
Database Systems Journal vol. II, no. 2/2011 45

Considerations Regarding Designing and Administrating SOA Solutions

Vlad DIACONITA
The Bucharest Academy of Economic Studies

diaconita.vlad@ie.ase.ro

Solutions like SOA, Cloud, SaaS, Iaas or PaaS are not only buzzwords, they became a
business reality because they are relative cheap and easy to use. SOA and Cloud are tightly
linked because most cloud solutions are being defined using SOA making them feasible from
the business perspective, because it’s hard to move to cloud when you are using a tightly
coupled architecture. Big companies such as Oracle, Microsoft, IBM or Amazon offer many
commercial solutions providing software as a service, as well as hosted and managed
alternatives to classical deployment. For firms that are building private clouds and for
service providers that are building public clouds, diverse solutions are offered by the big
players for platform as a service and infrastructure as a service.
Keywords: SOA, web services, modeling, cloud

Introduction
From an evolution perspective, some
authors say ([1], [4]) that the last decade is
marked by the development of SOA and
cloud computing. The main characteristic
of SOA is the ability to be reused in
various applications, using service
communication by sending information in
a loose coupled environment [5]. The idea
of exposing resources as web services,
making them accessible is older but
building the components, tools and
infrastructure to accomplish this was the
problem. Development of virtualization in
organizational environment allowed
hooking up applications with various
operating systems, enhancing the
portability. Like shown in [6], moving
towards implementing Web applications
that consume a large variety of Web
services is the current hype in application
space and the mobile application market is
searching for solutions to empower mobile
devices with Web services integration
while minimizing the existing performance
issues. By using service-oriented
strategies, companies even starting with
few resources can run their businesses
entirely using cloud. For example, as part
of Amazon’s AWS Relational Database

Service (RDS) someone can rent an Oracle
database license if they don’t have it on
their own. This starts at 16 cents an hour
for a small instance going up to $3.96 for a
quadruple extra large. The price includes
the software, the hardware resources and
Amazon's RDS management capabilities
[9].

Cloud and SOA
Researchers are trying to bring

SOA, web services and cloud services
under a common terminology and
approach.

Gartner defines cloud computing as
a style of computing in which scalable and
elastic IT-enabled capabilities are
delivered as a service to external customers
using Internet technologies. This is a slight
revision of Gartner's original definition
published in 2008. Gartner has removed
massively scalable and replaced it with
scalable and elastic as an indicator that the
important characteristic of scale is the
ability to scale up and down, not just to
massive size. The five attributes of cloud
computing are: service-based, scalable and
elastic, shared, metered by used, uses
internet technology [16].

46 Considerations regarding designing and administrating SOA solutions

SOA is providing the architecture,
governance and orchestration for services
to be delivered using cloud mechanisms,
both internally and externally across the
Internet.

An author that wrote many books
on SOA, Dave Linthicum has shown that
cloud computing should be a logical
extension of SOA best practices [14].

As explained in Thomas ERL’
latest book [13], the rise of cloud
computing put SOA back in the spotlight,
even organizations that shunned SOA now
have one. It’s called the cloud. He also
renamed his online publication, formerly
called SOA Magazine, as Service
Technology Magazine:

 The SOA Magazine has been
renamed to the Service Technology
Magazine. Articles will of course continue
to be focused on service-oriented
architecture and service-orientation, but
will also address topics related to service
technology innovations, such as those
fostered by the on-going emergence of
cloud computing platforms. I’d like to
invite you all to contribute your expertise
as we continue to explore how this new
generation of architectural models,
paradigms, and technologies is changing
the way we view and leverage IT [15].

So, we can consider service
technology as the common identifier.

Defining SOA
There are many definitions of SOA

targeted to different audiences (managers,
designers, programmers, sales persons etc).

When an enterprise level SOA
application is being developed, many
people are involved, some of whom are
end-user developers. For example,
business process experts know about the
business context but may not necessarily
be professional programmers, and are often
responsible for identifying and selecting
which services will be used ([2],[3]).

Executives are increasingly
frustrated with their inability to quickly
access the information needed to make

better decisions and to optimize their
business [10]. To them, SOA can be
showed as a set of services that can be
exposed to customers, partners, and
between the different departments of the
enterprise. These services can be combined
and recombined to serve the needs of the
business. Applications serve the business
because they are composed of services that
can be quickly modified or redeployed in
new business contexts, allowing the
business to quickly respond to changing
customer needs, business opportunities,
and market conditions.

To an IT designer, SOA is the
architectural solution for integrating
diverse systems by providing an
architectural style that promotes loose
coupling and reuse.

To a programmer, SOA is a model
where web services and contracts are used
for interoperability. The web services, used
as part of SOA, facilitate communication
using messages, without detailed
knowledge of each other’s IT systems.

The term service orientation is
often seen as identical to SOA but some
authors [1] consider it broader and
represent a way of thinking about services
in the context of business and IT.

Like shown in [7] and [8], web
services are self contained, modular
business applications that have open,
Internet-oriented, standards-based
interfaces. They allow flexible and
dynamic software integration that is often
referred to as the Find-Bind-Execute
paradigm. Using standard Internet
technology, Web services facilitate cross-
organizational transactions and thus
outsourcing of software functionality to
external service providers. Thus, service-
oriented computing requires an
infrastructure that provides a mechanism
for coordination between service
requesters and providers. Three main
technologies are currently used to
implement Web services: SOAP, WSDL
and UDDI.

Database Systems Journal vol. II, no. 2/2011 47

Everware-CBDI, a global
technology consulting company sees
Service Oriented Architecture (SOA) as
the principles, patterns and policies that
enable application functionality to be
provided and requested as services
published at a granularity relevant to the
Service Consumer, which are abstracted
away from the implementation using a
single, standards-based form of interface.
The evolution of the implementation
strategies is offering services in SOA in the
CLOUD. SOA should provide reference

architecture for service classification,
policy implementation and governance,
contracts, determining sharing and
generalization at many levels.

SOA can also be seen as a
collection of services, classified into types,
arranged into layers and governed by
architectural patterns and policies as shown
in figure 1.

Figure 7. The service arhitecture, source: http://everware-cbdi.com/cbdi-forum

Modeling SOA Infrastructure
A SOA infrastructure can be

divided into three categories: consumer,
functional, and operational to provide an
abstraction that can be used and reused
across an organization. Infrastructure
architects can use this model as a basis for
determining the necessary software
products or technologies necessary to
provision that building block.

The consumer access component
includes the infrastructure needed by the

people to access the services, including:
browsers, data channels and portals.

Internet browsers are used to
expose functionality using a Web interface
rendered on a user’s browser.

A data channel is where consumers
can provide or consume large amounts of
data. The movement of bulk data over
networks addresses raw unstructured data,
structured data, images, and any large data
that requires high performance. The
infrastructure provides a software-based
mechanism designed to move large data
files using compression, blocking, and

48 Considerations regarding designing and administrating SOA solutions

buffering methods to optimize transfer
times. Infrastructure architectures need to
determine whether there are business needs
for such a bulk data transfer component
and provision accordingly.

A Web portal presents information
from diverse sources in a unified way. The
ESB makes possible the communication
between service requestors and service
providers. It enables the substitution of
service providers or implementations
transparent to service requesters. The ESB
usually many ways to attach requesters and
providers, and it allows intermediary
services to be sequenced between them.
The ESB can also supply an extensive set
of capabilities dependent on business needs
and implementation in areas like
integration, communications, security,
signal processing, QOS and service
management.

In SOA, the integrations are pushed
outward, toward the applications
themselves, leaving the bus to speak a
standardized language [11]. Like modeled

in figure 2, an ESB is a connectivity
infrastructure for integrating applications
and services, while EAI focuses on the
applications integration. ESB infrastructure
does more than integration because it
performs routing of messages between
services, converts transport protocols
between consumers and providers,
transforms message formats between
requesters and providers, and distributes
business events from disparate sources.
ESB is the central integration backbone
fulfilling the various integration patterns.
Enterprise service bus, being the essential
and core infrastructure for application
integration, ought to be versatile, adaptive,
high-performing and assuring, highly
available and scalable. In order to
accomplish the much-acclaimed process
integration, service orchestration capability
has to be bestowed with ESBs. The
importance of orchestration as a shared
component gives ESBs the flexibility and
the power towards the success demanded
and desired.

Figure 8. ESB communication

Although EAI solutions can address

all of these aspects, integration
technologies are usually much more
narrowly focused. ESB handles a variety of

Database Systems Journal vol. II, no. 2/2011 49

interaction patterns, including events. ESB
requires management such that the status
of a business transaction can be assessed.
Although the ESB will not be the only
technology to assist in business activity
management, it will be a part. ESB product
technologies will be federated such that
various technologies (e.g., gateways and
appliances) can be used to fulfill a single
purpose and provide a single interface to
applications. Diverse platforms can be
supported allowing different ESB
technologies to operate as a single logical
one. Even if both EAI and ESB can use
web services, the latter takes more
advantage of the technology and also
promotes greater levels of modularity and
decoupling of the infrastructure using
services. ESBs use registries to assist with
locating services, while EAI infrastructures
often couple the requester and provider.

From a physical point of view,
SOA architecture is very similar to the
3tier web one, the logic is on a server

where it is divided into several units.
Differences arise from the criteria for
sharing the logic, the place where logical
units exist and how they interact. In Web
architecture there are components that are
designed with different levels of
functionality and granularity and some
emphasis is put on reusing them.

SOA is based on components,
modeling takes account of the creation of
services that will encapsulate some of the
components or all components. The
encapsulation of service logic is used to
provide interface functions using an open,
independent of the technologies used to
implement logic. Properly designed,
loosely coupled services can easily be
combined, aggregated and reused, hence
resulting in high scalability SOA solutions.
In figure 3 it’s presented an endpoint from
which 3 different web services can be
called, separately or they can be
aggregated [17].

Figure 9. Calling web services

50 Considerations regarding designing and administrating SOA solutions

The result of calling a web service,
inregAnlOca in this case, is in the form of
a XML document.

<?xml version="1.0"
encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://schemas.xmlsoa
p.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/200
1/XMLSchema"
xmlns:xsi="http://www.w3.org/200
1/XMLSchema-instance"
xmlns:ns0="http://dbconnection1/
OrdinNou.wsdl/types/"><env:Body
><ns0:inregAnlOcaResponseElem
ent><ns0:result>I-It is confirmed
the anulment of the 4328884 order,
quantity
500</ns0:result></ns0:inregAnlO
caResponseElement></env:Body>
</env:Envelope>

SOA projects are of different sizes

and not all of them require service
modeling. SOA projects whose goals
include engineering business applications
that are built to change service modeling
requirements. Some say that new modeling
techniques are not required because
nothing fundamental is changed. Others
say that classic Agile methods or object
development methods provide insufficient
guidance for SOA projects [1]. Agile
methods focus on iterative development,
allowing requirements and the solution to
grow by collaboration using cross-
functional teams including various
stakeholders. Object methodologies focus
on object modeling and object
technologies. In both methods, which
represent best practices in system
development methods, the focus on service
development is absent, mainly because this

wasn’t popular at the time of these
methods development. Organizations
developing SOA will need to improve
these methods to identify and build
reusable, reconfigurable, and flexible
services by identification, specification,
and realization of these constructs:
business processes, services, components,
information, rules and policies.

Models help people to deal with
complexity by representing complex things
at a higher level of abstraction. SOA can
help to elevate the level of abstraction by
separating the provider from the consumer
of the service. The service model identifies
the business processes that uses services or
identifies the services and the components
that recognize the business functionality.
Service modeling, as an iterative and
business centric process, should focuses on
the set of business capabilities and related
IT functionality as a set of services, the
components that implement them, and the
processes that invoke them or put the
services together into a composite service
or application, should be seen as a whole
and address the modeling of activities or
flows, services, and their components.
Modeling is an iterative and business
centric process. A service needs to be
modeled from a business and a runtime
perspective such that the service fulfills a
part of a business process that can be
shared and reused.

Like shown in [12], services should
be defined and described top-down at
enterprise level in Service Oriented
Enterprise (SOE). From a functional
decomposition of well defined business
functionality the business functions can be
identified. These business functions can be
decomposed in lower level services. As
shown in [18], business logic is the
defining element for a business being in
the process of modeling and automation,
and it includes both business rules and
workflow (process), which describes the
transfer of documents or data from one
participant (person or software system) to
another. Business Rules refers to the

Database Systems Journal vol. II, no. 2/2011 51

multitude of policies, procedures or
definitions that govern how an
organization works together with its
interaction with customers or partners.
These may be external rules, coming from
legal regulations that must be observed by
all organizations acting in a certain field,
or internal rules which define the
organization’s business politics and aim to
ensure competitive advantages in the
market. Starting from the previous
observations, it is obvious the important
role that business rules play within the
development process of a software system.
Top-down domain decomposition using
process modeling and decomposition,
variation-oriented analysis, policy and
business rules analysis, and domain
specific behavior modeling should be done
in parallel with a bottom-up analysis of
existing legacy assets that are candidates
for componentization (modularization) and
service exposure [12].

In SOA, the system operates as a
collection of services and each service may
interact with various other services to
accomplish a certain task. The operation of
one service might be a combination of
several low level functions. In that case,
these low level functions are not
considered services.

Most web services are based on
document type messages that are designed
to be as independent as possible. Using
SOAP headers, the actual messages may
be accompanied by a wide range of
metadata, and general processing
instructions.

Processing is distributed; each
service has a specific functional border and
specific resource requirements.
Communication between the supplier and
the consumer of services can be
synchronous or asynchronous, can use
templates and a large part of the business
logic is contained in the messages.

Information processing is
accomplished at the application server
and/or database level. Communication in
classical architecture is achieved using

protocols such as TCP/IP, DCOM
(Distributed Component Object Model) or
CORBA (Common Object Request Broker
Architecture), protocols which have
reached maturity. The first service-oriented
architecture for many people in the past
was with the use DCOM or Object Request
Brokers (ORBs) based on the CORBA
specification. Nowadays SOA is based on
communications using services which
imply: serialization, de-serialization and
transmission of SOAP messages
containing XML documents. Operations
that are executed include: conversion of
data from relational databases in XML,
XML document validation, document
transmission and retrieval of information
needed by the recipient. Although progress
has been made for SOAP classical
communications, Remote Procedure Call
(RPC) are faster. A SOAP-based
communications network facilitates the
creation of services that can communicate
according to various templates. Even if the
synchronous communications is well
implemented, asynchronous
communications is encouraged to optimize
processing and communications. WS-*
specifications can be used, especially WS-
BPEL.

The technologies used on the
Internet have undergone many changes and
improvements but remained basically the
same: HTTP, HTML or XML. If in
traditional web architectures, web services
use XML messages are optional, if modern
implementations of SOA are almost
mandatory.

When the logic of a system is
divided and distributed, the
implementation of security measures such
as authentication and authorization is not
as straightforward as it was in client-server
architecture. Information travels through
multiple servers (bumps) and it is often
necessary at least to encrypt it or at least
the sensitive information: password, bank
account, etc. SOA brings some changes to
this model, being based on the WS-
Security which puts the logic of security-

52 Considerations regarding designing and administrating SOA solutions

related messages. In SOAP messages, the
header may store security related
information will be accompany the
messages. This approach is necessary to
maintain autonomy and loose coupling
between services.

Conclusion
Although at first glance SOA

administration may seem simple, things
usually develop to a point where services
are highly aggregated and reused and the
administration becomes difficult. Then it is
necessary to use stronger service agents or
private service agents. When we have an
application that includes various
components, management is not easy, the
following have to be monitored: the
connections, the instances, the problems
with the connections, the resources

employed and the tasks related to database
administration. The clients connect at first
at first to the web server which interacts
with the application server, so it is
important to carefully administer it to
ensure scalability. Most application servers
and database management systems provide
mature interfaces that can be accessed with
a web browser. In SOA solutions,
additional problems may arise with regard
to communications using SOAP messages.
Management errors can be done using the
exception mechanism provided by
different WS-* extensions. A good strategy
to encourage the reuse and aggregation of
an internal solution is to create a private
agent service. UDDI can be used to
standardize the interface of the agent
services and so the system services can be
easily discovered.

References

[1] Kerrie Holley, Dr. Ali Arsanjani, 100
SOA Questions Asked and Answered,
Prentice Hall, ISBN 978-0-137-08020-5,
2010
[2] S.Y. Jeong, Y. Xie, J. Beaton, B.A.
Myers, J. Stylos, R. Ehret, J. Karstens, A.
Efeoglu, and D.K. Busse, Improving
Documentation for eSOA APIs through
User Studies, in Proc. IS-EUD, 2009,
pp.86-105.
[3] Thomas Erl, Service-Oriented
Architecture: Concepts, Technology, and
Design, Prentice Hall PTR, 2005, ISBN: 0-
13-185858-0
[4] Marinela Mircea, Marian Stoica, Cloud
Computing Solutions For Service Oriented
Organizations Management, Proceedings
of The Tenth International Conference on
Informatics in Economy IE 2011
[5] Mircea, M. ,Andreescu, A.I., Extending
SOA to Cloud Computing in Higher
Education, The 15th IBIMA conference on
Knowledge Management and Innovation:
A Business Competitive Edge Perspective,
Cairo, Egypt 6-7 November 2010.
Norristown: International Business
Information Management Association

[6] Alin COBÂRZAN, Consuming Web
Services on Mobile Platforms, Informatica
Economică vol. 14, no. 3/2010, ISSN
1453-1305
[7] S. Agarwal, S. Lamparter and R.
Studer, Making Web services tradable: A
policy-based approach for specifying
preferences on Web service properties,
Web Semantics: Science, Services and
Agents on the World Wide Web, Vol. 7,
No. 1, January 2009, pp. 11-20.
[8] Vlad DIACONIŢA, Hybrid Solution
for Integrated Trading, Informatica
Economică vol. 14, no. 2/2010, ISSN
1453-1305
[9] Maureen O'Gara, Oracle Goes to
Amazon, .NET Delopers Journal, Mai 2011
[10] Mario Godinez, Eberhard Hechler,
Klaus Koenig, Steve Lockwood, Martin
Oberhofer, Michael Schroeck The Art of
Enterprise Information Architecture: A
Systems-Based Approach for Unlocking
Business Insight, IBM Press, ISBN: 978-
0137035717, aprilie 2010
[11] Vlad Diaconita, Ion Lungu, Adela
Bara, Technical solutions for integrated
trading on spot, futures and bonds stock
markets (extended version), WSEAS
Transactions on Information Science and

Database Systems Journal vol. II, no. 2/2011 53

Applications Volume 6, Issue 5, 2009,
Pages 798-808 , ISSN: 1790-0832,
Indexed by Scopus, ACM
[12] http://www.enterprise-
architecture.info/EA_Services-Oriented-
Enterprise.htm
[13] Stephen Bennett, Thomas Erl, Clive
Gee, Robert Laird, Anne Thomas Manes,
Robert Schneider, Leo Shuster, Andre
Tost, Chris Venable, SOA Governance:
Governing Shared Services On-Premise &
in the Cloud, Prentice Hall/PearsonPTR,
Aprilie 2011
[14] David S. Linthicum, Cloud
Computing and SOA Convergence in Your
Enterprise: A Step-by-Step Guide,
Addison-Wesley Professional; 1 edition,
October 2009
[15] http://www.servicetechmag.com/,
ISSUE June 2011, Editorial
[16] Daryl C. Plummer, David Mitchell
Smith, Thomas J. Bittman, David W.
Cearley, David J. Cappuccio, Donna Scott,
Rakesh Kumar, Bruce Robertson, Five
Refining Attributes of Public and Private
Cloud Computing, May 2009

[17] Pethuru Cheliah, Empowering the
Discipline of Cloud Integration – Part II,
Service Technology Magazine Issue LI,
June 17, 2011
[18] Alexandra FLOREA, Anca
ANDREESCU, Vlad DIACONITA, Adina
UTA, Using SOA for achieving enterprise
interoperability, Proceedings of The Tenth
International Conference on Informatics in
Economy IE 2011

Vlad DIACONIŢA is an Assistant Lecturer at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from the Academy of Economic
Studies of Bucharest. He has graduated the faculty at which he is now teaching in 2005 and
since 2010 holds a PhD in the field of Cybernetics and Statistics. He is the co-author of 2
books in the domain of economic informatics, 3 articles in ISI journals, 4 articles in Scopus
journals, 4 articles in ISI proceedings, 6 papers in B+ journals and 8 papers in the proceedings
of international conferences. He participated as team member in 3 research projects that have
been financed from national research programs. He is a member of the IEEE Computer

http://www.servicetechmag.com/

54 Considerations regarding designing and administrating SOA solutions

Society and the INFOREC professional association. Domains of competence: Database
systems, Data warehouses, OLAP and Business Intelligence, Integrated Systems, SOA.

