
Database Systems Journal vol. IV, no. 2/2013 31

Enhancing ETL Performance with Warehouse Builder

Manole VELICANU, Larisa COPCEA (TEOHARI)

University of Economic Studies, Bucharest, Romania
mvelicanu@yahoo.com; larisa.copcea@yahoo.com

We live in a dynamic world, in a permanent move, were performance of information systems
continually increases. Thus, the need of being informed, regardless of place or time, is very
great using data warehouses solutions. Therefore, the need for efficient information systems is
very high. The efficiency can be achieved by using various methods/techniques and
technologies “to build” the data warehouse. The ones, we will present in our paper, are:
methods of Enhancing ETL Performance with Warehouse Builder: the purpose of ETL
strategies is to create an integrated, complex, coherent software solution; techniques of data
warehouse optimization: in order to improve the performance of data warehouse processing
can be applied several optimization techniques; and “in terms” of technology, we will
consider: data warehouses (using Oracle Warehouse Builder).

Keywords: performance, Oracle Warehouse Builder, efficiency of information systems,
extraction, transformation, and loading (ETL), data warehouse optimization

Introduction
Here we focus on what we can do

through Warehouse Builder, that is,
performance configuration setting during
ETL and schema design. Tips on
configuring your database for optimized
performance, we focus mainly on specific
Warehouse Builder performance-related
features to achieve optimal performance.
Consider involving your organization’s
data architect in the very first planning
steps, well before Warehouse Builder is
implemented. It is too late to start
thinking about performance strategies at
the point where you are using Warehouse
Builder to create ETL mappings.
As the data warehouse size is increasing
and crossing terabytes limits, and as the
query turnaround time is getting shorter,
administrators have the additional
overhead of monitoring the performance
of the data warehouse system regularly.
A major task of any data warehouse
system is ETL, and it is essential that the
ETL design be tuned for optimized

performance. There are multiple places in a
Warehouse Builder implementation where
an administrator can look for possible
performance bottlenecks. These are:
hardware, operating system, network,
database, application (that is, Warehouse
Builder).

2. ETL Design: Mappings
Extraction, transformation, and loading in a
production data warehouse can be very time
consuming and take up a lot of your system
resources. Yet, when implementing a
warehouse, the focus is more on how to
have a perfect dimensional model rather
than how to create ETL logic with run-time
performance in mind. It is important to
know that a well designed ETL mapping can
make all the difference in the performance
of your data warehouse. Consider the Cost
of Function Calls.
For example, a simple replacement of a
function operator with a join condition
operator in the mapping can make huge
difference in the time taken by the mapping

1

32 Enhancing ETL Performance with Warehouse Builder

to execute. This is because if you are
including a function in a mapping, the
function call will take the context out to
the function and after the function
completes, the control returns back into
the mapping. So there is extra time taken.
Or when joining from multiple tables, it
is better to stage the results in a staging
table and then apply a filter or a
aggregate operator than doing it all on the
fly.
Hence, it is a good ETL design decision
to keep the context switches to a
minimum and make use of the various

mapping operators that Warehouse Builder
provides to accomplish different tasks.
You can review your mappings on some of
the performance parameters. You need to
answer questions such as: Which operating
mode is better for the ETL logic you are
using, or what will be the best commit
strategy or will parallel DML enhance
performance, and so on. If you are moving
large volumes of data from remote source,
will it be better to do an import/export or to
use transportable modules. The below figure
1 shows a mapping created in Warehouse
Builder to load the dimension customers.

Fig 1. Oracle Warehouse Builder mapping load dimension customers

Source: author

Database Systems Journal vol. IV, no. 2/2013 33

Fig. 2 Oracle Warehouse Builder design center for mappings
Source: author

The above figure 2 shows the design
center for mappings in Warehouse
Builder.
The “Set based” and “Row based”
operating modes have their advantages
and disadvantages. The "Set based"
operating mode is the fastest way to
process data. The rows are processed as a
single dataset, with a single SQL
statement that is either completed
successfully for all the rows or fails if
there is a problem with even one row.
You cannot view details about which
rows contain errors.
The “Row based” operating mode gives
more control to the user, both in terms of
logging row-by- row processing
information, as well as in terms of control

over the management of incorrect data.
Warehouse Builder generates statements that
process data row by row. The records can be
extracted from the source one at a time,
processed, and inserted in the target. If there
is a problem with some rows, this is logged
and the processing continues. Detailed
logging of row-by-row processing
information is available.
The default operating mode you select
depends upon the performance you expect,
the amount of auditing data you require, and
how you design the mapping.
The following are the five operating modes,
ranked by performance speed, with the
fastest first: “Set based”, “Set based fail over
to row based (target only)”, “Set based fail
over to row based” (the default), “Row

34 Enhancing ETL Performance with Warehouse Builder

based (target only)” and “Row based”
The default operating mode is “Set based
fail over to row based,” in which mode
Warehouse Builder will attempt to use
the better-performing “Set based”
operating mode, but will fall back to thes
lower “Row based” mode if data errors
are encountered. This mode allows the
user to get the speed of "Set based"
processing, but when an unexpected error
occurs it allows you to log these errors.
The “Row based (target only)” and “Set
based fail over to row based (target
only)” operating modes are a compromise
between the “Set based” and the “Row
based” modes. The “target only” modes
will use a cursor to rapidly extract all the
data from the source, but will then use the
“Row based” mode to insert data into the
target, where errors are more likely to
occur. These modes should be used if
there is a need to use the fast “Set based”
mode to extract and transform the data as
well as a need to extensively monitor the
data errors.
Warehouse Builder generates code for the
specified default operating mode as well
as for the unselected modes. Therefore, at
run time, you can select to run in the
default operating mode or any one of the
other valid operating modes. The types of
operators in the mapping may limit the
operating modes you can select. As a
general rule, mappings run in "Set based"
mode can include any of the operators
except for Match-Merge, Name-Address,
and Transformations used as procedures
[4].

3. Commit Control and Audit Level
within Warehouse Builder
By default, Automatic is selected for the
Commit Control run-time parameter. You
may use the automatic commit when the
consequences of multiple targets being
loaded unequally are not great or are
irrelevant because a mapping has
multiple targets. Warehouse Builder

commits and rolls back each target
separately and independently of other
targets. For PL/SQL mappings you can
override the default setting and control when
and how Warehouse Builder commits data
by using either Automatic Correlated or
Manual. Automatic Correlated: If you want
to populate multiple targets based on a
common source, you may also want to
ensure that every row from the source
impacts all affected targets uniformly. When
Automatic Correlated is selected,
Warehouse Builder considers all targets
collectively and commits or rolls back data
uniformly across all targets. Correlated
commit operates transparently with PL/SQL
bulk processing code. The correlated
commit strategy is not available for
mappings run in any mode that is configured
for Partition Exchange Loading or includes
an Advanced Queue, Match-Merge, or Table
Function operator.
The role of the Commit frequency run-time
parameter is to enable the user to decide
how often data is committed. You should
select a number that will not put too much
strain on the rollback segments size. The
default is set to 1,000 rows. Commit
frequently!
Use “Default audit level” to indicate the
audit level used when executing the
package. Audit levels dictate the amount of
audit information captured in the run-time
schema when the package is run. You can
set it to NONE, ERROR DETAILS,
STATISTICS, or COMPLETE. The default
audit level will define how detailed the audit
information collected during the load
process will be. Running a mapping with the
audit level set to Complete generates a large
amount of diagnostic data, which may
quickly fill the allocated tablespace and can
impact performance.
When you select STATISTICS, statistical
auditing information is recorded at run time.

Database Systems Journal vol. IV, no. 2/2013 35

4. Additional Run-Time Parameters
for Mappings
You can configure additional run-time
parameters for your mappings to tune
performance as discussed below:
A. “Bulk size” and “Bulk processing
code”: If “Bulk processing code” is set to
True, the “Row based” mode will process
the rows in bulks instead of individual
rows, which will improve the
performance of the row-based mappings.
In this case, the bulk size will be given by
the “Bulk size” run-time parameter. It is
recommended to keep the bulk size value
around 50, which is the optimal value.
 B. “Maximum number of errors”: Use
“Maximum number of errors” to indicate
the maximum number of errors allowed
when executing the package. Execution
of the package terminates when the
number of errors reached is greater than
the “Maximum number of errors” value.
The maximum number of errors is only
relevant in the Row based operating
mode. This parameter will set the limit of
data errors that will be tolerated during
the mapping run, before the mapping is
stopped for too many errors. If the
mapping is stopped due to this, the
mapping ends in ERROR.

5. Partition Exchange Loading (PEL) in
Warehouse Builder
You can use Partition Exchange Loading
(PEL) to load new data by exchanging it into
a target table as a partition. This exchange
process is a DDL operation with no actual
data movement. PEL is patented technology
specific to Warehouse Builder. Only Oracle
has this technology. One major advantage is
the ability to do parallel direct path loading.
Before Oracle9i, if a table was partitioned to
multiple partitions, the server could only
serialize a load to one partition at a time. To
solve that problem, PEL technology was
created for OWB, allowing a non-partitioned
staging table to hold the data. Another main
advantage of PEL is the ability to load data
while not locking the target table. The
swapping of names and identities requires
no time. The target table is not being
touched. One minor advantage of using PEL
is to avoid rebuilding the indexes and
constraints in the big partitioned table—data
is loaded, indexes created, and constraints
maintained in the staging table (on the much
smaller scale), and after the loading is
completed, the staging table is rotated and
replaces a big table partition in a single
stroke [3].

Fig. 3 – Partition Exchange Loading

Source: [4]

In this example from figure 3, only one
financial period needs to be updated in a
large target table with much historical
data. Instead of issuing a SQL Delete

command, PEL uses data definition
language (DDL) statements to swap
partition assignments, without the data

36 Enhancing ETL Performance with Warehouse Builder

movement required of data manipulation
language (DML) statements.

Guidelines to achieve PEL for targets:
• The large table must be partitioned by
range, based on a single date field.
• Partition names must respect a specific
naming convention.
• The staging table must contain data for
the same date range as the partition it is
going to replace.
• Data and indexes must each be located
in a single tablespace. (All the partitions
and the staging table must be in a single
“data” tablespace, while the indexes can
be located on a single “index”
tablespace.)
• The structure of the staging table must
be identical to the structure of the large
partitioned table, and they have to have
the same indexes and constraints.
• All the indexes in the big partitioned
table must be local indexes (pertaining to
a single partition).

There are two options for PEL: Direct
and Indirect.
Direct PEL: The user designs and
maintains the staging table that is
switched into the large partitioned table
directly. This usually happens in a
mapping that has a one-to-one
correspondence between the source (the
staging table) and the target (the large
partitioned table). Direct PEL is
convenient because it allows the user to
physically separate the process of loading
(when the staging table is loaded) from
the process of publishing the data (when
the data is swapped into the large
partitioned table and made available to
the query/reporting users).
For example, the data loading into the
staging table can be scheduled during the
day, while the actual publishing of the
data, which might be disruptive to the
query/reporting users (front-end users),

can be scheduled during the night when
there is little or no front-end activity.
Another way to use direct PEL (which
switches old data from the partition to the
staging table) is to manage “dormant” data
(data that is not often used by the analytical
users, but needs to be available on short
notice). In this case, empty staging tables
can be swapped with the least-used partition
data (usually the oldest data) making the
oldest partition empty, but maintaining the
actual data in the staging table. The data can
then be switched online almost
instantaneously by re-running the mapping.

Indirect PEL: Warehouse Builder creates a
temporary staging table behind the scenes,
swaps the data with the partition, and deletes
the table once the swap is completed. This
kind of configuration will be necessary
when the mapping loads the data into a
target table from remote sources or by
joining multiple source tables [4].

6. Using Transportable Modules for Data
Extraction from Remote Sources
A very common occurrence in data loading
is for the target processes to access data in
remote sources. A problem here might be
caused by the database link. Since a
mapping is a single session, the database
link will create a single communication
channel between source and target, which
will force the data to travel sequentially,
thus creating a bottleneck in the data
movement process.
The solution here is to use transportable
modules. Using transportable modules, you
can copy large volumes of data and
metadata, from an Oracle 9i database to
another Oracle 9i database, and from an
Oracle 10g database to another Oracle 10g
database or 11g database. However, you
cannot use transportable modules to copy
from an Oracle 9i to an Oracle 10g database.
If both versions are 10g, you can create
transportable modules to copy data and
metadata between Oracle databases on

Database Systems Journal vol. IV, no. 2/2013 37

different machine architectures and
operating systems. For 10g and 11g
databases, you specify either Data Pump
or transportable tablespaces during
configuration of the transportable
module. In the case of 10g databases and
Oracle Data Pump, you can transport
tables without also transporting their
tablespaces. For example, if your table is
100 KB and its tablespace size is 10 MB,
you can deploy the table without
deploying the entire tablespace.
Furthermore, only Data Pump gives you
the option to copy the entire schema.

Benefits of Using Transportable Modules
Previously, to transport data you relied on
moving flat files containing raw data.
These mechanisms required that data be
unloaded or exported into files from the
source database, and then these files were
loaded or imported into the target
database. Transportable modules entirely
bypass the unload and reload steps and
gives you access to the Transportable
Tablespaces and Data Pump Oracle
server technologies. The following are
the benefits of using a transportable
module [3]:
• High performance data extraction:
Transportable modules reduce the need
for Warehouse Builder mappings to
access data remotely. If you have large
volumes of data on remote machines, use
transportable modules to quickly
replicate the sources onto the Oracle
target database.
• Distribute and archive data marts:
Normally a central data warehouse
handles ETL processing while dependent
data marts are read-only. You can use
transportable modules to copy from a
read-only data mart to multiple
departmental databases. In this way, you
can use your central data warehouse to
periodically publish new data marts and
then replace old data marts simply by

dropping the old tablespace and importing a
new one.
• Archive sources: You can set your source
tablespaces to read-only mode and then
export them to a target. All the data files are
copied creating a consistent snapshot of the
source database at a given time. This copy
can then be archived. The advantage of this
method is that archived data is restorable
both in the source and target databases.

7. Best Practices Tips: Factors That
Impact Performance
The following are a few simple ETL design
practices that influence the performance of
your mappings considerably:
• Custom transformation impact:
Transformation functions should be used
sparingly on large tables. The reason is that
the generated SQL statements containing the
transformation function call will force the
database engine to switch between the SQL
engine (that interprets pure SQL statements)
and PL/SQL engine (that interprets the
procedural structures, such as functions).
Whenever possible it is beneficial to replace
simple PL/SQL functions with pure SQL
expressions.
• Loading type impact: This will determine
which SQL statement will be used to update
the target. It is worth noting that the
INSERT statement is the least inefficient of
the operations available, because it creates
new data only, so the user should use
INSERT whenever possible. Insert/Update
and Update/Insert are slightly more
inefficient (these load types will generate a
MERGE statement when the mapping is
configured as "Set based"). If the user
expects most of the operations to be inserts,
the user should choose the
INSERT/UPDATE loading type and vice
versa. Pure UPDATE and DELETE are
inefficient and should be used sparingly.

• External table vs. SQL Loader: Warehouse
Builder still retains the possibility of using
SQL Loader to rapidly load flat files into the

38 Enhancing ETL Performance with Warehouse Builder

database. When deciding whether to use
external tables or SQL Loader mappings,
the user should find the right trade-off
between the conveniences of the external
table (that can be used in any mapping
operation as a normal read-only table)
and the necessity to load the flat file data
as fast as possible into a real database
table. This might be a better solution for
very large flat files, because external
tables have a number of limitations (they
cannot be indexed, keys cannot be
created, etc.), which can make them
inefficient when included in mappings
with more complex operators (joins,
filters, etc.).
Warehouse Builder provides design
capabilities for indexes, partitions, and
allowing for detailed configuration of
physical storage and sizing properties on
objects.

7.1 Indexing
Indexes are important for speeding
queries by quickly accessing data
processed in a warehouse. You can create
indexes on one or more columns of a
table to speed SQL statement execution
on that table. You can create UNIQUE,
B-tree, Bitmap (non-unique), Function-
based, Composite, and Reverse indexes
in Warehouse Builder. Bitmap indexes
are primarily used for data warehousing
applications to enable the querying of
large amounts of data. These indexes use
bitmaps as key values instead of a list of
row IDs.
Bitmap indexes can only be defined as
local indexes to facilitate the best
performance for querying large amounts
of data. Bitmaps enable star query
transformations, which are cost-based
query transformations aimed at
efficiently executing star queries. A
prerequisite of the star transformation is
that a bitmap index must be built on each
of the foreign key columns of the cube or

cubes. When you define a bitmap index in
Warehouse Builder, set its scope to LOCAL
and partitioning to NONE. Local indexes are
likely to be the preferred choice for data
warehousing applications due to ease in
managing partitions and the ability to
parallelize query operations.
Another widely used performance
enhancement method is dropping the
indexes of the target object before the
loading process and recreating the indexes
after the load is completed. This can
significantly improve the performance,
because indexes will not have to be
maintained during the load.
You need indexes only when using reporting
tools to query the loaded data.
There is no switch or check box option that
can enable you to switch the indexes on or
off as required. To achieve this, the user will
have to create a pre-mapping that will
invoke a PL/SQL function or procedure that
drops the target indexes and a post-mapping
process that will invoke PL/SQL code that
will recreate these indexes.

7.2 Constraints Management
Constraints management can also
dramatically affect performance of "Set
based" mappings. If the Enable Constraints
property is checked, Warehouse Builder will
leave the target object constraints (foreign
keys or any other constraint) enabled during
the load. This might make the load
dramatically slower because the constraints
will have to be checked against every row
that is loaded into the target. If this property
is unchecked, on the other hand, the target
foreign key constraints will be disabled
before the beginning of the load and re-
enabled (in parallel) after the load is
completed. This will make the load faster,
but if rows that do not conform to the
constraints are loaded, the affected rows in
the target object will be marked as invalid
during the constraint re-activation. The user
will then have to manually correct these
rows whose row IDs will be logged in the

Database Systems Journal vol. IV, no. 2/2013 39

run-time audit error table or, if specified,
in an exceptions table. For “Row based”
mappings, the constraints will be active
no matter what the setting is for this
parameter.

7.3 Partitions
Partitions enable you to efficiently
manage very large tables and indexes by
dividing them into smaller, more
manageable parts. Use partitions to
enhance data access and improve overall
application performance, especially for
applications that access tables and
indexes with millions of rows and many
gigabytes of data [2]. Partitioning greatly
enhances the manageability of the
partitioning table by making the backups,
restores, archives, etc. much easier to
perform.
 Partitioning can also enhance the
performance by giving the user more
control on how to optimally configure the
physical parameters of the table. If there
is a single large table, it will physically
reside in a single Oracle tablespace and
probably in a single data file. The user
will not have control over where this file
is physically located on a disk or array of
disks. If a parallel operation is performed
on this table and the table resides on a
single disk or mostly on a single disk, the
disk and its controller will represent a
bottleneck for any activity on this table.
What use is it having several parallel
processes trying to load data into the
table if they all have to write or read
sequentially through a single disk
controller?
You can define various types of partitions
in Warehouse Builder. Range partitioning
is the most common type of partitioning
and is often used to partition data based
on date ranges. For example, you can
partition sales data into monthly
partitions. When you design mappings
using a table that is range partitioned on a
date column, consider enabling Partition

Exchange Loading (PEL), already discussed
earlier.
Specifying Partition Tablespace Parameters
If the table is partitioned, the user can assign
every partition to a different tablespace and
every tablespace to a different disk,
spreading the data evenly across disks. This
will make it possible for the server processes
to balance the processing activity among
themselves evenly, thus making the parallel
execution much more efficient. If you
neglect to specify partition tablespaces,
Warehouse Builder uses the default
tablespaces associated with the table and the
performance advantage for defining
partitions is not realized. You need to
specify this when the partition type is one of
the following: HASH BY QUANTITY,
RANGE-LIST, RANGE-HASH, or
RANGE-HASH BY QUANTITY. You can
also specify the Overflow tablespace list.

7.4 Parallelism
The Warehouse Builder run-time
environment has been designed for parallel
processing. This implies that users running
the tool on a platform with more than two
processors will benefit the most from
parallel processing. If the object is
configured as parallel, Warehouse Builder
will make sure that when the object is
deployed, it will be created for parallelism
by adding the parallel option (which is
checked by the database engine when a
statement is run against the object) to the
CREATE statement (during the first table
deployment CREATE TABLE …
PARALLEL… will be executed). For any
query executed against this table, the
database engine will attempt to launch
multiple parallel processes to enhance query
performance.
Although this can significantly enhance
query performance for the reporting users,
the downside of this might be the possible
extensive use of resources (especially
memory) that parallel queries require in a
multi-user, high-query-volume environment.

40 Enhancing ETL Performance with Warehouse Builder

With objects enabled for parallel access,
you need to set the Enable Parallel DML
option for the mappings to take full
advantage of parallelism. For target
objects in the mappings, Warehouse
Builder by default adds the PARALLEL
hint.
If you enable Parallel DML, Warehouse
builder will always generate the ALTER
SESSION ENABLE PARALLEL DML
statement in a PL/SQL mapping. The
implication is that Warehouse Builder
will always attempt to execute the
mapping in parallel if the objects
involved are enabled for parallelism.
 • If you have only one CPU, do not use
Parallel DML. It will lower performance
by launching multiple processes that
share the same CPU, requiring process
context switches that involve huge
overhead.
• If you have two CPUs, Parallel DML
might be useful.
• If you have a dual-core CPU, Oracle
does not yet have a recommendation, as
the implications are currently being
studied.
You can set tablespace properties (for
indexes as well as objects) at various
levels:
• User level: If no tablespace is specified,
the objects go into the tablespace
assigned to the user you are deploying to.
When you create your target users, you
have the option of specifying the
tablespaces to be used.
• Module level: To allow overriding
specification of the tablespaces (index
and object) you can set this at module
level, all generated objects will take this
property unless overridden at the object
level. In the Configuration Properties
window for the specific module, you can
set the Default Index Tablespaces and
Default Object Tablespaces property.
• Object level: Allows specific control per
object for both indexes and objects. In the
Configuration Properties window for the

specific object, you can set the Tablespace
property.

8. Conclusion
The complexity of the information systems
used in a company has grown along with its
expansion and increase in its volume of
sales or along with the increase in their
number of employees. So, the gathered
information is useful only if it is of
dependable quality and is delivered at the
right time. In the same time, the need of
software integration comes as a must for
data that need to be integrated and the
creation of complex, robust, efficient and
finally, complete software solutions for data
warehouses [1]. Configure your ETL and
schema design performance parameters and
use Warehouse Builder to create and
configure indexes, partitions, and constrain
are important matters to be applied for the
data warehouse system performance.

References
[1] Manole Velicanu, Daniela Liţan, Larisa

Copcea (Teohari), Mihai Teohari, Aura-
Mihaela Mocanu (Vîrgolici), Iulia
Surugiu, Ovidiu Răduţă, Ways to
increase the efficiency of information
systems, The 10th WSEAS International
Conference on Artificial Intelligence,
Knowledge Engineering and Databases
(AIKED ’11), University of Cambridge,
UK, 2011, vol Recent Researches in
Artificial Intelligence, Knowledge
Engineering and DataBases, pp. 211-
216, ISSN: 1792-8117/1792-8125,
ISBN: 978-960-474-273-8, (ISI
Thomson).

[2] N. T. Nguyen, M. T. Le, J. Swiatek,
Intelligent Information and Database
Systems, Springer-Verlag, Berlin
Heidelberg, 2010.

[3] B. Griesemer, Oracle Warehouse Builder
11g Getting Started, Packt Publishing,
2009.

[4] www.otn.oracle.com

Database Systems Journal vol. IV, no. 2/2013 41

Manole VELICANU is a Professor at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. He has
graduated the Faculty of Economic Cybernetics in 1976, holds a PhD
diploma in Economics from 1994 and starting with 2002 he is a PhD
coordinator in the field of Economic Informatics. He is the author of 22
books in the domain of economic informatics, 64 published articles (among

which 2 articles ISI indexed), 55 scientific papers published in conferences proceedings
(among which 5 papers ISI indexed and 7 included in international databases) and 36
scientific papers presented at conferences, but unpublished. He participated (as director or as
team member) in more than 40 research projects that have been financed from national
research programs. He is a member of INFOREC professional association, a CNCSIS expert
evaluator and a MCT expert evaluator for the program Cercetare de Excelenta - CEEX (from
2006). From 2005 he is co-manager of the master program Databases for Business Support.
His fields of interest include: Databases, Design of Economic Information Systems, Database
Management Systems, Artificial Intelligence, Programming languages.

Larisa COPCEA (TEOHARI) has graduated the Academy of Economic
Studies (Bucharest, Romania), Faculty of Cybernetics, Statistics and
Economic Informatics in 2006. She holds a Master diploma in Databases -
Support for business from 2008 and in present she is a Ph.D. Candidate in
Economic Informatics with the Doctor’s Degree Thesis: Advanced
management of information in data warehouses.
Her research activity can be observed in the following achievements: 6

proceedings (papers ISI proceedings), among witch:
• “Ways to Increase the Efficiency of Information Systems”, Proc. of the 10th WSEAS

International Conference on Artificial Intelligence, Knowledge Engineering and Databases
(AIKED ’11, University of Cambridge), February 20-22, 2011, Cambridge, UK;

• „Some Information Technologies to Improve the Performance of an ERP System”, Proc. of
the 5th WSEAS International Conference on Computer Engineering and Applications
(CEA '11), January 29-31, 2011, Puerto Morelos, Mexico;

• “XML Authoring Tool”, Proc. of the 4th European Computing Conference
(ECC'10,University Politehnica of Bucharest), April 20-22, 2010, Bucharest, Romania;

 and 3 articles published in scientific reviews , among witch:
• “Technologies for Development of the Information Systems: from ERP to e-Government”,

International Journal of Applied Mathematics and Informatics, issue 2, vol. 5, 2011.
Her scientific fields of interest include: Data warehouse, Databases, Database Management
Systems, High availability solutions, Information Systems and Economics.

