
Database Systems Journal vol. V, no. 2/2014 49

The Transition from RDBMS to NoSQL.
A Comparative Analysis of Three Popular Non-Relational Solutions:

Cassandra, MongoDB and Couchbase

Cristina BĂZĂR, Cosmin Sebastian IOSIF
University of Economic Studies, Bucharest, Romania

cristina.bazara@gmail.com, iosifsebastian@yahoo.com

NoSQL databases were built in the need to deal with the increasing amount of complex data
(Big Data), required in real-time web applications, and are mostly addressing some of these
points: the focus on availability over consistency, horizontally scalable, distributed
architecture, and open-source. The purpose of this paper is to present the reasons for a
transition from RDBMS to NoSQL databases, to describe the main characteristics of non-
relational databases and to compare and analyze three popular NoSQL solutions –
Cassandra, MongoDB and CouchBase, outlining the results obtained during performance
comparison tests. Each solution is optimized for different workloads and different use cases.
Therefore, each has its own strong points and weaknesses.
Keywords: NoSQL, Relational vs NoSQL, comparison, Cassandra, MongoDB, Couchbase.

Introduction
Interactive software (wherein a user
can offer input and receive output in

real time) has changed fundamentally
throughout the last 40 years. The online
systems of the ’70 have evolved through a
series of intermediary stages, into the
"web-" and mobile applications we see
today. These systems solve new problems
for potential user populations that are far
larger and they are being executed using a
computational infrastructure that has
suffered major changes especially
throughout the last few years.
The architecture of these software systems
has transformed as well. A modern web
application can support millions of users
simultaneously by spreading the load into a
collection of application servers, managed
by a load distribution system. Modifying
the behavior of applications can be done
progressively, without first creating
“downtime” periods, by progressively
updating the software on the individual
servers that make up the system. Adjusting
the load capacity of applications is easy to
do by changing the number of available
application servers.

In spite of this, the database technologies
being used have mostly failed to keep up.
The technology of relational databases,
invented in 1970 is still widely in use
today, even though it has only been
optimized for the user types and
infrastructure of that era. While a number
of hacks and additions (e.g. distributed
caching and data denormalization) have
extended the life of these technologies,
these tactics eliminate the key benefits of
the relational model, and contribute to the
growing complexity and expansion of the
system.
Google, Amazon, Facebook and LinkedIn
have been among the first companies to
discover the serious limitations of the
technologies behind relational databases as
far as the demands of newer applications
are concerned. Because commercial
alternatives did not yet exist, they invented
new approaches to manage their data.
Their pioneer work generated a major
interest, because an ever increasing
number of companies was facing similar
challenges. Within a short time-period
open-source database projects emerged, to
which the big companies flocked.

1

50 The transition from RDBMS to NoSQL.
 A comparative analysis of three popular non-relational solutions: Cassandra, MongoDB and Couchbase

The premises to developing NoSQL: Big
Data, Big Users and Cloud Computing
Big Users. Not long ago, 1000 users/day
was a lot for many applications and 10.000
represented an extreme case. Nowadays,
most applications are cloud based and are
available all over the internet, so they need
to be able to accommodate users 24h/day,
365 days/year. Worldwide, more than 2
billion people are connected to the internet
and the time they spend online is rising day
by day, creating an explosion in the

number of concurrent users. At this time it
is not unusual for an application to have
millions of users in one day.
Big Data. Data has become easier to
collect and access through intermediaries
like Facebook, D&B and others. Personal
data, spatial data, user generated content,
log-in details are just a few examples. It is
no surprise that developers place more
weight on using this data both for
improving the current applications as well
as improving new ones.

Fig. 1. Big Data: About 80% of the data generated now is unstructured or semi-structured.

The total amount of data is growing very fast.[14]

Cloud Computing. Not long ago, most
consumers and many business applications
were single-user applications which
worked on a personal computer.
Applications with a large volume of data,
multiple users used a 2-level client-server
application which ran behind the firewall
and allowed a limited number of users.
Nowadays, most new applications (be they
consumer or enterprise grade) use an
internet architecture with 3 layers, run on a
public or private cloud and allow for a
higher number of users. With this change
of application architecture, new business
models such as software as a service and
advertising based models have become
more wide-spread. [1].
These three aspects, highlighted earlier
have led to the inevitable adoption of a
different database technology which
should keep up with the dynamics of
interactive applications

2. Shifting from relational to NoSQL –

a brief comparison
Scaling model - Relational databases are a
technology that scales vertically – to add
capacity (data storage or I/O capacity) we
need a bigger server. The modern approach
to application architecture is to scale
horizontally, rather than vertically [2].
Instead of buying a bigger server, we use
many commodity servers, virtual machines
or cloud instances behind a load balancer.
In reverse, system capacity can be easily
reduced when no longer needed. While
scaling horizontally is already common at
the application logic tier, the database tier
is just starting to use this approach.
Data model - The deployment benefits of
NoSQL technology for scaling horizontally
frequently get the most attention, but
equally important are the benefits granted
by a schema-less approach to data

Database Systems Journal vol. V, no. 2/2014 51

management. With a relational database,
we must define a schema before adding
records to the database. Each record added
to the database must strictly comply to this
schema and its fixed column names and
data types [2]. Bringing changes to the
database schema is difficult, especially
when it is a partitioned relational database
that spreads across multiple servers.

If our data capture and management
requirements are constantly evolving, a
rigid schema quickly becomes an obstacle
to change. NoSQL databases (whether it is
a key-value implementation, document-
oriented, column-oriented or otherwise)
scale horizontally, and they don’t require
schema definition before inserting data nor
changing the schema when data collection
and management needs evolve [9].

Fig. 2. Comparition relational - NoSQL

Relational data model – Besides the need
to review the schema every time the data
that we want to collect change, this model
is characterized by the database

normalization process, by which large
tables are decomposed into smaller tables
linked together. See the figure below:

Fig. 3. Relational data model

In the above example, the database is used
to store information into an error log. Each
error record (row in Table 1) is composed

of an error code (ERR), the time it took
place (TIMP) and the datacenter (CD) in
which it happened. Instead of repeating all

52 The transition from RDBMS to NoSQL.
 A comparative analysis of three popular non-relational solutions: Cassandra, MongoDB and Couchbase

the information about the datacenter
(phone, location), each error record will
point to one row in the Data Centers Table
(Table 2) containing the location of the
datacenter (LOC) and the telephone
number (NUM).
In the relational model, records are
“spread” across multiple tables with certain
attributes shared by several records
(multiple error records contain the same
data center information). The advantage is
that there is less duplicated data in the
database. The disadvantage is that a change
to a single record can mean locking down
multiple tables simultaneously, to ensure
that the change doesn’t leave the database
in an inconsistent state. In a relational
database, transactions can be complex, as
the data, even of a single record, is spread
about. This complex network of references
between data items makes it very hard to
distribute relational data across several
servers and can lead to performance issues
both when reading and when writing data.
Back when storage capacity was expensive
and scarce, these compromises were
justified. But in the last 40 years the prices
of data storage units plummeted [11], and
for many this compromise doesn’t make
sense any more. The use of more storage
space in exchange for increased application
performance and the ability to easily
distribute the workload across multiple
machines is now the best choice in many
situations.
Regarding the Document data model, the
use of the term "document" can cause
some confusion. We need to clarify that
such a database, has nothing to do with
"documents" in the classic sense of the
word. It doesn’t mean articles, letters or
books. Instead, in this case, a document
refers to a data record that self-describes
the data elements that it contains.
Documents such as XML, HTML or JSON
are examples of “documents” in this
context. By using JSON [8] as the
document format, the records of the error
log shown earlier, would be:

{

"ID ": 1,

"ERR": "Memorieinsuficienta ",

"TIMP": “2014-03-16T23:59:58.75 ",

"CD": "BUC",

"TEL": "021.12.34.56 "
}
{

"ID ": 2,

"ERR": "Eroare ECC ",

"TIMP": "2014-03-16T23:59:59.00 ",

"CD": "BUC",

"TEL": "021.12.34.56 "
}

As we can see, the data is denormalized.
Each record contains a complete set of
information on the error without external
reference. The records are self-contained.
This makes it very easy to move the entire
record to another server – all the
information simply comes along with it.
There is no concern that some parts of the
record from other tables will be omitted.
And because only the independent record
(document) must to be updated when
changes are made (instead of changing
entries in many tables simultaneously),
consistency at the record level is easier to
accomplish [12]. Also data reading
performance is increased.
However, complete denormalization of
data is not required in a document-oriented
database, as we will discuss in the next
chapter. In fact, in the previous example,
maintaining documents representing each
datacenter and simply referencing those
from each error record would probably be
the correct decision. This separation would
eliminate duplication and allow quick
changes to information shared across
multiple records (for example, if the phone
number for the datacenter changed, there
would be no need to go update all of its
instances from the error log).
That said, data modeling decisions are
dependent on the use case and future
system changes.

Document-oriented modeling basics

Database Systems Journal vol. V, no. 2/2014 53

Although it takes time for us to unlearn
habits, by understanding alternatives we
will be able to make more efficient use of
your trusted knowledge as well. Finally,
the instrument most suitable for a given
task is the one that gives us the least
headache. The more tools we know, wiser
the choice we’ll make.

Models
In an application, the data-containing
objects are a central concept – being the
model layer in the Model-View-Controller
architecture (MVC) [13]. These are the
documents that store our data and let us
manipulate it. If a blog contains posts and
comments, these will be implemented by
two different models. Ideally, there should
be a separate document for each post and
each comment.
When we look at an existing application,
we must stop at the Object-Relational
Mapping (ORM) layer. Instead of dividing
our models up into tables and rows, we
transform them into JSON documents.
Each document will receive a unique ID by
which we’ll be able to find later.
The primary Keys - in the world of
NoSQL, the document ID is the one and
only key of a document. These IDs can be
seen as equivalent to a primary key in a
relational database [9].
Some NoSQL database systems sort the
documents by ID. Data with nearby IDs
can be accessed more efficiently than IDs
scattered in several places. Retention of
data that is accessed at the same time, in
the same place makes application faster.
Search by ID, being extremely fast, is the
strength of this approach, and by using
clever IDs we can ease our work very
much. An example would be the use of
prefixes to group our documents (user:
component.example:xyz123).

Multiple occurrences and editability
Suppose we have a piece of data that
shows up all over the application but we
still want to be able to edit that data. For
example, the title of a photo on flickr. The

photo can show up in the photo stream, in
sets, collections, groups on our flickr main
page and in many other places.
Normally, a photo’s title is shown with the
photo. We could create a document for
each instance of the photo in each of the
locations. But then, if we change the title
of the picture, we need to update a lot of
documents.
If we know this is a finite number (no more
than 10-100 e.g.) and the renaming doesn’t
have to happen at the same in all places
(which means that an asynchronous
background task could do the renaming),
using separate documents for each instance
can work fine.
However, in case the number of copies
isn’t finite and could potentially lead us to
update thousands of documents that
approach probably won’t work. Instead, we
would wish to store the title and perhaps
other identifying data in a single “photo
information” document and create a
separate “photo placement” document for
each location where the photo appears
(these “photo placement” documents
would each point to the photo’s
information document). Now when we
display a photo we will make two lookups:
one for the document containing the
placement and another for the document
containing the photo information. If we
want to edit the title of a photo, we just edit
the document containing the photo
information and the changes will take
effect everywhere on our site.
With the technique of “view collation”, we
can use a single query to return all the data
we need. With views, we can keep a single
canonical source for a sequence of data
that is displayed in many different places.
In the world of relational database systems
we are taught to normalize the data as
much as we can; but in the NoSQL world
we are taught to denormalize as much as
possible. In both cases, the truth is
somewhere in the middle.

Concurrent access

54 The transition from RDBMS to NoSQL.
 A comparative analysis of three popular non-relational solutions: Cassandra, MongoDB and Couchbase

Getting back to the blog example. There
are several authors, perhaps an editor, and
each of them is working at a single article
at any given time. Usually two people
don’t work on the same article. If we have
data that we know is only edited by only
one person at any given time, it’s a good
idea to store the data into a single
document.
Comments on the other hand, are different.
More people can write comments and they
can do so simultaneously and
independently. Once the post is published
comments can be added immediately. To
avoid write interlocking – in other words,
concurrent writes happening to the same
document – we can store comments in
separate documents [10], ensuring that
only one author is editing a single
document at any given time.
To avoid serializing and locking each
comment author out, or accidentally
overwriting any data, just store the posts
ID with the comment to be able to fetch
them back in one request for displaying.
(Note: document-oriented databases won’t
allow overwriting data, but will need more
complex code to handle that case, so it’s
best to avoid this scenario, if possible.)

3. Cassandra, MongoDB and

Couchbase – comparative aspects
The NoSQL databases have become a
good alternative to BDR, especially for the
applications that has to read and write
quickly an enormous data quantity. They
offer high efficiency, low response times,
and horizontal scaling. In any case, with so
many options available, choosing a
NoSQL database can be complicated [3].
In what follows, we outline an overview of
three of NoSQL databases on the market.
Cassandra is a distributed columnar key-
value database that uses the eventual
consistency model. Cassandra is optimized
for write operations and has no central
node: data can be read from or written to
any node in a cluster. It provides a
continuous horizontal scalability and has
no single point of failure: if a node in a

cluster fails, then another node comes and
replaces it[4]. At this point, Cassandra is
an Apache 2.0 licensed project, supported
by the Apache community.
MongoDB is a NoSQL database,
document-oriented, schema-free, which
stores data in BSON format. A document
based on a JSON, BSON is a binary format
that allows quick and easy integration of
data with certain types of applications.
MongoDB also provides horizontal
scalability and has no single point of
failure. A MongoDB cluster is different
from a Cassandra cluster or CouchBase
cluster, because it includes an arbiter, a
master node and multiple slave nodes [5].
Since 2009, MongoDB is an open source
project with AGPL license held by the
10gen.company.
Couchbase is a NoSQL database, open
source, document-oriented, designed for
interactive web applications and mobile
applications. Couchbase Server documents
of are stored as JSON. With integrated
caching, Couchbase offers low latency
read and write operations, providing
linearly scalable throughput. Architecture
has no single point of failure. The cluster is
easy to be scaled horizontally and live-
cluster topology changes are supported.
This means that there is no application
downtime when updating the database, the
software or the hardware using rolling
upgrades. Couchbase Inc. develops and
provides commercial support for the
Couchbase open source project that is
Apache 2.0 licensed.

Key criteria for choosing a NoSQL
database
When choosing the right NoSQL database
for interactive applications, these issues are
key selection criteria that should be
followed and analyzed [6]:

Scalability. It is difficult to predict when
an application needs to scale, but when site
traffic suddenly increases and the database
does not have enough capacity, rapid
scaling is needed, upon request and
without changes in the application.

Database Systems Journal vol. V, no. 2/2014 55

Similarly, when the system is idle, it
should be possible to reduce the amount of
resources used. Scaling the database
should be a simple operation: we should
not hit the complicated procedures or to
make any change to the application.
Horizontal scalability of NoSQL database
involves dividing the system into smaller
structural components hosted on different
physical machines (or machine groups) and
/ or increasing the number of servers that
perform the same function in parallel. The
following table summarizes the scalability
aspects of the three databases analyzed.
a) Cassandra
Meets the requirements of a system with
ideal horizontal scalability:
• The cluster automatically uses new
resources;
• A node can be removed using an
automatic or semi-automatic operation.
b) MongoDB
It has a number of functions related to
scalability:
• Automatic sharding: auto-partitioning of
data across servers;
• Read and write partitions: shards;
• Reads can be distributed over replicated
servers;
• The cluster size can be reduced only by
hand when the system is idle;
•The administrator uses the Administration
Console to change the system
configuration. Thereafter, the MongoDB
server process can be stopped safely on the
inactive machines.
c) Couchbase
It scales horizontally, too:
• All the nodes are identical and easy to
install;
• Nodes can be added or removed from the
cluster, with a single click and without
changing the application;
• Sharding your data automatically evenly
distributes data across all nodes in the
cluster;
• Cross replication between data centers
make it possible to scale a cluster from
data centers for better data localization and
faster access to them.

Performance. Interactive applications
require very little reading and writing
latency. The database should provide
consistently low latency regardless of task
or data size. In general, reading and writing
latency of NoSQL databases is very low,
because the data is shared between all
nodes in a cluster, while the application's
working set is in memory.

Availability. Interactive Web applications
require a highly available database. If the
application is offline, the business is losing
money. To ensure high availability, the
solution must do online upgrades to easily
remove a node for maintenance, without
affecting the availability of cluster to
handle online operations, like as backups,
and offer solutions for disaster recovery, if
the entire datacenter crashes.
The paragraphs below show how
availability is shaped in Couchbase,
Cassandra and MongoDB:
a) Cassandra
• Each node in a cluster is given a data set
that it is responsible for;
• If Cassandra has to process a write
operation designated to be stored in a node
that has failed, it will automatically
redirect the write request to another node,
which saves the write operation with a clue
- a message that contains information
about the node that failed;
• The node that holds the clue monitors the
cluster to recover the failed node writing
request. If the node is reconnected, the
node holding the token will resend the
message to it, so writing requests to be in
their proper places;
• When a new node is added to the cluster,
the workload is also distributed to it.
b) MongoDB
• Here, data is divided into several replica
sets (shards);
• Usually, each of these consists of
multiple Mongo Daemon instances,
including an arbiter node, a master node
and several slave nodes;

56 The transition from RDBMS to NoSQL.
 A comparative analysis of three popular non-relational solutions: Cassandra, MongoDB and Couchbase

• If a secondary node fails, the master node
automatically redistributes the workload on
the remaining slave nodes. If the primary
node fails, the referee chooses a new
"master";
• If the arbiter node fails and there are no
remaining instances in the shard, the shard
is considered to be dead;
• Regarding master-slave replication, a
replica set can span across multiple data
centers, but writes can only go to a primary
instance in a datacenter.
c) Couchbase
• It maintains multiple copies -up to three
lines- for each document in a cluster;
• Each server is identical and serves active
documents and replicated. Data are evenly
distributed across all nodes and clients are
aware of the topology;
• If a cluster node fails, Couchbase Server
detects the failure and directs replica
documents to other currently active nodes.
As to reflect the new topology, cluster map
is updated, and the application continues to
run without interruption;
• When adding capacity, the data is
automatically rebalanced, also without any
interruption.

Ease of development. Relational databases
require a rigid scheme and, if you want to
change the application, you must change
the database schema, too. Regarding this,
all three NoSQL databases have the
following advantages:
• Flexible schema - when you want to add
new attributes to a document, you do not
have to modify any of the existing
structural elements. Old and new
documents can coexist without further
changes;
• Simple query language - because data in
a NoSQL document is stored in a
denormalized state, you can make queries
and updates using put and get operations.

Performance. Interactive applications
must support millions of simultaneous

users and manage different workloads -
read, write, or mixed. Below, we present
the results of performance tests developed
by Altoros Systems, Inc. for Couchbase,
Cassandra and MongoDB. A scenario that
simulates an interactive application was
created, and with the aid of the Yahoo
Cloud Serving Benchmark tool (YCSB-
https://github.com/brianfrankcooper/YCSB
/wiki) average latency at different levels of
the system load was measured.
Performance results of this analysis can be
easily replicated. To do this, the following
configuration may be used. The YSCB tool
with customized connectors for this test
can be downloaded from Github.

NoSQL database test configurations
a) Cassandra 1.1.2
• Cassandra JVM settings:
1. MAX_HEAP_SIZE = 6 GB (dedicated
memory for the Java heap).
2. HEAP_NEWSIZE = 400 MB (total
memory for a new generation of objects).
• Settings for Cassandra:
1. RandomPartitioner using MD5 hashing
to equally distribute the rows among the
cluster.
2. Memtable with a size of 4 GB.
b) MongoDB
1. Four shards, each with a replica; each
shard is made up of two nodes, one
primary and one secondary.
2. Journaling disabled.
3. Every node set to run two Mongo
Daemon processes and four Mongo Router
processes.
c) Couchbase 2.0 Beta build 1723
1. Single replication option enabled
2. 12 GB RAM used for each node

Test Results
Figures 4 and 5 show average response
time at different flow levels for reads,
inserts and update operations, latency
measured from client to server and back.
The lower the latency values are, the
better.

Database Systems Journal vol. V, no. 2/2014 57

MongoDB processes the reading requests a
little faster than Cassandra (Fig.4), but
slower than Couchbase. Cassandra and
Couchbase had better results at processing
writes (Fig.5) compared with MongoDB.
Cassandra uses cache key types and rows
types, while MongoDB is based on
memory-mapped files. Despite this
difference, the two databases showed
nearly equal read speeds (Fig.5). At
writing, Cassandra had better results than
MongoDB (Fig.5) because it firstly adds a
data structure in memory, called
Memtable. Then, if the configured
threshold has been exceeded, it
asynchronously sends data to the tables
(SSTables) located on the disk.

4. Conclusions
Recent changes at the level of applications,
users and infrastructure characteristics

have determined application developers
and system architects to seek alternatives
to the relational data model, which is the
standard for storing and retrieving data for
more than 40 years. Many see technology
in document-oriented database as a natural
successor relational technology.
Regarding the performance of NoSQL
databases analyzed Couchbase had the
lowest latencies in the scenarios created for
interactive applications because of cache
objects built. Grained lock level document
provides high efficiency for both types of
operations, writing and reading.
Choosing a NoSQL database suitable for a
particular application can be complicated
because not all NoSQL solutions are the
same. Each solution is optimized for
different workloads and different use
cases. Therefore, each has its own
advantages and disadvantages.

Fig. 4. Reads (medium latency) [6]

Fig. 5. Writes – insert, updates (medium latency) [6]

58 The transition from RDBMS to NoSQL.
 A comparative analysis of three popular non-relational solutions: Cassandra, MongoDB and Couchbase

However, the most important things to
consider when working with large volumes
of data are: latency, efficiency, availability,
horizontal scaling and ease of
development.

References
[1] Buyya, Rajkumar; Chee Shin Yeo,

SrikumarVenugopal, Market-Oriented
Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as
Computing Utilities

[2] MongoDB, NoSQL Databases
Explained,
(http://www.mongodb.com/nosql-
explained) accessed on March, 31st ,
2014

[3] Altoros, Using NoSQL databases for
interactive applications
(www.slideshare.net/altoros/using-no-
sql-databases-for-interactive-
applications), accessed on March, 15th ,
2014

[4] Datastax Documentation, Architecture
in brief. An overview of Cassandra’s
structure,
(http://www.datastax.com/documentati
on/cassandra/2.0/cassandra/architectu
re/architectureIntro_c.html) accessed
on March, 25th, 2014

[5] Rick Grehan ,MongoDB edges
Couchbase Server with richer
querying and indexing options, as well
as superior ease of use, InfoWorld,
March 21st2013

[6] Alexey Diomin, Kirill
Grigorchuk:Benchmarking Couchbase
Server for Interactive Applications

[7] Brian Frank Cooper,Yahoo! Cloud
Serving Benchmark
(www.github.com/brianfrankcooper/Y

CSB/wiki) accessed on March, 30th ,
2014

[8] ECMA International,The JSON Data
Interchange Format
(http://www.ecma-
international.org/publications/files/EC
MA-ST/ECMA-404.pdf) accessed on
March,28th, 2014

[9] Highly Scalable Blog,NoSQL Data
Modeling Techniques
(http://highlyscalable.wordpress.com/2
012/03/01/nosql-data-modeling-
techniques)

[10] ShekharGulati, How MongoDB
Different Write Concern Values Affect
Performance On A Single Node?
(http://whyjava.wordpress.com/2011/1
2/08/how-mongodb-different-write-
concern-values-affect-performance-
on-a-single-node/)

[11] Matthew Komorowski,A history of
storage cost (2014 update)
(http://www.mkomo.com/cost-per-
gigabyte-update)

[12] Dare Obasanjo, Building Scalable
Databases: Denormalization, the
NoSQL Movement and
Digg(http://www.25hoursaday.com/w
eblog/2009/09/10/BuildingScalableDa
tabasesDenormalizationTheNoSQLM
ovementAndDigg.aspx)

[13] Wikipedia, Model–view–controller
(http://en.wikipedia.org/wiki/Model%
E2%80%93view%E2%80%93controll
er)

[14] IDC, 2011 Digital Universe Study
(http://www.emc.com/collateral/demo
s/microsites/emc-digital-universe-
2014/index.htm)

Cristina BĂZĂR has graduated from the Economic Cybernetics, Statistics
and Informatics Facultyat the Academy of Economic Studies, Bucharest
(2012). At this moment, she is following the Databases for Business
Support master program and is developping a disertation paper
entitledOptimizing the user experience within a web application regarding
luminaries e-commerce. Cristina’s interests are broadly in the fields of
databases, business intelligence, data warehouses, ETL and e-commerce.

Database Systems Journal vol. V, no. 2/2014 59

Cosmin Sebastian IOSIF graduated in 2012 from theEconomic
Cybernetics, Statistics and Informatics Facultyat the Academy of Economic
Studies inBucharest .At this moment he is pursuing theDatabases for
Business Supportmaster program. His areas of interest are: Databases, Data
Analytics, Geographical Information Systems and multimedia applications.

