. How it works:

Transactional Replication [1]

Transactional replication with updating

subscribers

An offshoot of standard transactional

replication, this method of replication

basically works the same way, but adds to

subscribers the ability to update data. When

a subscriber makes a change to data locally,

SQL Server uses the Microsoft Distributed

Transaction Coordinator (MSDTC), a

component included with SQL Server 2000,

to execute the same transaction on the

38 Database Replication

publisher. This process allows for

replication scenarios in which the published

data is considered read-only most of the

time, but can be changed at the subscriber

on occasion if needed. Transactional

replication with updating subscribers

requires a permanent and reliable connection

of medium to high bandwidth. [5]

Transactional replication is helpful

when:

• You want incremental changes to be

propagated to Subscribers as they

occur.

• You need transactions to adhere to

ACID properties.

• Subscribers are reliably and/or

frequently connected to the

Publisher.[6]

7 Conclusions

It is obvious that Database Replication

it’s not a very simple process but if applied

in the right circumstances it can be an

extraordinary solution for developing better

applications, for improving performance and

for better experience for users.

These advantages do not come without a

cost. Data replication obviously requires

more storage, and updating replicated data

can take more processing time than updating

a single object.

In the same time, Database Replication

can turn out to be complicated when it

increases in size and magnitude but used

properly, replication can improve

considerably your data infrastructure.

Clients at the site to which the data is

replicated experience improved performance

because those clients can access data locally

rather than connecting to a remote database

server over a network and clients at all sites

experience improved availability of

replicated data. If the local copy of the

replicated data is unavailable, clients can

still access the remote copy of the data.

In a few words replication improves with

availability and being highly distributed.

Consider companies where users are

disconnected during the day but need to

update orders/inventories and other

information automatically after normal

working hours. Database Replication

provides an easy solution when data must be

highly distributed.

References

[1] Microsoft MSDN Library -

http://msdn.microsoft.com

[2] WikiPedia - http://www.wikipedia.com

[3] Community for sharing technology

information - http://www.tech-faq.com/

[4] IT information, Introduction to Database

Replication- http://www.informit.com

[5] Mark A. Linsenbardt, Shane Stigler

“McGraw-Hill/Osborne Media book

SQL Server 2000 Administration” -

Chapter 10, 'Replication'

[6] Sql Server Library TechNet – Microsoft

- http://technet.microsoft.com

Marius Cristian Mazilu graduated from the Faculty of Cybernetics,

Statistics and Economic Informatics of the Academy of Economic Studies in

2008. He got his Master Degree in the Database support for businesses

department of the Academy of Economic Studies in 2010. He is currently

attending the PhD program of the Academy of Economic Studies in the field

of Economic Informatics. His domains of work are: Development and

Management of Database Applications, Developing Web Applications for

Businesses and Web Marketing.

