
Database Systems Journal vol. 1, no. 1/2010 27

Solutions for improving data extraction from virtual data warehouses

Adela BÂRA
Economic Informatics Department, Academy of Economic Studies

Bucharest, ROMANIA

bara.adela@ie.ase.ro

Abstract: The data warehousing project’s team is always confronted with low performance in

data extraction. In a Business Intelligence environment this problem can be critical because the

data displayed are no longer available for taking decisions, so the project can be compromised.

In this case there are several techniques that can be applied to reduce queries’ execution time

and to improve the performance of the BI analyses and reports. Some of the techniques that can

be applied to reduce the cost of execution for improving query performance in BI systems will be

presented in this paper.

Keywords: Virtual data warehouse, Data extraction, SQL tuning, Query performance

Introduction
The Business Intelligence (BI)

systems manipulate data from various

organizational sources like files, databases,

applications or from the Enterprise Resource

Planning (ERP) systems. Usually, data from

these sources is extracted, transformed and

loaded into a primary target area, called

staging area which is managed by a

relational database management system.

Then, in order to build analytical reports

needed in a BI environment, a second ETL

(extract, transform and load) process is

applied to load data into a data warehouse

(DW). There are two ways to implement a

DW: to store data in a separate repository

which is the traditional method and to

extract data directly from the relational

database which manages the staging

repository. The last solution is usually

applied if the ERP system is not yet fully

implemented and the amount of data is not

as huge as the queries can be run in a

reasonable time (less than 30 minutes). The

implementation of a virtual data warehouse

is fastest and requires a low budget then a

traditional data warehouse. Also this method

can be applied in a prototyping phase but

after the validation of the main

functionalities, data can be extracted and

loaded into a traditional data warehouse. It’s

a very good practice to use the staging area

already build for the second ETL process to

load data into the data warehouse.
This paper presents some aspects of the

implementation of a virtual data warehouse

in a national company where an ERP was

recently setup and a set of BI reports must

be developed quickly. Based on a set of

views that collects data from the ERP

system, a virtual data warehouse based on an

ETL process was designed. The database

management system (DBMS) is Oracle

Database 10g Release 2 and the reports were

developed in Oracle Business Intelligence

Suite (OBI). After the development of the

analytical BI reports, the project team run

several tests in a real organizational

environment and measured the performance

of the system. The main problem was the

high cost of execution. These reports were

over 80% resource consuming of the total

resources allocated for the ERP and BI

systems. Also, the critical moment when the

system was breaking down was at the end of

the month when all transactions from

functional modules were posted to the

General Ledger module. After testing all

parameters and factors, the team concluded

that the major problem was in the data

extraction from the relational database. So,

in order to improve the query performance,

some of the main optimization techniques

are considered.

1

28 Solutions for improving data extraction from virtual data warehouses

2 An overview of the SQL execution
process

The query performance depends on one

side on the technology and the DBMS that

are used and on the other side on the way

queries are executed and data are processed.

So, first let’s take a look on the way Oracle

Database manages the queries. There are

two memory structures which are

responsible with SQL processing: the

System Global Area (SGA) - a shared

memory area that contains data and control

information for the instance and the Program

Global Area (PGA) - a private memory

region containing data and control

information for each server process.

The main component in the SGA that

affect query optimization process is the

Shared pool area which caches various SQL

constructs that can be shared among users

and contains shared SQL areas, the data

dictionary cache, and the fully parsed or

compiled representations of PL/SQL blocks.

A single shared SQL area is used by

multiple users that issue the same SQL

statement. The size of the shared pool

affects the number of disk reads. When a

SQL statement is executed, the server

process checks the dictionary cache for

information on object ownership, location,

and privileges and if it is not present, this

information is loaded into the dictionary

cache through a disk read. The disk reads

and parsing are expensive operations; so it is

preferable that repeated executions of the

same statement find required information in

memory, but this process require a large

amount of memory. So in conclusion, the

size of the shared pool leads to better SQL

management by reducing disk reads, shared

SQL queries, reducing hard paring and

saving CPU resources and improving

scalability.

The PGA is a non-shared memory area

that is allocated for each server process that

can read and write to it. The Oracle

Database allocates a PGA when a user

connects to an Oracle database. So, a PGA

area contains the information about: the user

session that initiated it, the cursor that is

executed in the PGA and the SQL work

areas. The main components which affect

the query execution are the SQL work areas.

A SQL query is executed in a SQL work

area based on an execution plan and

algorithm: hash, sort, merge. Thus, the SQL

work area allocates a hash area or a sort area

or a merge area in which the query is

executed. These algorithms are applied

depending on the SQL operators, for

example a sort operator uses a work area

called the sort area to perform the in-

memory sort of a set of rows. A hash-join

operator uses a work area called the hash

area to build a hash table from its left input.

If the amount of data to be processed by

these two operators does not fit into a work

area, then the input data is divided into

smaller pieces. This allows some data pieces

to be processed in memory while the rest are

spilled to temporary disk storage to be

processed later. But the response time

increases and it affects the query

performance. The size of a work area can be

controlled and tuned, but in general bigger

database areas can significantly improve the

performance of a particular operator at the

cost of higher memory consumption. The

best solution that can be applied is to use

Automated SQL Execution Memory (PGA)

Management which provides an automatic

mode for allocating memory for SQL

working. Thus the working areas that are

used by memory-intensive operators (sorts

and hash-joins) can be automatically and

dynamically adjusted. This feature of Oracle

Database offers several performance and

scalability benefits for analytical reports

workloads used in a BI environment or

mixed workloads with complex queries. The

overall system performance is maximized,

and the available memory is allocated more

efficiently among queries to optimize both

throughput and response time [1].

Another important component of the

Oracle Database is the Query optimizer that

creates the execution plan for a SQL

statement. The execution plan can greatly

affect the execution time of a SQL query

Database Systems Journal vol. 1, no. 1/2010 29

and it consists in a series of operations that

are performed in sequence to execute the

specified statement. The Query optimizer

considers many factors related to the objects

referenced and the conditions specified in

the statement such as: statistics gathered for

the system related to the I/O operations,

CPU resources and schema objects;

information in the data dictionary;

conditions in WHERE clause; execution

hints supplied by the developers. Based on

the evaluation of these factors the Query

optimizer decides which is the most efficient

path to access data and how to join tables

(full-scan, hash, sort, and merge algorithms).

In conclusion the execution plan contains all

information of a SQL statement execution

and in order to improve query performance

we have to analyze this plan and to try to

eliminate some of the factors that affect the

performance.

3 Optimization solutions
3.1. Materialized views
To reduce the multiple joins between

relational tables in a virtual data warehouse,

the first solution was to rewrite the views

and build materialized views and semi-

aggregate tables on the staging area. Data

sources are loaded in these tables by the

ETL (extract, transform and load) process

periodically, for example at the end of the

week or at the end of the month after posting

to the General Ledger. A benefit of this

solution is that it eliminates the joins from

the views and the ETL process can be used

to load data in a future data warehouse that

will be implemented after the prototype

validation.

After re-write the queries in terms of

materialized views, the project team re-test

the system under real conditions. The time

for data extraction was again too long and

the costs of executions consumed over 50%

of total resources. So, on these materialized

views and tables some of optimization

techniques must be applied. These

techniques are: table partitioning, indexing,

using hints and using analytical functions

instead of data aggregation in some reports.

3.2 Partitioning
The main objective of the partitioning

technique is to decrease the amount of disk

activity and limiting the amount of data to

be examined or operated on and enabling

parallel execution required to perform

queries against virtual data warehouses.

Tables are partitioning using a partitioning

key that is a set of columns which will

determine by their conditions in which

partition a given row will be store. Oracle

Database 10g on which our ERP is

implemented provides three techniques for

partitioning tables [1]:

• Range Partitioning - specify by a

range of values of the partitioning key;

• List Partitioning - specify by a list of

values of the partitioning key;

• Hash Partitioning - a hash algorithm

is applied to the partitioning key to

determine the partition for a given row;

Sub partitioning techniques can be

applied and first tables are partitioned by

range/list/hash and then each partition is

divided in sub partitions:

• Composite Range-Hash Partitioning

– a combination of Range and Hash

partitioning techniques, in which a table is

first range-partitioned, and then each

individual range-partition is further sub-

partitioned using the hash partitioning

technique;

• Composite Range-List Partitioning -

a combination of Range and List partitioning

techniques, in which a table is first range-

partitioned, and then each individual range-

partition is further sub-partitioned using the

list partitioning technique.

• Index-organized tables can be

partitioned by range, list, or hash.

In our case we consider evaluating each

type of partitioning technique and choose

the best method that can improve the

queries’ performance. Some of our research

can be found also in [2] and [3].

For the loading process we created two

tables based on the main table and compare

the execution cost obtained by applying the

same query on them. First table TEST_A

30 Solutions for improving data extraction from virtual data warehouses

contained un-partitioned data and is the

target table for an ETL process. It counts

100000 rows and the structure is shown

below in the scripts. The second table

TEST_B is a range partitioned table by

column T_DATE which refers to the date of

the transaction. This table has four partitions

as you can observe from the script below:

create table test_b

(T_DATE date not null,

 PERIOD varchar2(15) not null,

 DEBIT number,

 CREDIT number,
 ACCOUNT varchar2(25),

 DIVISION varchar2(50),

 SECTOR varchar2(100),
 UNIT varchar2(100))

partition by range (T_DATE)

(partition QT1 values less than

(to_date('01-APR-2009', 'dd-mon-

yyyy')),

partition QT2 values less than

(to_date('01-JUL-2009', 'dd-mon-

yyyy')),

partition QT3 values less than

(to_date('01-OCT-2009', 'dd-mon-

yyyy')),

partition QT4 values less than

(to_date('01-JAN-2010', 'dd-mon-

yyyy')));

Then, we create the third table which is

partitioned and that contained also for each

range partition four list partitions on the

column “Division” which is very much used

in data aggregation in our analytical reports.

The script is showed below:

create table TEST_C

(T_DATE date not null,

 PERIOD varchar2(15) not null,

 DEBIT number,

 CREDIT number,

 ACCOUNT varchar2(25),
 DIVISION varchar2(50),

 SECTOR varchar2(100),

 UNIT varchar2(100))

partition by range (T_DATE)

subpartition by list (DIVISION)

(partition QT1 values less than

(to_date('01-APR-2009', 'dd-mon-

yyyy'))

(subpartition QT1_OP values

('a.MTN','b.CTM','c.TRS','d.WOD','e.DM

A'),

 subpartition QT1_GA values ('f.GA

op','g.GA corp'),

 subpartition QT1_AFO values ('h.AFO

div','i.AFO corp'),

 subpartition QT1_EXT values

('j.EXT','k.Imp')),

partition QT2 values less than

(to_date('01-JUL-2009', 'dd-mon-

yyyy'))

(subpartition QT2_OP values

('a.MTN','b.CTM','c.TRS','d.WOD','e.DM
A'),

 subpartition QT2_GA values ('f.GA

op','g.GA corp'),

 subpartition QT2_AFO values ('h.AFO

div','i.AFO corp'),

 subpartition QT2_EXT values

('j.EXT','k.Imp')),

partition QT3 values less than

(to_date('01-OCT-2009', 'dd-mon-

yyyy'))

(subpartition QT3_OP values

('a.MTN','b.CTM','c.TRS','d.WOD','e.DM

A'),

 subpartition QT3_GA values ('f.GA

op','g.GA corp'),

 subpartition QT3_AFO values ('h.AFO

div','i.AFO corp'),

 subpartition QT3_EXT values

('j.EXT','k.Imp')),

partition QT4 values less than

(to_date('01-JAN-2010', 'dd-mon-

yyyy'))

(subpartition QT4_OP values

('a.MTN','b.CTM','c.TRS','d.WOD','e.DM

A'),

 subpartition QT4_GA values ('f.GA
op','g.GA corp'),

 subpartition QT4_AFO values ('h.AFO

div','i.AFO corp'),

 Subpartition QT4_EXT values

('j.EXT','k.Imp')));

After loading data in these two

partitioned tables we gather statistics with

the package DBMS_STATS. Analyzing the

decision support reports we choose a sub-set

of queries that are always performed and

which are relevant for testing the

optimization techniques. We run these

queries on each test table A, B and C and

compare the results in table 1.

In conclusion, the best technique in our

case is to use table C instead table A or table

B, that means that partitioning by range of

T_DATE and then partitioning by list of

DIVISION with type VARCHAR2 is the

most efficient method. Also, we obtained

better results with table B partitioned by

range of T_DATE than table A non-

partitioned.

Table 1 Comparative analysis results for simple queries

TABLE: TES TEST_B TEST_C

Database Systems Journal vol. 1, no. 1/2010 31

T_A
Partition range

by date on column

“T_DATE”

Partition range by date

with four list partions on column

“DIVISION”

QUERRY:

Not

partitioned

Wit

hout

partition

clause

Par

tition

(QT1)

Wit

hout

partition

clause

Par

tition

(QT1)

Su

b-partition

(QT1_AF

O)

Select * from

TEST_
170 184 - 346 - -

where extract

(month from T_date) =1;

183 197 91 357 172 172

… and

division='h.AFO divizii'

173 199 91 25 12 172

select sum(debit)

TD, sum(credit) TC from

test_

where extract (month from

t_date) =1

and division='h.AFO

divizii'

173 199 91 25 12 172

… and unit ='MTN' 173 199 91 350 172 172

Note: The grey marked ones have the best execution cost of the current query

3.3 Using hints and indexes
When a SQL statement is executed the

query optimizer determines the most

efficient execution plan after considering

many factors related to the objects

referenced and the conditions specified in

the query. The optimizer estimates the cost

of each potential execution plan based on

statistics in the data dictionary for the data

distribution and storage characteristics of

the tables, indexes, and partitions accessed

by the statement and it evaluates the

execution cost. This is an estimated value

depending on resources used to execute the

statement which includes I/O, CPU, and

memory [1]. This evaluation is an

important factor in the processing of any

SQL statement and can greatly affect

execution time.

We can override the execution plan of

the query optimizer with hints inserted in

SQL statement. A SQL statement can be

executed in many different ways, such as

full table scans, index scans, nested loops,

hash joins and sort merge joins. We can

set the parameters for query optimizer mode

depending on our goal. For BI systems, time

is one of the most important factor and we

should optimize a statement with the goal of

best response time. To set up the goal of the

query optimizer we can use one of the hints

that can override the OPTIMIZER_MODE

initialization parameter for a particular SQL

statement [1]. The optimizer first determines

whether joining two or more tables having

UNIQUE and PRIMARY KEY constraints

and places these tables first in the join order.

The optimizer then optimizes the join of the

remaining set of tables and determinates the

cost of a join depending on the following

methods:

• Hash joins are used for joining large

data sets and the tables are related with an

equality condition join. The optimizer uses

the smaller of two tables or data sources to

build a hash table on the join key in memory

and then it scans the larger table to find the

joined rows. This method is best used when

the smaller table fits in available memory.

The cost is then limited to a single read pass

over the data for the two tables.

32 Solutions for improving data extraction from virtual data warehouses

• Nested loop joins are useful when

small subsets of data are being joined and

if the join condition is an efficient way of

accessing the second table.

• Sort merge joins can be used to join

rows from two independent sources. Sort

merge joins can perform better than hash

joins if the row sources are sorted already

and a sort operation does not have to be done.

We compare these techniques using hints

in SELECT clause and based on the results in

table 2 we conclude that the Sort merge join is

the most efficient method when table are

indexed on the join column for each type of

table: non-partitioned, partitioned by range

and partitioned by range and sub partitioned

by list.

Table 2. Comparative analysis results using hints

TABLE: TEST_A TEST_B TEST_C
Partition range by

date on column

“T_DATE”

Partition range by date with

four list partions on column

“DIVISION”

QUERRY:

Not

partitioned

Withou

t partition

clause

Partitio

n (QT1)

Withou

t partition

clause

Partitio

n (QT1)

Sub-

partition

(QT1_AF

O)

select /*+ USE_HASH

(a u)*/ a.*,

u.location,u.country,

u.region

from TEST_t a

, d_units u

where a. unit=u. unit

and extract (month from

T_date) =1

176 182 95 294 152 152

… and a.division =

'h.AFO divizii'

175 181 94 28 19 150

…/*+ USE_NL (a u)*/ 281 287 151 170 18 171

…/*+ USE_NL (a u)*/

--WITH INDEXES

265 235 110 120 12 143

…/*+ USE_MERGE (a

u)*/

--WITH INDEXES

174 180 94 27 18 150

…and u. unit ='MTN' 174 180 94 151 19 150

…/*+ USE_NL (a u)*/ 174 180 94 21 18 150

…/*+ USE_NL (a u)*/

--WITH INDEXES

172 178 86 21 12 144

…/*+ USE_MERGE (a

u)*/

--WITH INDEXES

172 178 86 21 12 144

Database Systems Journal vol. 1, no. 1/2010 33

The significant improvement is in sub

partitioned table in which the cost of

execution was drastically reduce at only 12

points compared to 176 points of non-

partitioned table. Without indexes the most

efficient method is hash join with best results

in partitioned table and sub partitioned table.

3.3 Using analytical functions
In the latest versions in addition to

aggregate functions Oracle implemented

analytical functions to help developers

building decision support reports [1].

Aggregate functions applied on a set of

records return a single result row based on

groups of rows. Aggregate functions such as

SUM, AVG and COUNT can appear in

SELECT statement and they are commonly

used with the GROUP BY clauses. In this

case Oracle divides the set of records into

groups, specified in the GROUP BY clause.

Aggregate functions are used in analytic

reports to divide data in groups and analyze

these groups separately and for building

subtotals or totals based on groups. Analytic

functions process data based on a group of

records but they differ from aggregate

functions in that they return multiple rows for

each group. The group of rows is called a

window and is defined by the analytic clause.

For each row, a sliding window of rows is

defined and it determines the range of rows

used to process the current row. Window sizes

can be based on either a physical number of

rows or a logical interval, based on conditions

over values [4]

Analytic functions are performed after

completing operations such joins, WHERE,

GROUP BY and HAVING clauses, but before

ORDER BY clause. Therefore, analytic

functions can appear only in the select list or

ORDER BY clause [1].

Analytic functions are commonly used to

compute cumulative, moving and reporting

aggregates. The need for these analytical

functions is to provide the power of

comparative analyses in the BI reports and to

avoid using too much aggregate data from the

virtual data warehouse. Thus, we can apply

these functions to write simple queries

without grouping data like the following

example in which we can compare the amount

of current account with the average for three

consecutive months in the same division,

sector and management unit, back and

forward:
select period, division, sector,

unit, debit,
avg(debit) over (partition by

division, sector, unit

order by extract (month from
t_date)

range between 3 preceding and 3

following) avg_neighbours

from test_a

3.4. Object oriented implementation
A modern RDBMS environment, such as

Oracle Database 10g, supports the object type

concepts that can be used to specify the

multidimensional models (MD) constrains. An

object type differs from native SQL data types

in that it is user-defined, and it specifies both

the underlying persistent data (attributes) and

the related behaviours (methods).

The object type is an object layer that can

map the MD model over the database level,

but data is still stored in columns and tables.

Internally, statements about objects are still

basically statements about relational tables

and columns, and you can continue to work

with relational data types and store data in

relational tables. But we have the option to

take advantage of object-oriented features too.

Data persistency is assured by the object

tables, where each row of the table

corresponds to an instance of a class and the

table columns are the class’s attributes. Every

row object in an object table has an associated

logical object identifier. There can be use two

types of object identifiers: a unique system-

generated identifier of length 16 bytes for

each row object assigned by default by Oracle

in a hidden column, and primary-key based

identifiers specified by the user and in which

we have the advantage of enabling a more

34 Solutions for improving data extraction from virtual data warehouses

efficient and easier loading of the object table

[1].

The object oriented implementation can be

used to reduce the execution cost by avoid the

multiple joins between the fact and the

dimension tables. For exemplification we’ll

present here only the classes of management

unit dimension (table unit in our previous

examples) and the fact table – balance_R.

We’ll use a super type class to define the

management unit dimension. We’ll call it as

UnitSpace_OT. For hierarchical levels of the

dimension, as you can observe, there are two

major hierarchies:

• geographical locations

(H1): zone->region->country-

>location-> unit

• organizational and

management (H2): division-

>sector-> unit.

So, the final object in both hierarchies is

unit which will have two REFs, one for H1

and one for H2 hierarchies. The script is

shown below:

For the first hierarchy (H1):

create or replace type unitspace_ot as

object (unitspace_id number,

unitspace_desc varchar2 (50),

unitspace_type varchar2 (50)) not
instantiable not final;

create or replace type zone_o under

unitspace_ot (/*also add other

attributes and methods*/) not final;
create or replace type region_o under

unitspace_ot (zone ref zone_o /*also add
other attributes and methods*/) not
final;

create type country_o under

unitspace_ot (region ref region_o /*also

add other attributes and methods*/) not
final;

create type location_o under

unitspace_ot (country ref country_o

/*also add other attributes and
methods*/) not final;

The second hierarchy (H2):

create or replace type division_o

under unitspace_ot (/*also add other
attributes and methods*/) not final;

create type sector_o under

unitspace_ot (division ref division_o
/*also add other attributes and

methods*/) not final;

create or replace type unit_o under

unitspace_ot (sector ref sector_o,

location ref location_o /*also add other

attributes and methods*/) final;

The orders’ fact is implemented also as an

object type INSTANTIABLE and NOT

FINAL:

create or replace type balance_r as

object

(T_DATE date not null,

 PERIOD varchar2(15) not null,

 DEBIT number,

 CREDIT number,
 ACCOUNT varchar2(25),

 DIVISION varchar2(50),

 SECTOR varchar2(100),
 UNIT_ID varchar2(100)));

The methods of each MD object type are

implemented as object type bodies in

PL/SQL language that are similar with

package bodies. For example the unit_o

object type has the following body:

create or replace type body unit_o as
static function f_unit_stat(p_tab

varchar2,p_gf varchar2, p_col_gf

varchar2, p_col varchar2, p_val number)

return number as
 /* the function return the aggregate

statistics from fact tables for a

specific unit */

 v_tot number;
 text varchar2(255);

 begin

 text:= 'select '|| p_gf || '

('||p_col_gf||') from '||p_tab||' cd
where '||p_col||'= '||p_val;

 execute immediate text into v_tot;
 return v_tot;
 end f_unit_stat;

/*others functions or procedures*/

end;

/

We can use this function to get different

aggregate values for a specific unit, such as

the total amount of quantity per unit or the

average value per unit. Data persistency is

assured with object tables that will store the

instances of that object type, for example:

CREATE TABLE unit_t OF unit_o;

Database Systems Journal vol. 1, no. 1/2010 35

For example the static function f_unit_stat

from the unit_o class can be use to retrieve

the total debit value for each unit:

(1) select unit_id, description,

unit_o.f_unit_stat(‘balance_rt’, ‘SUM’,

‘debit’, ‘unit_id’, unit_id) total
from unit_t;

instead of using the join between the

unit_t and the balance_r tables:

(2) select t.unit_id, t.description,

SUM(debit) total_debit

from unit t, balance_r b

where t.unit_id=b.unit_id

We’ll use for testing two types of tables:

object tables (unit_t and balance_rt) and

relational tables (unit and balance_r). The

cardinality of these tables is about 100000

records in balance and about 100 in unit

tables.

We analyze the impact of calling the

function in the SQL query in different

situations, as we present in the following

table:

Table 3. The execution costs of the queries

No Query Cost
select unit_id, description, unit_o.f_unit_stat(‘balance_rt’, ‘SUM’,

‘debit’, ‘unit_id’, unit_id) total

from unit_t

35

select t.unit_id, t.description, SUM(debit) total

from unit t, balance_r b

where t.unit_id=b.unit_id

171

Example (1) with an index on unit_id on both object tables 30

Example (2) with an index on unit_id on both relational tables 171

Example (1) with an index on unit_id on both relational tables

with use_nl hint

79

We analyze the execution cost of the

function’s query, it has 35 units, but the SQL

Tuning Advisor makes a recommendation:

“consider collecting statistics for this table

and indices”. We used DBMS_STATS

package to collect statistics from both object

and relational tables. Then we re-run the

queries and observe the execution plans;

there is no change and the Tuning Advisor

doesn’t make any recommendation.

By introducing these types of functions we

have the following advantages:

• The function can be used in many

reports and queries with different types of

arguments, so the code is re-used and there is

no need to build another query for each

report;

• The amount of joins is reduced; the

functions avoid the joins by searching the

values in the fact table;

• Soft parsing is used for the function’s

query execution instead of hard parsing in the

case of another SQL query.

The main disadvantage of the model is

that the function needs to open a cursor to

execute the query which can lead to an

increase of PGA resources if the fact table is

too large. But the execution cost is

insignificant and does not require a full table

scan if an index is used on the corresponding

foreign key attribute.

Through an ETL (extract, transform and

load) process data is loaded into the object

tables from the transactional tables of the

ERP organizational system. This process can

be implemented also through object types’

methods or separately, as PL/SQL packages.

Our recommendation is that the ETL process

should be implemented separately from the

object oriented implementation in order to

assure the independency of the MD model.

36 Solutions for improving data extraction from virtual data warehouses

4 Conclusions
The virtual data warehouse is based on a

set of objects like views, packages and

program units that extracts, joins and

aggregates rows from the ERP system’s

database. In order to develop a BI system we

have to build analytical reports based on this

virtual data warehouse. But the performance

of the whole system can be affected by the

data extraction process which is the major

time and cost consuming job. A possible

solution is to apply the optimization

techniques that can improve the performance.

Some of these techniques are presented in this

paper. The results that we’ve obtained are

relevant for decreasing the execution cost.

Also, for developing BI reports an important

option is to choose analytic functions for

predictions, subtotals over current period,

classifications and ratings. Another issue

discussed was the OO implementation which

is very flexible and offer a very good

representation of the business aspects that are

essential for BI projects. Classes like

dimensions or fact tables can be implemented

together with the attributes and methods,

which can be a very good and efficient

practice concerning both the performance and

business modelling.

References

[1] Oracle Corporation - Database

Performance Tuning Guide 10g Release

2 (10.2), Part Number B14211-01, 2005

[2] Ion Lungu, Manole Velicanu, Adela

Bâra, Vlad Diaconita, Iuliana Botha –

Practices for designing and improving

data extraction in a virtual data

warehouses project, Proceedings of

ICCCC 2008, International conference

on computers, communications and

control, Baile Felix, Oradea, Romania,

15-17 May 2008, pag 369-375,

published in International Journal of

Computers, Communications and

Control, volume 3, 2008, ISSN 1841-

9836

[3] Adela Bâra, Ion Lungu, Manole

Velicanu, Vlad Diaconiţa, Iuliana Botha

– Improving query performance in

virtual data warehouses, WSEAS

TRANSACTIONS ON

INFORMATION SCIENCE AND

APPLICATIONS, May 2008, ISSN:

1790-0832

[4] Ion Lungu, Adela Bara, Anca Fodor -

Business Intelligence tools for building

the Executive Information Systems,

5thRoEduNet International Conference,

Lucian Blaga University, Sibiu, June

2006

[5] Donald K. Burleson, Oracle Tuning,

ISBN 0-9744486-2-1, 2006

