
26 Model-Based Testing: The New Revolution in Software Testing

Model-Based Testing: The New Revolution in Software Testing

Hitesh KUMAR SHARMA, Sanjeev KUMAR SINGH, Prashant AHLAWAT
1University of Petroleum and Energy Studies

2Galgotia University Noida
3GITM Gurgaon

hkshitesh@gmail.com, sksingh8@gmail.com, prashantahlawat@ymail.com

The efforts spent on testing are enormous due to the continuing quest for better software
quality, and the ever growing complexity of software systems. The situation is aggravated by
the fact that the complexity of testing tends to grow faster than the complexity of the systems
being tested, in the worst case even exponentially. Whereas development and construction
methods for software allow the building of ever larger and more complex systems, there is a
real danger that testing methods cannot keep pace with construction, hence these new systems
cannot be sufficiently fast and thoroughly be tested. This may seriously hamper the
development of future generations of software systems.
One of the new technologies to meet the challenges imposed on software testing is model-
based testing. Models can be utilized in many ways throughout the product life-cycle,
including: improved quality of specifications, code generation, reliability analysis, and test
generation.
This paper will focus on the testing benefits from MBT methods and review some of the
historical challenges that prevented model based testing and we also try to present the
solutions that can overcome these challenges.
Keywords: MBT, Test Cases, SUT, Test Suite.

Introduction
“Model-based testing is a testing
technique where the runtime behavior

of an implementation under test is checked
against predictions made by a formal
specification, or model.”[7]. The IEEE
definition of testing is "the process of
exercising or evaluating a system or
system component by manual or
automated means to verify that it satisfies
specified requirements or to identify
differences between expected and actual
results." [8]. Software testing is the process
of executing a software system to
determine whether it matches its
specification and executes in its intended
environment. A software failure occurs
when a piece of software does not perform
as required and expected. In testing, the
software is executed with input data, or test
cases, and the output data is observed. As
the complexity and size of software grows,
the time and effort required to do sufficient
testing grows. Manual testing is time
consuming, labor-intensive and error

prone. Therefore it is pressing to automate
the testing effort. The testing effort can be
divided into three parts: test case
generation, test execution, and test
evaluation.
However, the problem that has received
the highest attention is test-case selection.
A test case is the triplet [S, I, O] where I is
the data input to the system, S is the state
of the system at which the data is input,
and O is the expected output of the system.
The output data produced by the execution
of the software with a particular test case
provides a specification of the actual
program behavior. Test case generation in
practice is still performed manually most
of the time, since automatic test case
generation approaches require formal or
semi-formal specification to select test
case to detect faults in the code
implementation. Code based testing not an
entirely satisfactory approach to generate
guarantee acceptably thorough testing of
modern software products. Source code is
no longer the single source for selecting

1

Database Systems Journal vol. V, no. 1/2014 27

test cases, and nowadays, we can apply
testing techniques all along the
development process, by basing test
selection on different pre-code artifacts,
such as requirements, specifications and
design models [9],[10]. Such a model may
be generated from a formal specification or
may be designed by software engineers
through diagrammatic tools. Code based
testing has two important disadvantages.
First, certain aspects of behavior of a
system are difficult to extract from code
but are easily obtained from design
models. The state based behavior captured
in a state diagram and message paths are
simple examples of this. It is very difficult
to extract the state model of a class from
its code. On the other hand, it is usually
explicitly available in the design model.
Similarly, all different sequences in which
messages may be interchanged among
classes during the use of a software is very
difficult to extract from the code, but is
explicitly available in the UML sequence
diagrams. Another prominent disadvantage
of code based testing is very difficult to
automate and code based testing
overwhelmingly depends on manual test
case design.

2. Process and Terminology
We use this section to fix terminology and
describe the general process of model-

based testing. A test suite is a finite set of
test cases. A test case is a finite structure of
input and expected output: a pair of input
and output in the case of deterministic
transformative systems, a sequence of
input and output in the case of
deterministic reactive systems, and a tree
or a graph in the case of non-deterministic
reactive systems. The input part of a test
case is called test input. In general, test
cases will also include additional
information such as descriptions of
execution conditions or applicable
configurations, but we ignore these issues
here.

3. Model Based Testing
A generic process of model-based testing
then proceeds as follows (Fig. 1).

Step 1.
A model of the SUT is built on the grounds
of requirements or existing specification
documents. This model encodes the
intended behavior, and it can reside at
various levels of abstraction.
The most abstract variant maps each
possible input to the output “no exception”
or “no crash”. It can also be abstract in that
it neglects certain functionality, or
disregards certain quality-of-service
attributes such as timing or security.

Fig. 1. The Process of Model-Based Testing

28 Model-Based Testing: The New Revolution in Software Testing

Step 2.
Test selection criteria are defined. In
general, it is difficult to define a “good test
case” a-priori. Arguably, a good test case
is one that is likely to detect severe and
likely failures at an acceptable cost, and
that is helpful with identifying the
underlying fault. Unfortunately, this
definition is not constructive. Test
selection criteria try to approximate this
notion by choosing a subset of behaviors
of the model. A test selection criterion
possibly informally describes a test suite.
In general, test selection criteria can relate
to a given functionality of the system
(requirements based test selection criteria),
to the structure of the model (state
coverage, transition coverage, def-use
coverage), to stochastic characterizations
such as pure randomness or user profiles,
and they can also relate to a well-defined
set of faults.

Step 3.
Test selection criteria are then transformed
into test case specifications. Test case
specifications formalize the notion of test
selection criteria and render them
operational: given a model and a test case
specification, some automatic test case
generator must be capable of deriving a
test suite (see step 4). For instance, “state
coverage” would translate into statements
of the form “reach _” for all states _ of the
(finite) state space, plus possibly further
constraints on the length and number of the
test cases. Each of these statements is one
test case specification. The difference
between a test case specification and a test
suite is that the former is intensional
(“fruit”) while the latter is extensional
(“apples, oranges, ...”): all tests are
explicitly enumerated.

Step 4.
Once the model and the test case
specification are defined, a test suite is
generated. The set of test cases that satisfy
a test case specification can be empty.
Usually, however, there are many test

cases that satisfy it. Test case generators
then tend to pick some at random.

Step 5.
Once the test suite has been generated, the
test cases are run (sometimes, in particular
in the context of non-deterministic
systems, generating and running tests are
dove-tailed).
Running a test case includes two stages.

Step 5-1.
Recall that model and SUT reside at
different levels of abstraction, and that
these different levels must be bridged [2].
Executing a test case then denotes the
activity of applying the concretized input
part of a test case to the SUT and recording
the SUT’s output. Concretization of the
input part of a test case is performed by a
component called the adaptor. The adaptor
also takes care of abstracting the output
(see Fig 1).

Step 5-2.
A verdict is the result of the comparison of
the output of the SUT with the expected
output as provided by the test case. To this
end, the output of the SUT must have been
abstracted. Consider the example of testing
a chip card that can compute digital
signatures [7]. The verdict can take the
outcomes pass, fail, and inconclusive. A
test passes if expected and actual output
conforms. It fails if they do not, and it is
inconclusive when this decision cannot be
made.

4. Importance of MBT
The first obstacle to overcome in
developing tests is to determine the test
target. While this may sound trivial, it is
often the first place things go wrong. A
description of the product or application to
be tested is essential. The form the
description can come in may vary from a
set of call flow graphs for a voice mail
system, to the user guide for a billing
system’s GUI. A defined set of features
and / or behaviors of a product is needed in

Database Systems Journal vol. V, no. 1/2014 29

order to define the scope of the work (both
development and test). The traditional
means of specifying the correct system
behavior is with English prose in the form
of a Requirement Specification or
Functional Specification [1]. The
specification, when in prose, is often
incomplete - only the typical or ideal use
of the feature(s) is defined, not all of the
possible actions or use scenarios. This
incomplete description forces the test
engineer to wait until the system is
delivered so that the entire context of the
feature is known. When the complete
context is understood, tests can be
developed that will verify all of the
possible remaining scenarios. Another
problem with textual descriptions is that
they are ambiguous, (for example “if an
invalid digit is entered, it shall be handled
appropriately.”) The ‘appropriate’ action is
never defined; rather, it is left to the
reader’s interpretation.

5. Industry importance
Modeling is a very economical means of
capturing knowledge about a system and
then reusing this knowledge as the system
grows. For a testing team, this information
is gold; what percentage of a test
engineer's task is spent trying to
understand what the System Under Test
(SUT) should be doing? (Not just is
doing.) Once this information is
understood, how is it preserved for the next
engineer, the next release, or change order?
If you are lucky it is in the test plan, but
more typically buried in a test script or just
lost, waiting to be rediscovered. By
constructing a model of a system that
defines the systems desired behavior for
specified inputs to it, a team now has a
mechanism for a structured analysis of the
system. Scenarios are described as a
sequence of actions to the system, with the
correct responses of the system also being
specified. Test coverage is understood and
test plans are developed in the context of
the SUT, the resources available and the
coverage that can be delivered. The largest

benefit is in reuse; all of this work is not
lost. The next test cycle can start where
this one left off. If the product has new
features, they can be incrementally added
to the model; if the quality must be
improved, the model can be improved and
the tests expanded; if there are new people
on the team, they can quickly come up to
speed by reviewing the model.
The increased complexity of systems as
well as short product release schedules
makes the task of testing challenging. One
of the key problems is that testing typically
comes late in the project release cycle, and
traditional testing is performed manually.
When bugs are detected, the cost of rework
and additional regression testing is costly
and further impacts the product release.
The increased complexity of today’s
software-intensive systems means that
there are a potentially indefinite number of
combinations of inputs and events that
result in distinct system outputs and many
of these combinations are often not
covered by manual testing. We work with
companies that have high process maturity
levels, and excellent measurement data that
shows that testing is more 50-75% of the
total cost of a product release, yet these
mature processes are not addressing this
costly issue.
Test tools may not replace human
intelligence in testing, but without them
testing complex systems at a reasonable
cost will never be possible. There are
commercial products to support automated
testing, most based on capture/playback
mechanisms, and organizations that have
tried these tools quickly realize that these
approaches are still manually intensive and
difficult to maintain. Even small changes
to the application functionality or GUI can
render a captured test session useless. But
more importantly, these tools don't help
test organizations figure out what tests to
write, nor do they give any information
about test coverage of the functionality.

30 Model-Based Testing: The New Revolution in Software Testing

6. Challenges
The real work that remains for the
foreseeable future is fitting specific models
(finite state machines, grammars or
language-based models) to specific
application domains. Often this will
require new invention as mental models
are transformed into actual models.
Perhaps, special purpose models will be
made to satisfy very specific testing
requirements and more general models will
be composed from any number of pre-built
special-purpose models.

 Finding suitable abstractions is
difficult

 We cannot execute partial tests

7. How can we overcome from these
challenges
Fortunately, many of these problems can
be resolved one way or the other with
some basic skill and organization.
Alternative styles of testing need to be
considered where insurmountable
problems that prevent productivity are
encountered. We must form an
understanding of how we are testing and
be able to sufficiently communicate that
understanding so that testing insight can be
encapsulated as a model for any and all to
benefit from. To achieve these goals,
models must evolve from mental
understanding to artifacts formatted to
achieve readability and reusability. We
must form an understanding of how we are
testing and be able to sufficiently
communicate that understanding so that
testing insight can be encapsulated as a
model for any and all to benefit from.

8. Conclusion
There is promising future for MBT as
software becomes even more ubiquitous
and quality becomes the only
distinguishing factor between brands.
When all vendors have the same features,
the same ship schedules and the same
interoperability, the only reason to buy one
product over another is quality. MBT, of
course, cannot and will not guarantee or

even assure quality. However, its very
natural, thinking through uses and test
scenarios in advance while still allowing
for the addition of new insights, makes it a
natural choice for testers concerned about
completeness, effectiveness and efficiency.

References
[1] IEEE standard for Requirements

Specification (IEEE/ANSI Std. 830-
1984) , IEEE Computer Society, (830-
1993) IEEE Recommended Practice for
Software Requirements Specifications
(ANSI), IEEE Standard for Software
Unit Testing (ANSI), IEEE Standard
for Software Verification and
Validation Plans (ANSI) found at:
http://standards.ieee.org/catalog/it.html

[2] Proceedings of the Third IEEE
International Symposium on
Requirements Engineering, IEEE
Computer Society, 1997.

[3] Paulk, M., Curtis, B., Chrissis, M.B.,
and Weber, C., Capability Maturity
Model, Version 1.1 The Software
Engineering Institute, Carnegie Mellon
University. Found at:
http://www.sei.cmu.edu/products/publi
cations/96.reports/96.ar.cmm.v1.1.html

[4] ITU-T. ITU -T Recommendation
Z.100: Specification and Description
Language (SDL). ITU-T, Geneva,
1988. More can be found at
http://www.sdl-forum.org/

[5] Spivey, M., The Z Notation: A
Reference Manual, Second Edition.
Prentice-Hall International, 1992.

[6] Beizer, B., Black Box Testing, New
York, John Wiley & Sons, 1995. ISBN
0-471-12094-4.

[7] A. Pretschner, W. Prenninger, S.
Wagner, C. Kuhnel, M. Baumgartner,
B. Sostawa, R. Z¨olch, T. Stauner, One
evaluation of model based testing and
its automation, in: Proc. ICSE’05,
2005, pp. 392–401.

[8] R. Helm, I. M. Holland, and
D.Gangopadhyay. Contracts:
specifying behavioral compositions in
object-oriented systems. In

Database Systems Journal vol. V, no. 1/2014 31

Proceedings of the 5th Annual
Conference on Object-Oriented
Programming Systems, Languages, and
Applications (OOPSLA ’90), ACM
SIGPLAN Notices, 25(10):169–180,
1990.

[9] A. Pretschner, J. Philipps,
Methodological Issues in Model-Based
Testing, in: [29], 2005, pp. 281–291.

[10] J. Philipps, A. Pretschner, O. Slotosch,
E.Aiglstorfer, S. Kriebel, K. Scholl,
Model based test case generation for
smart cards, in: Proc. 8th Intl.
Workshop on Formal Meth. For
Industrial Critical Syst., 2003, pp.
168–192.

Dr. Hitesh Kumar Sharma, The author is an Assistant Professor (Senior Scale) in
University of Petroleum & Energy Studies, Dehradun. He has published 20+ research paper in
International Journal and 10+ research papers in National Journals. He is Ph.D. in Computer
Science & Engineering.

Dr. Sanjeev Kumar Singh: The author is an Associate Professor in Galgotias University,
Noida. He has published 30+ research paper in International Journal and 15+ research papers
in National Journals. He is Ph.D. in Mathematics.

Mr. Prashant Ahlawat: The author is an Assistant Professor in GITM Gurgaon. He has
published 10+ research paper in International Journal and 5+ research papers in National
Journals. Currently He is pursuing his Ph.D. in Computer Science & Engineering.

