
Database Systems Journal vol. III, no. 4/2012 47

Multi-level and Multi-component Bitmap Encoding for Efficient Search
Operations

Madhu BHAN1 , Dr.RAJANIKANTH K 2, Dr. Suresh KUMAR T.V3

1,2M.S.Ramaiah Institute of Technology, Department of Computer Applications, India.
3Visvesvaraya Technological University, India

madhoobhan@yahoo.co.in

The growing interest in data warehousing for decision makers is becoming more and more
crucial to make faster and efficient decisions. On-line decision needs short response times. Many
indexing techniques have been created to achieve this goal in read only environments. Indexing
technique that has attracted attention in multidimensional databases is Bitmap Indexing. The
paper discusses the various existing bitmap indexing techniques along with their performance
characteristics. The paper proposes two new bitmap indexing techniques in the class of multi-
level and multi-component encoding schemes and prove that the two techniques have better
space–time performance than some of the existing techniques used for range queries. We provide
an analytical model for comparing the performance of our proposed encoding schemes with that
of the existing ones.
Keywords: Bitmap encoding, Datawarehouse, multi-level indexing, multi-component indexing,
On-Line Analytical Processing.

Introduction
W

on-lin
hile the query performance issues of
e transaction processing (OLTP)

systems have been extensively studied and
are pretty much well-understood, the state-
of-the-art for data warehouse systems is still
evolving as indicated by the growing active
research in this area [1]. In particular, Data
warehouse systems operate in read-mostly
environments, which are dominated by
complex adhoc queries that have high
selectivity factors [2]. Due to large size of
the data warehouse and the complexity of
queries, quick response time plays an
important role as timely access to
information is the basic challenge to match
the pace of the query results with the speed
of thought of the user. From various
methods available to improve performance,
indexing ranks very high [3]. Indexes are
database objects associated with database
tables and created to speed up access to data
within table. Index space and access time

play an important role in choosing an
indexing technique in data warehouse. If the
space used by an index is large then the
results are achieved in short time on the
other hand if the space used by the index
space is small then the results are achieved
in greater amount of time. So there is a
trade-off between the time consumed and
the space used by a particular index. A
committed approach to answer complex
queries swiftly in Data warehouse systems
is the use of bitmap indexing [4], [5] and
[6]. Bitmap manipulation techniques have
already been used in some commercial
products [7] to speed up query processing.
The basic bitmap index uses each distinct
value of the indexed attribute as a key, and
generates one bitmap containing as many
bits as the number of records in the data set
for each key [8]. The advantage of bitmap
index is that complex selection predicates
can be computed very quickly by
performing bit-wise AND, OR and NOT
operations on bitmap indices. Bitmaps are

1

48 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

well supported by hardware and are easy to
compress. Each individual bitmap is small
and frequently used ones can be cached in
memory. This property of bitmap has led to
considerable interest in their use in Decision
Support systems. The size of a basic bitmap
index is relatively small for low-cardinality
attributes, such as “gender,” “types of cars
sold per month,” or “airplane models
produced by Airbus and Boeing.” However,
for high-cardinality attributes such as
“temperature values in a supernova
explosion,” the index sizes may be too large
to be of any practical use [9]. In the
literature, there are three basic strategies to
reduce the sizes of bitmap indices: (1) using
more complex bitmap encoding methods to
reduce the number of bitmaps or improve
query efficiency, (2) compressing each
individual bitmap, and (3) using binning or
other mapping strategies to reduce the
number of keys. Various bitmap indexes
have been designed for different query
types, including range queries, aggregation
queries, and OLAP-style queries. However,
as there is no overall best bitmap index over
all kinds of queries, maintaining multiple
types of bitmap indexes for an attribute may
be necessary in order to achieve the desired
level of performance. While the gains in
query performance using a multiple-index
approach might be offset by the high update
cost in OLTP applications, this is not an
issue in the read-mostly environment of data
warehouse applications. In the remaining
of this paper, we first present in Section 2 a
review of different bitmap indexing
strategies. We discuss the three basic
encoding techniques namely Equality
encoding, Range encoding and Interval
encoding along with their performance
characteristics in Section 3. In Section 4 and
5, the proposed multi-level encoding and
multi-component encoding technique is
defined with an analytical model. Section 5
concludes the paper with future

enhancements of the proposed techniques.

2 Related work.
Various bitmap indexes have been
demonstrated to significantly speed up
searching operations in data warehousing,
On-Line Analytical Processing (OLAP), and
many scientific data management tasks [10]
and [11 . This has led a number of
commercial database management systems
(DBMS) to support bitmap indexes [7].
However, most of the bitmap index
implementations in commercial DBMS are
relatively simple, such as the basic bitmap
index or the bit-sliced index. There is a
significant number of promising techniques
proposed in the research literature that have
not gained wide acceptance yet. A bitmap
index typically uses a combination of three
types of strategies namely encoding, binning
and compression, though it is common to
omit one or two. For example, the first
commercial implementation of a bitmap in
Model 204 uses equality encoding without
binning or compression [8].

• Encoding: In the simplest encoding,
a bitmap corresponds to exactly one attribute
value. This encoding is known as Equality
encoding where i-th bit is set to 1 if the i-th
row of the base table has a value for the
indexed column. It is possible to reduce the
number of bitmaps by using a different
encoding method. Fig 1(a) shows an
example of encoded bitmap index. Assume
that the attribute domain given by the table
T is{a, b, c}. A simple bitmap index uses
four bitmap vectors whereas an encoded
bitmap index uses ⌈ log2 3 ⌉ =2 bitmap
vectors plus a mapping table. It encodes the
values from a simple bitmap index by means
of Huffman encoding. Thus we see that for
an attribute with C distinct values we use
only log2C encoded bitmap vectors instead
of C bitmap vectors. We assume that we
have a fact table SALES with N tuples and a
dimension table PRODUCT with 12,000

Database Systems Journal vol. III, no. 4/2012 49

different products. If we build a simple
bitmap index on PRODUCT, It will require
12,000 bitmap vectors of N bits in length.
However, if we use encoded bitmap
indexing we only need ⌈ log2 12,000 ⌉= 14
bitmap vectors plus a mapping table. It is a
very significant reduction of the space
complexity. Other common encoding
schemes include range encoding and interval
encoding [2]. More sophisticated encoding
schemes can be generated from the above
three basic encoding schemes, Equality
encoding, Range encoding and Interval
encoding. One approach of extending the
basic encoding schemes is the multi-level
encoding which can be viewed as using
hierarchy of levels with different encoding
techniques. Another strategy is to
decompose the attribute value into several
components and encode each component
using a basic encoding scheme. These are
called as multi-component encodings [12]
and [13]. The best known example of such
an encoding is the binary encoding which is
also known as the bit-sliced index. Finding
the optimal encoding method that balances
query performance and index size remains
an interesting challenge.

• Compression:
Compressing each bitmap in a bitmap index
can save space. A lossless compression
method can be used for this purpose. There
has been considerable amount of work done
on this subject [14] and [15] . For example,
most generic text compression methods,
such as LZ77, are effective in reducing the
index size on disk, but they can also
significantly increase the time required to
answer a query, because the compressed
bitmaps have to decompressed before being
used in logical operations. Bitmap
compression algorithms typically employ
run-length encoding such as the Byte-
aligned Bitmap Code and the Word-Aligned
Hybrid code [16]. These compression
methods require very little effort to

compress and decompress. The Byte-
Aligned Bitmap Code (BBC) can compress
bitmaps and at the same time it also reduces
the query response time. The BBC
compressed basic bitmap index is
implemented in ORACLE DBMS. The
Word-Aligned Hybrid (WAH) code has
been shown to outperform BBC in most
cases[18]. This method trades some space
for more efficient CPU operations. In one
set of tests, it was shown to use about 50%
more space than BBC, but answered queries
10 times faster on average More
importantly, bitmaps compressed with
WAH, BBC, PLWAH and CONCISE can
directly participate in bitwise operations
without decompression. This gives them
considerable advantages over generic
compression techniques such as LZ77. Fig1
(b) shows an WAH bit vector representing
128 bits. Assuming that computer word
length is 32 bits, each literal word stores 31
bitmaps from the bitmap and each fill word
represents a fill with a multiple of 31 bits.
The second line in Figure shows how the
bitmap is divided into 31-bit groups and the
third line shows the hexadecimal
representation of the groups. The last line
shows the values of the WAH words. The
logical operations can be directly performed
on the compressed bitmaps and the time
needed by one such operation on two
operands is related to the sizes of the
compressed bitmaps. Extended work on
WAH compression has shown further
improvements in performance of query
processing. Different compression methods
can be used and each may have a drastically
different query processing costs.

• Binning:
In Binning, bitmap indices are built on
attribute ranges rather than on distinct
attribute values. For high-cardinality
columns, it is useful to bin the values, where
each bin covers multiple values and build
the bitmaps to represent the values in each

http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/LZ77

50 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

bin [17] .The advantage of this approach is
that a lower number of bitmap vectors is
required. On the other hand, parts of the
original data (candidates) have to be read
from disk in order to answer the queries
correctly. This process is called candidate
check . This approach reduces the number of
bitmaps used regardless of encoding
method. However, binned indexes can only
answer some queries without examining the
base data. An example of a bitmap index
with bins is given in Figure 1(c). Assume
that we want to evaluate the query 37 <= x <
63. Bins 1, 2 and 3 contain the relevant data
values. The bin in which a query boundary
falls is known as an edge bin. Thus bins 1
and 3 are edge bins since they contain also
irrelevant values, answering this query
involves checking the values on disk
corresponding to the four “1-bits” in these
two columns. In this example only one of
the four values qualifies, namely, 61. We
call this additional step the candidate check.
As we can see from this example, the cost of
performing a candidate check on an edge bin
is related to the number of “1-bits” in that
bin. The process of checking the base data is
known as the candidate check. In most
cases, the time used by the candidate check
is significantly longer than the time needed
to work with the bitmap index [18] and [19].
Therefore, binned indexes exhibit irregular
performance. They can be very fast for some
queries, but much slower if the query does
not exactly match a bin. The key advantage
of binning is that it may reduce index sizes

 Fig 1(a)

Fig. 1(b)

128 bits
1, 20*0, 3*1, 79*0, 25*1

31-bit groups
 1,20*0, 3*1, 7*0 62*0
 10*0, 21*1 4*1

groups in hex
 40000380 00000000 00000000
001FFFFF 0000000F

WAH(hex)
 40000380 80000002
001FFFFF 0000000F

Fig. 1(c)

however, the disadvantage is that the
index is no longer able to fully resolve all
queries Among the three, encoding is by far
the largest category, however their impacts
on the overall index performance are less

Database Systems Journal vol. III, no. 4/2012 51

studied than those of binning or
compression. For this reason, studying the
encoding methods is more likely to lead to
the best bitmap index method.

3 Comparison of basic Encoding
Schemes
We first review the three existing bitmap
encoding schemes, equality encoding,
denoted by E, range encoding denoted by R
and interval encoding denoted by I. These
schemes have been described in several
papers under different names [1], 2] and
[13]. Equality encoding is the most
fundamental and common bitmap encoding
scheme. It consists of C bitmaps E = {EO,
El,. . . ,EC-1}, where each bitmap Ev = {v}.
Consider an attribute A of a relation R,
where the attribute cardinality is c. For
simplicity and without loss of generality, the
domain of A is assumed to be a set of
consecutive integers from 0 to C - 1. This
allows us to use set operators and logical
operators interchangeably. The logical
operators AND, OR, and XOR are denoted
by Λ, V, and respectively. For example,
Figure 2(a) shows the Equality-encoded
bitmap index. The leftmost column shows
the row ids (RID) for the data values
represented by the projection index on an
attribute A with cardinality C = 10 of a 12
record relation R. Figure 2(b) shows the
Equality encoded bitmap index for the data
in Figure 2(a), where each column
represents an equality-encoded bitmap Ev
associated with an attribute value v. This
strategy is the most efficient for equality
queries such as “A = 3 which needs only one
bitmap E2 to be accessed. The Range
encoding and Interval encoding techniques
are optimized for one-sided and two-sided
range queries, respectively. An example of a
one-sided range query (1RQ) is “A <= 3”. A
two-sided range query (2RQ), for instance,
is “6 < A < 8”. A comparison of an Equality
encoding, Range encoding and Interval

encoding is given in Figure 2 . Let us look
at the encoding of value 2, in Equality
encoding and Range encoding first, which is
highlighted in the Figure2(a) and Figure
2(b). For Equality encoding, the third bitmap
is set to “1” (E2), whereas all other bits on
the same horizontal line are set to “0”. For
the Range-encoded bitmap index, all bits
between bitmap R2 and R8 are set to “1”,
the remaining bits are set to “0”. Range
encoding is very efficient for evaluating
range queries. Consider, for instance, the
query “A <= 4”. In this case, at most one
bitmap, namely bitmap R4, has to be
accessed (scanned) for processing the query.
All bits that are set to “1” in this bitmap
fulfil the query constraint. On the other
hand, for the Equality encoded bitmap
index, the bitmaps E0 to E4 have to be
ORed together (via the Boolean operator
OR). This means that, Range encoding
requires at most one bitmap scan for
evaluating range queries, whereas Equality
encoding requires in the worst case C/2
bitmap scans, where C corresponds to the
number of bitmaps. Since one bitmap in
Range encoding contains only “1”s, this
bitmap is usually not stored. Therefore, there
are C-1 bitmaps in a range-encoded index.
The Interval encoding, I, is optimal for the
two sided Range queries. In Range
encoding, each bitmap Ri = [0, i], and each
2RQ -query is evaluated by

 Fig 2 (a)

52 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

 Fig 2(b)

 Fig 2(c)

operating on an appropriate pair of
bitmaps: [x, y] = Ry (+) Rx-l. The Interval
encoding scheme based on range encoding
consists of [C/2] bitmaps I = {I0,I1,I.2 . .
,I[C/2-1] , where each bitmap Ij =[j, j + m], and
m = [C/2] - 1. The Interval encoding, I, is
optimal for the two sided range queries.
Figure 2(c) shows the Interval encoded
bitmap index for the data in Figure 2(a). A
2RQ, in general, is evaluated by operating
on a pair of bitmaps: [x,y] = Ix Λ Iy-m. The
Interval-encoding scheme[2] reduces the
number of bitmaps only by a factor 2 while
still guaranteeing at most a two-scan
evaluation for any query . Thus, other
techniques are needed to make bitmap

indices practical for high cardinality
attributes [9]. The encoding method that
produces the least number of bitmaps is
Binary encoding. This encoding method
uses only log2C rather than C/2 bitmaps,
where C is the attribute cardinality. The
advantage of this encoding is that it requires
much fewer bitmaps than Interval encoding.
However, to answer a range query, using
interval encoding one has to access only two
bitmaps whereas using binary encoding one
usually has to access all bitmaps. An
Equality encoded index may access a large
number of bitmaps to answer a Range query,
but the bitmaps are usually relatively easy to
compress, while the Range encoding and the
Interval encoding access fewer bitmaps to
answer a range query, but they produce
bitmaps that are hard to compress. Equality
encoding requires C bitmaps, Range
encoding requires C-1 bitmaps and Interval
encoding reduces the number of bitmaps
only by a factor of 2. Controlling the size of
bitmap indicies is crucial to make bitmap
indicies practical for high cardinality
attributes. We find that Equality encoded
index accesses larger number of bitmaps to
answer a query but here it is easy to
compress the bitmaps, while Range
encoding and Interval encoding access few
bitmaps ,but the bitmaps produced are hard
to compress. Therefore, it is worthwhile to
explore strategies that combine the
advantages of the three basic bitmap
indexing techniques. Strategies like multi-
level encoding and multi-component
encoding have been proposed by authors to
reduce the index size and bitmap scans.

4 Multi-level Encoding
We find that Equality encoded index
accesses larger number of bitmaps to answer
a query but it is easy to compress the
bitmaps, while Range encoding and Interval
encoding access few bitmap , but the
bitmaps produced are hard to compress

Database Systems Journal vol. III, no. 4/2012 53

[15],[16]. To combine the advantages of
these encoding techniques we can explore
multilevel encoding techniques. We can
think of a multi-level encoding as encoding
at multiple levels where each level can be
encoded separately using any encoding
method. In previous works [6] we have seen
that the multi-level encoding, when used
with binning methods require candidate
checks, which resulted in performance
measurements that do not truly represent the
characteristics of the encoding schemes. In
this paper, we study the multi-level
encoding with binning, which removes the
need for candidate checks. This allows a
better understanding of the performance
characteristics of these multi-level
encodings. We take an analytical approach
in our study which allows us to compare
various parameters like number of bins and
cardinality of attributes.

• Methodology
Conceptually we can think of our multilevel
bitmap technique as formed of equality
encoding with binning in the first level and
followed by binary encoding at the second
level. Figure 3 shows an example of our
multi-level encoding techniques with the
same attributes values as given in the above
example(Figure 1). To answer a query we
first scan the equality encoded bitmaps(E0-

1,E2-3,E3-4……,E8-9). Based on these
bitmaps we need to scan Binary bitmap
vector B. Consider for instance the Query
A = 3. Our multi-level coding first access
bitmap E2-3. Then corresponding to 1’s in E2-

3 it scans binary bitmap B. The 1’s in B
indicate 3 and 0’s in B indicate 2 as shown
in mapping table. Thus we see that with C
=10 and bin size n =2 we require 5(C/2) + 1
bitmap vectors scans.
1. Equality Encoding
 Case of equality queries(A=3) :-
 TIME: One bitmap E2 needs to be scanned.
 SPACE: 10(C) bitmaps are formed.
Case of 1RQ(A<=3) :-

TIME: Four bitmaps E0 to E3 need to be
scanned and ORed.
SPACE:10(C) bitmaps are formed.
2. Our Multilevel Encoding:
Case of Equality queries(A=3):-
TIME: One bitmap E2-3

+ Binary bitmap B needs to be scanned.
 SPACE: 5(C/n) bitmaps where n is the bin
size + 1Binary Bitmap is formed
+ mapping table
 Case of One sided Range Query(A<=3):-
TIME: Two bitmaps
E0-1, E2-3 need to be
scanned and ORed.
SPACE:5(C/n) bitmaps where n
is the bin size +1 Binary bitmap
is formed + mapping table.
From the above we analyse that our
proposed multi-level encoding technique is
suitable for 1-sided range queries where the
index space as well as number of bitmaps
scanned is reduced by a factor of n. The
above analyses is true for one sided range
queries where query condition contains the
upper bound value of the specific bin.
However if the query condition contains the
lower value of the specific bin additional
log2n binary vectors need to be scanned. In
such cases also the number of scans for one
sided range queries is less than that
required in Equality Encoding. For the given
example the comparison between no. of
scans for different query conditions of range
queries is given in Figure 4. For range query
A <= 6, Equality encoding requires eight
bitmaps to be scanned whereas new multi-
level encoding requires only four equality
encoded bitmaps E0-1, E2-3, E4-5, E6-7 and
Binary bitmap B to check for corresponding
0’s which indicate value 6 so that value 7 is
eliminated.

54 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

Fig 3. Multi-level encoding techniques

• Analytical Model

This section will compare the space-time
trade off of the aforementioned bitmap
encoding schemes. Let C denote the
Cardinality and n denote the bin size.

Fig 4. The comparison between no. of scans
for different query conditions of range
queries

Definition of cardinality in set theory refers
to the number of members in the set. On
database theory, the cardinality of a table
refers to the number of rows contained in a
particular table. In terms of OLAP system,
cardinality refers to the number of rows in a
table. On the other hand, on a data
warehousing point of view, cardinality
usually refers to the number of distinct
values in a column. We compare the values
of space and time at different values of
C(10,100,1000). For an average case we
have developed an analytical model for size
and time comparisons of the two encoding
schemes. Equations 1 and 2 are for index
size and number of scans in Equality
encoding and equations 3 and 4 are for size
and number of scans in our Multilevel
encoding scheme.
 Size=C 1)
No. of scans=C/2 2)
 Size=C/n + log2n + d 3)
No. of scans = C/2n + log2n + d 4)
The component d represents the size of
mapping table. Since we assume that our
mapping table will always reside in main
memory we consider d to be zero. Figure 5
and Figure 6 show the graph between
cardinality verses size for bin sizes 2 and 4
i.e for n=2 and n=4. Figure 7 and Figure 8
shows the graph between cardinality and no.
of scans for bin sizes 2 and 4.

Fig 5. Cardinality vs Size

Database Systems Journal vol. III, no. 4/2012 55

 Fig 6. Cardinality vs Size

Fig. 7. Cardinality vs Scans

Fig 8. Cardinality vs Scans

5 Multi-component Encoding
The multi-component index are constructed
from three basic encoding schemes by
decomposing the attribute value into
multiple components. The attribute value
decomposition defines the arithmetic to
represent the values of an attribute. It is the
decomposition of an attribute’s value in
digits according to a chosen base. For
example, consider an attribute with
cardinality B = 50. An attribute value of 35
can be defined as a single base-50 digit (i.e.,
35 = 3550), or as two base-8 digits (i.e., 35 =
4838), and so on. To make things clear we
take the same 12-record relation used in
Figure1.

56 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

F
Fig 9. A 2-Component index with base
<3,3>

and transform it in a base <3,3> multi-
component index .The attribute value 3 can
be written in base-3 as 1303. By doing so the
bitmaps have been reduced to 6. Figure 9
shows a 2-Component index with base
<3,3>. The one-component encoding
methods, such as the one used in the basic
bitmap index (Figure 2a), requires the
largest number of bitmaps. In contrast, the
binary encoding produces the least number
of bitmaps. This encoding method uses only
log2B bitmaps for an attribute with
cardinality B. However to answer a range
query interval encoding requires accessing
only two bitmaps whereas in binary
encoding one has to access all the bitmaps.
A number of authors have proposed
strategies to find the balance between space
and time requirements. One main purpose of
studying multi-component encoding is to
find whether any multi-component encoding
can perform better than these two.

• Methodology

Let attribute A have cardinality 1000, let its
values range from 0 to 999. These values
may be broken into three components of
base size 10 each. Each of these components
would be a digit of a 3 digit decimal

number. Let i1, i2, and i3 denote the values of
three components ,the relation among them
can be written as i=i1+10i2+100i3. Such a
three component index can be viewed as
composed of three separate indexes on i1, i2,
and i3 .We propose BCD encoding for each
of these three components. Figure 4 shows
an example of our proposed multi-
component technique. We observe that for
B=0 to B=999 our encoding scheme requires
12 bitmaps. Let us look at the encoding of
value 345 which is highlighted in the figure.
The least significant four bitmap vectors
(B0-B3) are BCD representation of least
significant digit of the attribute value.

Fig 10. Four bitmap vectors

The middle four vectors (B4-B7) are BCD
representation of middle digit. The most
significant four bitmap vectors BCD

Database Systems Journal vol. III, no. 4/2012 57

representation of the most significant

Fig 11. Binary Encoding vs.
Multicomponent Encoding

digit of the attribute value. Based on the
values of query condition the corresponding
bitmap vectors are scanned based on their
weights. The retrieval functions fm for digits
between 0 to 9 is given :
F0 =BBn

’ . B n+1
’. Bn+2

’. Bn+3
’ ;

F1=BBn
.Bn+1B

’.BBn+2
’.Bn+3B ’;

F2= BBn
’ . B n+1

. Bn+2
’ ;

F3=BBn
 . B n+1

. Bn+2
’ ;

F4=BBn
’ . B n+1

’. Bn+2 ;

F5=BBn
 . B n+1

’. Bn+2 ;

F6= BBn
’ . B n+1

. Bn+2 ;

F7=BBn
. B n+1

. Bn+2
 ;

F8=BBn
’. Bn+1

B

’.BBn+2
’.Bn+3B ;

F9=BBn
 . B n+1

’. Bn+2
’. Bn+3;

Where the n can take values 0, 4 and 9.
Consider for instance the Query condition
A=345. The multi-component encoding
scheme B0, B1 and B2 are scanned for digit
5, B4 B5 and B6 are scanned for digit 4 and
B8, B9 and B10 are scanned for digit 3.
Thus we see that less bitmap vectors are
scanned as compared to all bitmap scans in
case of binary encoding.
1. Binary Encoding
 Case of equality queries(A=345) :-
 TIME:10(B) bitmaps
needs to be scanned

 SPACE: 10(B) bitmaps are formed.
 Case of Range queries(A<=345):-
TIME: 10(B) bitmaps need to be scanned.
 SPACE: 10 bitmaps

2. Multi-component encoding:
 Case of Equality queries(A=345):-
 TIME: 9 bitmap need to be
scanned.
SPACE:12 bitmaps are formed.
Case of Range queries(A<=345):-
TIME:9 bitmaps need to
be scanned.
SPACE:12 bitmaps.
From the above we analyze that our
proposed multi-component indexing
technique uses more space than the binary
encoded index. However it accesses lesser
bitmaps to answer the query Therefore it is
possible that that the multi-component index
may actually require less I/O time than a
binary encoded index. For the given set of
attribute values the comparison between no.
of scans for different conditions of range
queries is given in Figure 11.
A multi-component encoding is usually
constructed with some user input
parameters. For example if a user chooses
the number of components, then it is
possible to automatically decide the size of
each component to minimize the number of
bitmaps generated. For instance ,if a user
specified to use a two component encoding
for attribute cardinality of 100 ,then each
component of size 10 is a good option . An
alternative to fixing the number of
components is fixing the base size of each
component and use as many components as
necessary to represent all the attribute
values.

• Analytical model.
Let B denote the cardinality of the attribute.
For a given attribute value ai the multi-
component encoding decomposes i into a
set of integers(i1, i2, i3,…ik). LetC1, C2…CK
denote the sizes of a k-component encoding
basis sizes. Using BCD encoding, each
component has 4 bitmaps. Thus The total
number of bitmaps is DE=4k .Based on the
above assumptions we have developed an

58 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

analytical model for size and time
comparison of two encoding schemes.
Equations 5 and 6 represent index size and
number of scans in binary encoding and
equations 7 and 8 for size and number of
scans in multi-component encoding scheme
for range queries
Space= log2B 5)
No. of scans= log2B 6)
Space= 4k 7)
4k>=No. of scans>=k[(k√B)/2 -2] 8)

Thus we conclude that a multi-component
index with a base size greater than 2 uses
more space than the binary encoded index,
however, it may only accesses some of the
bitmaps in order to answer a query. Figure
12 and Figure 13 shows the graph between
cardinality verses size and the graph
between cardinality and number of scans
for the binary encoding and our proposed
multi-component encoding. The dark shaded
portion of bar representing multi-component
encoding in Figure 12 tells us about the
range over which it may vary compared to
Binary encoding. For cardinality B=100,a
binary encoding requires seven bitmaps to
be scanned whereas our multi-component
encoding may require between six(three
bitmaps for each digit) and eight(four
bitmaps for each digit). Number of scans as
per equation 8) will be between 8(4k) and
6

(k[(k√B)/2 -2]). Therefore, it is possible

Fig 12. Cardinality vs. Size

that a multi-component index may actually
require less I/O time than a Binary encoded
index.

Fig 13. Cardinality vs. Size

Conclusion
The ability to extract data to answer
complex, iterative, and ad hoc queries
quickly is a critical issue for data warehouse
applications. A good indexing technique is
reduce I/O intensive table accesses against

Database Systems Journal vol. III, no. 4/2012 59

large data warehouse tables. The challenge
is to find an appropriate index type that
would improve the queries’ performance.
Various Bitmap indexes have been
demonstrated to significantly speed up
searching operations in Data warehousing
and On-Line Analytical Processing. All
encoding methods proposed in the past can
be categorized as either a Multi-component
encoding or Multilevel-encoding. In this
paper we have present novel variations in
the class of Multi-level and Multi-
component indexes and find that they
answer range queries faster than some of the
existing multi-level and multi-component
indexes. We have formed an analytical
model to predict the index size and access
time of these encoding schemes for worst
case scenario. The main contribution of this
paper is the development of equations that
predict the index size and number of scans
which is a measure of I/O operations. Future
work may include conducting a
experimental evaluation of these two
proposed encoding schemes on real
application data.

References:

[1] Surajit Chaudhuri and Umeshwar Dayal.
An Overview of Data Warehousing and
OLAP Technology. In Proc. ACM
SIGMOD Conf.1997, Pages 65-74.
[2] C.Y. Chan and Y.E. Ioannidis. An
Efficient Bitmap Encoding Scheme for
Selection Queries. Computer Sciences
Department, University of Wisconsin-
Madison,1998. http:/
/www.cs.wisc.edu/Ncychan/interval.ps
[3] Patrick O'Neil and Dallan Quass.
Improved-Query-Performance with
Variant Indexes. In Proc. ACM SIGMOD
Conf. 1997, Pages 38-49.

Bitmap Indexes. Lawrence Berkeley
National Laboratory, June 11, 2007.

[4] P. O’Neil and G. Graefe. Multi-Table
Joins Through Bitmapped Join Indices.

ACM SIGMOD Record, pages 8-11,
September 1995.
[5] Morteza Z,Somnuk P.,Su-Cheng Haw.
An adequate Design for Large Data
Warehouse Systems: Bitmap index versus
B-tree index. International Journal of
Computers and Communications, Issue 2,
Volume 2,2008.
[6] Stockinger, K and Wu, K. 2006. Bitmap
Indicies for Data Warehouses. Idea Group,
Inc., Chapter VII,179-202.LBNL-59952.
[7] J. Winchell. Rushmore’s Bald Spot.
DBMS, 4(10):58, September 1991.
[8] O'Neil, P. Model 204 Architecture and
Performance. Workshop in High Performanc
Transaction Systems, Asilomar, California,
USA. Springer-Verlag.1987.
[9] Wu, K., & Otoo, E.J., & Shoshani, A.
(2004). On the Performance of Bitmap
Indices for High Cardinality Attributes.
International Conference on VLDB,Toronto,
Canada. Morgan Kaufmann.
[10] O’Neil.,E., O’Neil,P., and Wu.K.,
Bitmap index design choices and their
performance impli-cations, Database
Engineering and Applications Symposium.
IDEAS 2007. 11th International, pp. 72-84.
[11] Kesheng Wu, Ekow J. Otoo, and Arie
Shoshani. A performance comparison of
bitmap indexes. In CIKM, pages 559–561.
ACM, 2001.
[12] Kesheng Wu, Arie Shoshani, Kurt
Stockinger. (2010) Analyses of Multi-
Component Compressed Bitmap
Indexes.ACM Transactions on Database
Systems Vol . 35,No.1. Article2.
[13] Kesheng Wu, Kurt Stockinger and Arie
Shoshani. Performance of Multi-Level and
Multi – Component Compressed

[14] Kesheng Wu, Ekow Otoo, and Arie
Shoshani. Compressing bitmap indexes for
faster search operations. In SSDBM’02,
pages 99–108, Edinburgh, Scotland, 2002.
LBNL-49627.

http://www.cs.wisc.edu/Ncychan/interval.ps
http://www.cs.wisc.edu/Ncychan/interval.ps

60 Multi-level and Multi-component Bitmap Encoding for
Efficient Search Operations

[15] Kesheng Wu, Ekow J. Otoo, and Arie
Shoshani. Compressed bitmap indices for
efficient query processing. Technical Report
LBNL-47807, Lawrence Berkeley National
Laboratory, Berkeley, CA, 2001.
[16] G. Antoshenkov. Byte-aligned bitmap
compression. Technical report, Oracle
Corp., 1994
[17] K.-L.Wu and P. Yu. Range-based
bitmap indexing for high cardinality
attributes with skew. Technical Report RC
20449, IBM Watson Research Division,
Yorktown Heights, New York, May 1996

[18] Doron Rotem, Kurt Stockinger,
Kesheng Wu. Optimizing I/O Costs of
Multi-dimensional Queries using Bitmap
Indices. DEXA 2005,220-229.
[19] Doron Rotem, Kurt Stockinger, and
KeshengWu. Optimizing candidate check
costs for bitmap indices.In CIKM 2005.
ACM Press.
[20] Wu.K.,Otoo,E.,and hoshani, A.2006.
Optimizing bitmap indices with efficient
compression. ACM Trans. Datab. Syst
31,1-38

