
Database Systems Journal vol. I, no. 2/2010 17

Optimized Data Indexing Algorithms for OLAP Systems

Lucian BORNAZ

Faculty of Cybernetics, Statistics and Economic Informatics

Academy of Economic Studies, Bucharest

lucianbor@hotmail.com

The need to process and analyze large data volumes, as well as to convey the information

contained therein to decision makers naturally led to the development of OLAP systems.

Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment.

Although there are several ways to optimize database systems, implementing a correct data

indexing solution is the most effective and less costly.

Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data

stored in cubes.

Today database systems implement derived indexing algorithms based on well-known Tree,

Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best

performance for any particular situation (type, structure, data volume, application).

This paper presents a new n-dimensional cube indexing algorithm, derived from the well known

B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-

dimensional nature and provides better performance in comparison to the already implemented

Tree-like index types.

Keywords: data warehouse; indexing algorithm; OLAP, n-Tree.

Introduction

Data warehouses represented a natural

solution towards increasing the availability

of data and information, as well as their

accessibility to decision makers. The

warehouses store important data coming

from different sources for later processing

and are an integrant part of analytical

processing systems (OLAP).

Unlike OLTP systems, OLAP systems must

execute complex interrogations and large

data volume analyses. To optimize,

analytical processing systems analyze data

and store aggregated information in special

analytic structures, called cubes.

Similarly to OLTP systems, OLAP systems

use indexing algorithms to optimize access

to data stored in data warehouses, i.e. cubes.

2. General information about cubes

When stored in an OLAP system, the source

data may be indexed to reduce the time

necessary for their processing. To index

source data, OLAP systems use indexing

algorithms similar to OLTP (B-Tree,

Bitmap, R-Tree etc.).

Processed data are stored in n-dimensional

structures called cubes. The elements of a

cube are the dimensions, members, cells,

hierarchies and properties [1] (fig. 1).

1

18 Optimized Data Indexing Algorithms for OLAP Systems

Fig. 1 - Structure of a tridimensional cube

The dimensions contain descriptive

information about the data that is to be

summarized. They are essential for data

analysis and represent an axis of the cube

[2].

Each dimension corresponds to a

measure of the data source and uniquely

contains each value stored in that position.

During queries, the dimensions are used to

reduce the search area and usually occur in

the WHERE clause.

Hierarchies describe the hierarchical

relationships between two or more members

of the same dimension. A dimension can be

part of multiple hierarchies. For example, in

addition to the hierarchy of dimensions

Quarter-Month-Year, Time dimension can

belong to the hierarchy Day-Month-Year.

The cells of the cube contain

summarized data based on dimensions

values. Cells store summarized data based

on the cube dimension number, dimensions

values, method of analysis and is usually,

the result returned by the queries.

Properties describe common features of

all members of the same dimension.

Properties allow selecting data based on

similar characteristics. For example, the size

of product volume may have an attribute

which allows a certain volume products.

Analysis and data processing is based on

the method chosen. The same data can be

analyzed using different methods

(clustering, neural nets, regression,

Bayesian, Decision trees, etc.) accordingly

to the user's needs. Although using different

methods of analysis may result in different

aggregate data and ordering different logic

cells, the logical structure of the cube is the

same.

In order to optimize performance,

OLAP systems implement cube indexing

algorithms. The indexes created through this

process use the data contained in a cube’s

dimensions to quickly access the cells

containing the data required by the user.

Hence, cubes are indexed using a B-

Tree type of algorithm.

3. The B-Tree Index in OLAP

Systems

As the values of the cube dimensions are

unique and they are stored in the index

blocks and used to locate the leaf blocks

which contain references to the physical

location of the cube cells, implementing a B-

Tree index represents an effective solution

for indexing cubes.

A B-Tree index used in OLAP systems

contains sub-trees corresponding to each

dimension.

The sub-trees are connected in such a

way that each path to go through the tree

from the root node to the final level index

blocks (the ones storing the references to the

cube’s cells) is crossed by a sub-tree

corresponding to each dimension.

Thus, a three dimensional cube contains

three levels. The first level represents a

matrix of planes (bi-dimensional space), the

second level represents a matrix of lines

(one dimensional space), and the third level

represents a matrix of points in space (0

dimensional space) (fig. 2).

0

z

x

y

Cel

Dimension

Database Systems Journal vol. I, no. 2/2010 19

Fig. 2 - The structure of a B-Tree index for a three-dimensional cube [3]

Thus, each cube size will correspond to

one sub-tree of the B-Tree index and each

sub-tree will have on child sub-tree for each

child dimension.

Summarized data are stored inside the

cube, on pages separate from the cells. As

summarized data creation and storage

consumes CPU resources and storage space

environment, the developer and/or system

administrator can choose as they are

available only at certain levels, depending

on their usage, summarized data obtained

from the upper levels being calculated by

processing the data summarized in the lower

levels.

Looking at the structure of the B-Tree

index, it is easily noticeable that the cost of

locating one of the cube’s cells represents

the sum of the costs associated with locating

the last level index block of each sub-tree.

The height of such an index is (f.1) [4]:

2

1
log

+
≤

r
h d (f.1)

where h∈N, d is the number of stored values

within an index block, r is the total number

of values corresponding to the dimension.

The number of index blocks of a sub-tree

containing d elements is:

∑
= −

−
=

h

l

h
l

d

d
d

0 12

1
 (f.2)

where d=(m-1) and h is the tree height.

Considering that the number of items stored

in index blocks at the top level of the sub-

tree is r, we can calculate the maximum

height (h) of the index portion

corresponding to a specific dimension, as

follows:

r
d

dd
h

≤
−

−

1

)1(2
 => 12 +≤ rd

h

=>
2

1
log

+
≤

r
h d (f.3)

where h�N.

Level 1

Root Nod

Dimension X

Cube cells

Dimension Y Dimension Z

Level 2

Level 3

Storage

20 Optimized Data Indexing Algorithms for OLAP Systems

The total cost of a search operation within a

sub-tree is:

ci=h+1 (f.4)

Since to locate a cell of the cube is

necessary to cross every sub-tree,

corresponding to each dimension of the

cube, we can calculate the total cost of a

queries based on (f.4):

)1(
1

−+=∑
=

dcc
n

j

ijti (f.5)

where n is the number of cube dimensions,

cij is the cost of query sub-tree

corresponding to the dimension j and d-1 is

the total number of root nodes used as

connecting elements of the leaf blocks of

sub-trees that have several subordinated sub-

tree.

Since OLAP systems incorporate very

large data volumes, their performance is

affected not only by the query operations

cost but also by the index storage space.

Indexes tend to occupy the storage space

of the cube and sometimes their size can be

larger than the data stored in the cube. If an

index occupies a large memory space, it

means that the structure is high (number of

elements, elements that store too much data,

etc.), which increases the index creation

time and query execution times.

Using formulas (f.2) and (f.3) it can be

calculated the storage space (SS) for a sub-

tree indexed using a B-Tree index:

p

h

s S
d

d
S ⋅

−

−
=

12

1
 (f.6)

where d is the number of items stored in a

block index, h is the index height and SS is

the page size.

Total storage space (St) needed to store

a B-Tree index used for indexing cubes is

equal to storage space for all its sub-trees.

For a cube with three dimensions, the

number of sub-trees of a B-Tree index is:

Nsi=1+Ea+Eb+2EaEb (f.7)

where Nsi is the number of sub-trees of

dimension i, Ea and Eb represents the

elements number of dimension index leaf

block corresponding to the other two

dimensions.

Based on the (f.2)-(f.7), whole B-Tree

index size can be calculated as:

()∑
=

⋅=
j

i

sisit NSS
1

+Srn (f.8)

where j is the cube dimensions number, Ssi

is a storage space needed to store the sub-

tree for the dimension i, the Nsi is the

number of sub-trees coresponding to the

dimension i and Srn is the size of all nodes

connecting the sub-trees.

The query cost of the B-Tree index is

the sum of the cost of all sub-trees between

the root node and the index leaf block which

store the physical address of the cell.

4. The n-Tree Indexing Algorithm

Given the characteristics of cubes, as

well as the structure of a B-Tree index, it

becomes obvious that this indexing

algorithm is not optimized for n-dimensional

data structures. Thus, the number of sub-

trees within the index is directly

proportional with the number of dimensions.

As a consequence, the cube is over-indexed

resulting in an overconsumption of

processing time and storage space.

The proposed n-dimensional indexing

algorithm pays attention to the n-

dimensional structure of the data. Instead of

creating sub-trees corresponding to each

dimension and subsequently linking them, it

creates only one tree which indexes data

simultaneously on all dimensions. As a

result, the n-dimensional space is gradually

divided into ever smaller n-dimensional

subdivisions, until the smallest sub-divisions

represent the cells of the cube.

The resulting index has the following

characteristics:

Database Systems Journal vol. I, no. 2/2010 21

- no NULL values are indexed;

- the root node contains at least two

subordinated index blocks if it does

not coincide with the last level index

block;

- each index block contains:

- values from each dimension of the

cube; the combination of such values

represents a reference point in the n-

dimensional space;

The index maintains an ordered list

containing unique values corresponding to

each dimension of the cube. The values in

each list represent a subgroup of the values

of the respective dimension. Combining

values from each list at a time, we can

obtain the data needed to identify the

reference points in the n-dimensional space

simultaneously minimizing the space

required to store them.

Any value corresponding to a dimension

from the subordinated index block is smaller

than the value of the respective dimension

corresponding to the reference point from

the upper level index block.

- references to the subordinated index

blocks (rbs), corresponding to the

reference points (f.9):

∏
=

=
n

i

ibs ar
1

 (f.9)

where a1..n represents the number of values

from dimensions 1..n stored in the index

block;

- n references to the index blocks that

contain larger values in a dimension

than the reference point (one for each

dimension).

Thus, an index block contains a total of r

references (f.10):

r=rbs+n

 (f.10)

where n equals the number of the cube’s

dimensions.

- the last level index blocks do not

contain any references to other index

blocks; instead they store the

reference to the physical location of

the cube’s cells;

- the physical size of an index block is

approximately one page.

Each index block stores an ordered list

of unique values corresponding to each cube

dimensions. Values from each list is a subset

of these dimensions. Combining values from

each list, one by one, points from the n-

dimensional space can be identified,

minimizing the needed storage space.

Any value from the dimensions, stored

into an index block, is lower than the value

belonging to the respective dimension from

the reference point of the higher rank index

block.

Fig. 3 - The structure of an n-

dimensional index corresponding to a three

dimensional cube

Because the dimensions values of the

reference point are uniquely stored, the n-

dimensional space is always a regular space.

For a cube with three dimensions, this space

is a rectangular parallelepiped, and ideally is

a cube.

If some cells do not contain data units

(containing null values), they are not

indexed, thus reducing the size of the index.

The lack of aggregated values corresponding

to a cell does not affect the form of the space

described by the values stored into a index

block.

Every n-Tree index contains a sub-tree

that indexes the summarized data which has

the following characteristics:

- it contains a sub-tree for each dimension

of the cube;

22 Optimized Data Indexing Algorithms for OLAP Systems

- each sub-tree corresponding to a

dimension has a structure similar to a B-

Tree index and indexes all the values

pertaining to the respective dimension;

- the index blocks of the sub-trees contain

references to the lower level index

blocks;

- the index leaf blocks do not contain

references to other indexing blocks;

instead they are the sole elements

containing references to the pages where

the summarized data are stored;

- each element of the index leaf blocks

contains references to parts of the n-

dimensional space to which the

respective value is assigned

Fig. 4 - The structure of an n-Tree index for to a three dimensional cube

Thus the number of referenced contained by

each element of a leaf index block is:

rs=n-1 (f.11)

where n is equal to the number of the cube’s

dimensions.

Summarized data relating to each value

stored in the sub-tree corresponding to one

dimension are equivalent to a 1 to (n-1)

dimensional sub-space. The sub-spaces are

distributed among the respective sub-trees,

as to avoid storing multiple references to the

same summarized data. The dimensions of

the index are thus reduced.

For a 3-dimensional cube, the index leaf

blocks will contain the following references:

- the elements of the index leaf block of the

X dimension sub-tree contain:

- references to data summarized

representing the space corresponding to

the value of the X dimension, all values

of the Y dimension and the first value of

the Z dimension (one dimensional

space);

- references to the data summarized

representing the space corresponding to

the value of the X dimension, all values

of the Y dimensions and all values of the

Z dimension (two dimensional space)

- the elements of the index leaf blocks of

the sub-tree corresponding to the Y

dimension contain:

- references to the data summarized

representing the space corresponding to

the value of the Y dimension, all values

of the Z dimension and the first value of

the X dimension (one dimensional

space);

- references to the data summarized

representing the space corresponding to

the value of the Y dimension, all values

of the X dimension and all the values of

Storage

Dimension X Dimension Y Dimension Z

Cell Root node References (pointers)

References to the summarized data

Summarized data

Sub-tree which

 indexes the

cells which stores
the summarized data

Sub-tree which

 indexes the

cube cells

Database Systems Journal vol. I, no. 2/2010 23

the Z dimensions (two dimensional

space);

- the elements of the index leaf blocks of

the sub-tree corresponding to the Z

dimension contain:

- references to the data summarized

representing the space corresponding to

the value of the Z dimension, all values

of the X dimension and the first value of

the Y dimension (one dimensional

space);

- references to data summarized

representing the space corresponding to

the value of the Z dimension, all values

of the X dimensions and all values of the

Y dimension (two dimensional space).

5. Creating an n-Tree Index

To create an n-dimensional index, all data in

every index is read and n-dimensional points

are created. For each of these points, the

following operations are carried out:

- an index block corresponding to an n-

dimensional sub-space whose reference

point has only values larger than that of

the processed point is identified; the

index block must also have enough free

space to store the values of the

corresponding dimensions of the

processed point plus a reference;

If such an index block is identified, the

values are added to the dimensions’

corresponding lists and the reference to the

physical location of the cube’s cell is stored.

Otherwise, a new index block is created by

dividing one of the neighboring index

blocks.

- when a new index block is created, the

values of the reference point, as well as

the reference to the parent index block

are added, together with references to the

neighboring index blocks;

∑
=

+=
j

i

refvie SSS
1

 (f.12)

where Se is the element size, Svi is the data

type size for the dimension i and Sref is the

size of a reference.

This process could propagate itself to

the root node. Generally, OLAP systems

contain historical data with a low frequency

of updating operations but with a large

volume of updates. Updating these data also

triggers an updating of the cube, and thus, of

its index.

It should be noted that the space

required for inserting a new element into a

block index is not always the same. If some

values of n-dimensional point corresponding

to a specific dimension were previously

inserted the necessary free space is smaller

than the element size.

6. The Performance of the n-Tree

Index

The performance of an index depends

on its height. A larger height means more

physical read operations are needed to

identify the cell containing the required data.

The height of the index depends on the

size of the index block, the size of the type

of indexed data, the number of references to

subordinated index blocks stored in each

index block, and the number of cells.

By analyzing the structure of an index

block (fig. 4), we can compute the number

of references it can store.

Fig. 5 - Structure of an index block in an n-

Tree index

The volume of the stored data in an index

block may be written as (f.11):

ref

n

i

iv

n

i id SnaSaS ⋅

++⋅= ∏∑

=
=

1
1

 (f.13)

.

.

... D1
a

D1 ... Dn

z

Dn...

Dn... D1 Dn... D1 ... Dn
z ... D1

Dn... D1 Dn... D1 ... Dn
z ... D1

Dn... D1
a

Dn... D1

a

... Dn
z ... D1

a

Values

Pointers to the

lowest index

blocks

Dn

... D1

Pointers to the

neighboring

index blocks

24 Optimized Data Indexing Algorithms for OLAP Systems

where Sd represents the volume of the stored

data, Sv represents the size of the indexed

value, n is the number of dimensions and Sref

the size of a reference.

The blocks number of the n-Tree index

which contains d elements is:

∑
= −

−
=

h

l

h
l

d

d
d

0 12

1
 (f.14)

where h is the index height.

Ideally, d is the maximum number of the

elements which can be stored inside an n-

Tree index and its value is up to ∏
=

+
n

i

i na
1

.

The query cost for the n-Tree index is:

ci=h+1 (f.15)

where ci is the query cost, h is the index

height and 1 is for the index root block.

Since the data in an OLAP system is rarely

modified, the best performance is obtained

when the index blocks contain a volume of

data equal to their size.

Therefore, we can approximate the value of

Sd to be equal to that of a page.

We assume that:

- the size of an index block is of 8kB (this

is the most common size in current

database systems [5]);

- the size of a reference is 6B (the most

common size for a local index [6]);

- the size of the data type is 8B (this is the

size of the datetime type of data);

- each dimension contains the same

number of unique values.

Using the formulas (f.3) and (f.15), we can

compare the performance of a n-Tree index

to that of a B-Tree index (fig 6-11).

Fig. 6 - The cost of a search operation in a

two-dimensional cube

Fig. 7 - The cost of a search operation in a

three dimensional cube

Analyzing fig. 6 and fig 7, it can be seen that

the n-Tree index query cost is lower the the

B-Tree index query cost event for 1.000

cells. The performance difference is event

higher when the cells number or the

dimensions number increase.

Fig. 8 - The size [in MB] of an index

corresponding to a two dimensional cube

Database Systems Journal vol. I, no. 2/2010 25

Fig. 9 - The size [in MB] of an index

corresponding to a three dimensional cube

The same situation can be observed for the

index size in fig. 8 and fig. 9.

The n-Tree index is much smaller than the

B-Tree index. The difference comes from

the lower number of the index blocks and

from the flexibility of creating the

summarized data.

When the data summarized data is to be

query, the result depends on the location of

the location of the summarized data.

Fig. 10 - The summarized data query cost

for a two-dimensional cube

Fig. 11 - The summarized data query cost

for a three-dimensional cube

Anyway, in fig. 10 and fig. 11 it can be

observed that the n-Tree index query cost is

lower than the B-Tree index query cost in

any situation, excepting when the cells

number is very low.

7. Conclusions

Implementing a new indexing algorithm,

with much wider scope and increased

flexibility, could be the database systems

optimization solution, especially when other

indexing algorithms do not provide the

desired results.

The n-Tree index could be considered a

more generalized B-tree index. If B-Tree

index can index only uni-dimesional data,

the n-Tree index is optimized for any n-

dimensional data. Moreover, the n-Tree

index will be more suitable for indexing

spatial data.

As shown in figures 5-9, the n-Tree index

outperforms the B-Tree index in locating the

cells of the cube. Moreover, the difference

in performance increases as the number of

the cube’s cells rises. In addition, the space

occupied by the n-Tree index in much

smaller than that needed for a B-Tree index.

Again the superiority of the n-Tree index is

all the more evident when the number of the

cube’s cells increases.

References

[1] Revista Informatica Economica, nr. 4

(24), 2002;

[2] Revista Informatica Economica, nr. 1

(17), 2001;

[3] Computing Partial Data Cubes for

Parallel Data Warehousing

Applications, Frank Dehne, Andrew

Rau-chaplin, Computational Science -

ICCS 2001;

[4] „Ubiquitous B-Tree”, Douglas Corner,

ACM, 1979;

[5] MCTS 70-431: Implementing and

Maintaining Microsoft SQL Server

2005, Que, 2006;

[6] „Index Internals”, Julian Dyke, 2005.

26 Optimized Data Indexing Algorithms for OLAP Systems

Lucian Bornaz is PhD candidate at Academy of Economic Studies since 2006.

His research domain is database systems with focus on data indexing algorithms.

He graduated Airforce Academy in 1998 and master course at Academy of

Economic Studies in 2006.

Lucian Bornaz is certified by Microsoft as MCP, MCSA, MCSE, MCDBA,

MCAD and MCTS.

