
Database Systems Journal vol. IV, no. 1/2013                                                                                            11 

11 
 

Reverse Engineering in Data Integration Software 
 

Vlad DIACONITA  
The Bucharest Academy of Economic Studies  

diaconita.vlad@ie.ase.ro 
 

Integrated applications are complex solutions that help build better consolidated and 
standardized systems from existing (usually transactional) systems. 
Integrated applications are complex solutions, whose complexity are determined by the 
economic processes they implement, the amount of data employed (millions of records 
grouped in hundreds of tables, databases, hundreds of GB) and the number of users [11]. 
Oracle, once mainly known for his database and e-business solutions has been constantly 
expanding its product portfolio, providing solutions for SOA, BPA, Warehousing, Big Data 
and Cloud Computing. In this article I will review the facilities and the power of using a 
dedicated integration tool in an environment with multiple data sources and a target data 
mart. 
Keywords: ODI, reverse engineering, SOA, data mart 

 

Data integration software 
There are many software packages that 
can aid to system integration. One of 

them is the Oracle Data Integrator (ODI) 
that has its roots in the acquisition of 
Sunopsis by Oracle in 2006. The primary 
use of ODI is to move and transform data 
from one place to another so there are 
many other Oracle products that are 
benefiting and thus creating the need of 
using this tool in many organizations. 
Like shown in [7] data Warehouses and 
data marts (a subset of the data warehouse 
that is usually oriented to a specific 
department) are data-intensive systems that 
are used for analytical tasks in businesses 
such as analyzing sales/profits statistics, 
cost/benefit relation statistics, customer 
preferences statistics, etc.  The idea of a 
data warehouse is to extract data from 
operational databases and to store them 
separately. The justification for this 
approach is that OLAP largely deals with 
condensed data, thus does not depend on 
the latest updates by transactions. 
Furthermore, OLAP requires only read-
access to the data, so the separation of the 
data for OLAP from OLTP allows time-
consuming transaction management to be 
dispensed with. 
The need for data warehouse usually 
comes from the fact that the operational 

systems cannot be overload with the 
additional queries required by the business 
intelligence needs. Integrating data from 
multiple, usually heterogeneous sources, is 
a problem addressed by ODI. 
Linking SOA with ODI and Data 
Warehousing (DW) can be beneficial. 
From a business perspective the key word 
in dealing with SOA is definitely 
flexibility. Companies must be able to keep 
pace with the rapid changing conditions of 
the business environment. In the same time 
the trend in IT architectures leads toward 
an integrated model by building business 
processes that span multiple operational 
systems and by enabling interoperability 
between legacy systems and newly 
developed systems [3].  
As shown in [4] SOA has the merit to 
introduce a new kind of technological 
“democracy” where the application 
systems are considered a federation per se, 
thus opening the doors to a new kind of 
logical distributed computing approach 
where the technological platforms are 
downgraded to the implementation or 
physical level. 
Most SOA efforts have centered on 
transaction systems, but data warehousing 
can benefit from SOA with the ability to 
join various actions (services) from 
different areas of the DW to create 

1



12 Reverse Engineering in Data Integration Software 

 

composite applications or common 
services. The services that are part of a 
data warehouse such data extraction, 
transformation, loading, querying or 
updating should be part of the SOA from 
the start. This should make more 
comprehensive business intelligence 
possible, and could assist in the 
development of fully integrated SOA [2]. 
The usage of SOA makes data location of 
little importance to its users so using it in 
conjunction with ODI processes and 
transformations makes lot of sense. SOA 
can enable an abstract layer that makes 
data available inside an enterprise using 
homogeneous services. 
ODI can also have a role in normalizing 
data definition so different applications 
reference the same data. It can also have a 
role in processing Big Data by delegating 
and distributing processing. 
 
2. ETL and ELT 
As an alternative to ETL, ODI proposes 
ELT which extracts data from the source, 
loads it into the target and processes there 
by using SQL the needed transformations. 
This approach exploits database optimizers 
as opposed to transformation that is 
performed in-flight or requiring a separate 
intermediary. The ELT approach directly 
impacts performance and has proven to 
make data loading fast, efficient and 
incredibly reliable [9]. 
An ELT has the ability to manage a staging 
area, generate code and execute 
instructions on target systems but also on 
source systems, such systems that are 
being managed by any DBMS. 
The components of ODI architecture are 
the repository, the studio, the graphical 
interface of the software, the agents and 
the console. In SOA, repositories are used 
to manage services and support service 
discovery at runtime. Usually, there is a 
process needs a data access service (DAS) 
to execute a query usually against a 
database. DAS are variations of the 
ordinary service concept; they are more 
data-intensive and designed to expose data 

as a service [5]. In an ELT solution the 
data is not stored in the repository; it is 
moved directly to the target. The repository 
is usually stored in a schema of an existing 
database and is composed of the master 
repository for the sensitive data and the 
work repository for the data needed by the 
developers. In a production environment 
an execution repository is also present. It 
stores only the operational metadata. The 
exchange of data can be done through 
versioning or by importing or exporting 
XML files. There are two types of agents: 
the standalone agent that can be installed 
on any platform and the JEE agent that 
runs on a Weblogic server. Usually the 
JEE agents has the role to distribute 
execution requests and balance load across 
different other agents which are usually 
standalone agents. A strategy using only 
standalone agents is also possible. 
The key elements of ODI are Execution 
Contexts, Knowledge Modules, Models, 
Interfaces, Packages and Load Plans. 
For assuring independence from the 
physical location of the data, logical 
schemas can be used, at execution this are 
translated into physical ones so the 
maintenance of the connection parameters, 
location of the databases, and schema 
names is entirely independent of the code 
itself. 
Metadata can be imported using 
knowledge modules from applications, 
where objects usually are representation of 
the data or from databases using models. 
After it’s imported, metadata can be 
enhanced in ODI (for example by adding 
constraints). Also new metadata can be 
created. 
Another key element in ODI is the 
interfaces where the transformations are 
built. An interface contains among others 
description, mappings and flows. 
Packages put together elements such as 
interfaces, variables and procedures. They 
are compiled into scenarios which 
execution can be organized with load 
plans. 
 



Database Systems Journal vol. IV, no. 1/2013                                                                                            13 

13 
 

3. Reverse-engineering the model 
metadata 
Like shown in [1], to use ODI, first we 
declare a new data server in the ODI 
Physical Architecture and then a reference 
to a Physical Schema located on that server 
that holds the business data. We can also 
construct a work schema for every physical 
schema to store temporary data.  
A Physical Schema definition needs to be 
associated with a Logical Schema name 
which will be exclusively used to build 
ODI models. The models are abstracted, 
independent of the data source but seem 
homogeneous to the developer. Usually 
they are built by reverse-engineering the 
structural data, that coming from 
databases, flat files, XML files or different 

ERP systems. Different other elements, 
such as structural integrity data can be 
added to the captured metadata. 
Like shown in [6], the Reverse-
Engineering Knowledge Modules role is 
to perform customized reverse engineering 
for a model. It connects to the application 
or metadata provider then transforming and 
writing the resulting metadata into Oracle 
Data Integrator's repository. The metadata 
is written temporarily into the 
SNP_REV_xx tables. The RKM then calls 
the Oracle Data Integrator API to read 
from these tables and write to Oracle Data 
Integrator's metadata tables of the work 
repository in incremental update mode 
(figure 1). 

 
As shown in [7], Oracle Data Integrator 
implements five different types of KMs. 
Each of them covers one phase in the 
transformation process from source to 
target. The three most important types of 
modules are the integration knowledge 
module (IKM), the loading knowledge 
module (LKM), and the check knowledge 
module (CKM). As explained in [1] when 
a Knowledge Module has been previously 
imported into the parent project and 
applied to the interface target and the 
interface is subsequently executed, it is the 
steps within the IKM that determine the 

what, how, and when data is moved into 
the target data store. LKMs load data into 
the staging area from other servers. If the 
source data is in the same server as the 
staging area then LKM is not needed. 
CKMs are used to check and enforce data 
integrity through testing conformance to 
constraints and references, either statically 
on data tables on source or target systems, 
or dynamically during the process of a data 
flow defined in an ODI interface. 
To reverse engineer, after defining the 
topology, we create the model like shown 
in figure 2.  

Fig. 1. RKM 



14 Reverse Engineering in Data Integration Software 

 

 
Fig. 2. Create the model 

 
After configured the ODI representations 
of our data objects an interface can be built 
to move and transform the data into the 
data mart, like shown in figure 3.We can 
use the Automatic Mapping and also do 
manual mappings and transformations 

using SQL code and apply some 
timestamps useful for audit purposes. The 
transformed data will be loaded from an 
Oracle source into a target Oracle data 
mart. 

 

 
Fig. 3. Transform flow 

 
We can add some additional complexity by 
introducing joins and lookups, 
heterogeneous data sources and data 

aggregation. And we can do this with 
multiple source databases usually using 
different JDBC connectors (figure 4).  



Database Systems Journal vol. IV, no. 1/2013                                                                                            15 

15 
 

 
Fig. 4. MySql JDBC Driver 

 
In the example shown in figure 5 we join 
three sources (actually we have 2 instances 

of the same data source table) and link 
them to the target data mart. 

 

 
Fig. 5. Join transform flow 

 
Like shown in figure 6, an interface can be 
built to move data using JDBC from a 
third-party DBMS to an Oracle data mart.  



16 Reverse Engineering in Data Integration Software 

 

 
Fig. 6. Lookup transform flow 

 
As shown in [10] eXtensible Markup 
Language (XML) is a platform-
independent format for representing data 
and was designed as a standard for 
information exchange over the Internet. 
XML enables easy exchange of 
information, which allows interoperability 
between applications due to data 
encapsulation with metadata. To use XML 
inside ODI a JDBC driver is required 
which is available out-of-the-box (figure 
7). 
 

 
Fig. 7. XML JDBC 

Let’s look at the following XML file: 
 
<CLIENT> 
  <ID_CLIENT>10</ID_CLIENT> 
  <FIRST_NAME>Jan</ FIRST_NAME > 
  <LAST_NAME>Roberts</ LAST_NAME > 

  <CREDIT>600</ CREDIT > 
  
<EMAIL>Ishwarya.Roberts@LAPWING.COM</E
MAIL > 
  <DATE_OF_BIRTH>21-MAR-44</ 
DATE_OF_BIRTH > 
  <CIVIL_STATUS>single</ CIVIL_STATUS 
> 
  <SEX>F</SEX> 
  <INCOME >G: 130,000 - 149,999</ 
INCOME > 
 </CLIENT> 

 
This would reverse-engineer to a table 
called CLIENT that has the following 
columns: ID_CLIENT, FIRST_NAME, 
LAST_NAME etc. The mapping is shown 
in figure 8. 



Database Systems Journal vol. IV, no. 1/2013                                                                                            17 

17 
 

 
Fig. 8. XML-Relational Mapping 

 
 
Conclusions 
Data integration is very often a necessity in 
bigger projects. Using an integrated tool 
can be much more powerful and useful in 
projects that imply using data from 
heterogeneous sources, targets, and 
applications. Such products provide great 
aid in integrating databases, ERPs, CRMs, 
B2B systems, flat files, XML data, LDAP, 
JDBC or ODBC. It also can help in cutting 
hardware costs through improved 
utilization and high-performance data 
integration. Using external services for 
data integration and by deploying data 
services and transformation services that 
can be integrated within an SOA 
infrastructure Also, SOA business 
processes can assign large data operations 
to Oracle Data Integrator by using web 
services.  
 
References 
[1] Peter C. Boyd-Bowman, Christophe 
Dupupet, Denis Gray, David Hecksel, 
Julien Testut, Bernard Wheeler, Getting 
Started with Oracle Data Integrator 11g: 
A Hands-On Tutorial, May 2012 

[2]http://www.information-
management.com/news/1065308-1.html 
[3] Alexandra Florea, Anca Andreescu, 
Vlad Diaconita, Adina Uta, “Approaches 
Regarding Business Logic Modeling in 
Service Oriented Architecture”, 
Informatica Economică vol. 15, no. 3/2011 
[4] Cătălin Strîmbei, “Smart Data Web 
Services”, Informatica Economică vol. 16, 
no. 4/2012 
[5] M. Turner, D. Budgen, P. Brereton, 
“Turning software into a service”, 
Computer, 36 (2003), pp. 38–44 
[6]http://docs.oracle.com/cd/E15586_01/in
tegrate.1111/e12645/intro.htm 
[7] Uli Bethke, Developing a Knowledge 
Module in Oracle Data Integrator, 2009 
[8] Jane Zhao, Hui Ma, “ASM-based 
design of data warehouses and on-line 
analytical processing systems”, Journal of 
Systems and Software, Volume 79, Issue 5, 
May 2006, Pages 613–629 
[9]http://www.oracle.com/technetwork/mi
ddleware/data-integrator/learnmore/odi-
for-soa-wp-1555852.pdf 
[10] Iuliana Botha, “Managing XML Data 
to optimize Performance into Object-



18 Reverse Engineering in Data Integration Software 

 

Relational Databases”, Database Systems 
Journal vol. II, no. 2/2011 

[11] Vlad Diaconita, “Hybrid Solution for 
Integrated Trading”, Informatica 
Economică vol. 14, no. 2/2010 

 
Vlad DIACONIŢA is a lecturer at the Department of Economic Informatics 
and Cybernetics, within the Faculty of Economic Cybernetics, Statistics from 
the Bucharest Academy of Economic Studies. He has graduated the faculty at 
which he is now teaching in 2005 and since 2010 holds a PhD in the field of 
Cybernetics and Statistics. He is the co-author of 3 books in the domain of 
economic informatics, and of more than 25 papers in journals and conference 
proceedings. He participated as team member in 3 research projects that have 

been financed from national research programs. He is a member of the IEEE Computer and 
INFOREC professional associations. Domains of competence: Database systems, Data 
warehouses, OLAP and Business Intelligence, Integrated Systems, SOA. 


