
126 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

Comparation of the Performance of SQL and NoSQL Databases

in Modern Business Applications

Aniela BORCAN, Diana CAPTARI, Emanuela-Cristina CARP

Bucharest University of Economic Studies

Faculty of Cybernetics, Statistics and Economic Informatics

Bucharest, Romania

borcananiela20@stud.ase.ro, captaridiana20@stud.ase.ro, carpemanuela20@stud.ase.ro

Databases represent a fundamental element of modern business applications, directly

influencing performance, scalability, and data management. This article explores the

differences between SQL and NoSQL databases, analyzing the advantages and

disadvantages of each technology based on criteria of performance, consistency, and

specific applications. Databases are essential structures for storing and managing

information, having a major impact on the functioning of business applications. The choice

between a relational database (SQL) and a non-relational database (NoSQL) depends on

several factors, including the type of data being handled, scalability requirements, and the

data access model.

Keywords: SQL databases (Structured Query Language), NoSQL databases (Not Only

SQL), relational databases, SQL vs NoSQL, NoSQL usage, NoSQL performance, data

consistency, scalability.

Introduction

In the era of digitalization, the volume

of data generated by companies has

increased exponentially, necessitating the

use of efficient solutions for storing and

managing information. Databases have

evolved significantly from traditional

relational models to more flexible

alternatives, such as NoSQL databases.

This evolution has been driven by the

need for companies to manage

unstructured and semi-structured data, as

well as to support high performance and

scalability requirements [1].

The choice between a relational database

(SQL) and a non-relational database

(NoSQL) depends on several critical

factors, including:

• Type of data used;

• The complexity of the queries;

• The need for strict consistency;

• The requirements for horizontal or

vertical scalability.

SQL databases, based on the relational

model, offer well-defined structures and

support for ACID transactions

(Atomicity, Consistency, Isolation,

Durability), being widely used in critical

fields such as finance and healthcare [2].

On the other hand, NoSQL databases are

designed to handle large volumes of

distributed data and are used in scalable

web applications, Big Data analytics, and

recommendation systems.

The fundamentals of databases SQL

and NoSQL

SQL databases: Relational databases

(SQL) are structured on a tabular model,

using the SQL (Structured Query

Language) query language. SQL is a

language used for managing and

processing data in a relational database.

In a relational database, information is

organized in the form of tables, each

having rows and columns that represent

the attributes of the data and the

relationships between them. Through

SQL instructions, users can store, update,

delete, search, and extract data from the

database. At the same time, SQL allows

1

mailto:borcananiela20@stud.ase.ro
mailto:captaridiana20@stud.ase.ro
mailto:carpemanuela20@stud.ase.ro

Database Systems Journal vol. XVI/2025 127

for the administration and optimization of

database performance.

The SQL query language is essential due

to its universal use in various software

applications. Data analysts and

developers learn and adopt SQL due to its

excellent compatibility with multiple

programming languages. For example,

SQL queries can be integrated into

applications developed in programming

languages such as Java, contributing to

the creation of robust solutions for data

processing within large-scale relational

database systems like Oracle or MS SQL

Server.

SQL is also an accessible language,

considering that it uses familiar keywords

in English, thus facilitating its learning.

For example, the keyword "SELECT" is

used to extract data from a database,

"FROM" to specify the source table,

"WHERE" to apply filtering conditions,

and "ORDER BY" to organize the results

in a specific order [3].

NoSQL databases: The term "NoSQL"

refers to non-relational databases, which

use a data storage format different from

that of relational tables. However,

NoSQL databases can be queried through

APIs, using idiomatic languages,

declarative structured query languages, or

example-based query languages. For this

reason, these databases are often referred

to as "not only SQL."

NoSQL databases are widely used in

real-time web applications and Big Data

management, their main advantage being

the ability to provide superior scalability

and availability.

Additionally, NoSQL databases are

preferred by developers due to their

flexibility, being able to quickly adapt to

the ever-changing requirements of

projects. These databases allow for data

storage in a more intuitive and

understandable way, being closer to the

format in which they are used in

applications, which reduces the need for

additional transformations for storage or

retrieval through specific NoSQL APIs.

Moreover, NoSQL databases are

optimized to fully leverage cloud

infrastructure, ensuring continuous and

efficient operation [4].

When to choose a NoSQL database

Considering the necessity for companies

and organizations to innovate rapidly, the

ability to remain flexible and support

operations at any scale becomes essential.

NoSQL databases offer flexible schemas

and support a variety of data models,

making them ideal solutions for

developing applications that require

managing large volumes of data and low

latency or reduced response times, such

as web applications for online gaming

and e-commerce platforms [4].

When not to choose a NoSQL database

NoSQL databases are generally built on a

denormalized data model, supporting

applications that use a small number of

tables (or containers) and do not rely on

references to correlate data, but rather on

embedded records (or documents). Many

traditional back-office applications of

companies, such as finance, accounting,

and resource planning, rely on highly

normalized data to prevent anomalies and

data duplication. Generally, these

applications are not suitable for using a

NoSQL database.

Another important aspect of NoSQL

databases is the complexity of queries.

Although these databases work

excellently for simple queries involving a

single table, when the complexity of the

queries increases, relational databases

become a more suitable choice. NoSQL

databases usually do not offer advanced

functionalities for complex joins,

subqueries, or nesting queries in a

WHERE clause.

In certain cases, however, it is not

necessary to exclusively choose between

a relational database and a non-relational

one. In many situations, companies opt

for hybrid databases, which allow the

simultaneous use of relational and non-

relational data models. This approach

offers greater flexibility in managing

128 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

different types of data, while ensuring

read and write consistency without

compromising performance.

How does a NoSQL database work?

NoSQL databases use various data

models to manage and manipulate

information. These databases are

designed for applications that process

large amounts of data and require low

latency, as well as flexible data models.

This is achieved by relaxing the strict

data consistency requirements

characteristic of other types of databases.

To illustrate this, let's consider a simple

database model for managing books.

In a relational database, information

about a book is usually divided into

multiple tables (a process called

"normalization"), and the relationships

between them are established through

primary and foreign key constraints. For

example, a table named "Books" might

contain columns such as ISBN, Title, and

a foreign key referencing an "Authors"

table that contains columns like Author

Name and Author ID. The relational

model is created to ensure referential

integrity between tables, and the data is

normalized to reduce redundancy and to

be optimized for efficient storage.

In contrast, in a NoSQL database, a book

record is usually stored as a JSON

document. In this case, for each book,

information such as ISBN, Title, Edition

Number, Author's Name, and Author's ID

is stored together as attributes of a single

document. This model is optimized for

more intuitive development and

horizontal scalability, allowing for

efficient data management in a more

flexible manner [5].

Types of NoSQL databases

NoSQL databases are used in situations

where storing data in tables is not

optimal. They use various storage

formats, each with specific applications.

There are six main types of NoSQL

databases, each with distinct

characteristics.

• Key-value pair-based databases

These databases allow for high

separability and extensive horizontal

scalability, which is impossible to

achieve in a similar manner with

other types of databases. They are

ideal for applications that require high

performance and low latency, such as

gaming, advertising, and IoT

applications. A notable example is

Amazon DynamoDB, which offers

consistent performance with a latency

of a few milliseconds, even at large

scale. These features were essential

for migrating Snapchat Stories to

DynamoDB, given the high volume

of writes recorded.

• Document-type databases

In this category, data is stored in the

form of documents in formats such as

JSON, which are directly compatible

with the objects used in the

application's code. These databases

are extremely flexible and allow for

the storage and querying of data in an

intuitive way, like how data is

structured in the application's code.

Document models are useful for

applications that involve catalogs,

user profiles, or content management

systems. Examples of document

databases are Amazon DocumentDB

(compatible with MongoDB) and

MongoDB, which offer intuitive APIs

for agile development.

• Graph databases

Graph databases are used for

applications that work with complex

datasets, such as social networks,

product recommendations, fraud

detection, and knowledge graphs.

These databases are optimized for

storing and manipulating

relationships between entities.

Amazon Neptune is a fully managed

service that supports Property Graph

and Resource Description Framework

(RDF) graph models. Other examples

include Neo4j and Giraph.

Database Systems Journal vol. XVI/2025 129

• In-memory databases

These databases are used in

applications that require quick

responses in microseconds, such as

gaming and online advertising, where

traffic can spike suddenly. Amazon

MemoryDB for Redis is an in-

memory database service that reduces

data read latency and ensures

reliability at scale, making it ideal for

microservices-based applications.

Amazon ElastiCache, compatible

with Redis and Memcached, serves

workloads that require low latency

and high throughput, while Amazon

DynamoDB Accelerator (DAX)

enhances its performance by reading

data several times faster.

• Databases for searches

Many applications generate logs to

assist with troubleshooting and

problem analysis. Amazon

OpenSearch is a service dedicated to

the real-time analysis and

visualization of data streams,

indexing, aggregating, and searching

information from logs and semi-

structured data. OpenSearch also

offers high-performance full-text

search capabilities, being used, for

example, by Expedia, which manages

30 TB of data and 30 billion

documents for cost optimization and

operational monitoring.

SQL Data Types

Databases SQL uses a well-defined set of

data types, which are applied in a

structure of tables with rows and

columns. Each column in a table is

defined with a specific data type, and

these types are very rigid and normalized.

− Numbers:

• INT: For storing integer numbers.

• DECIMAL or NUMERIC: For

numbers with high precision

decimals.

• FLOAT or DOUBLE: For

floating-point numbers.

− Strings:

• VARCHAR: For variable-length

character strings.

• CHAR: For fixed-length character

strings.

• TEXT: For long character strings.

− Date and time:

• DATE: Used to store only the

date (year, month, day).

• TIME: Used to store only the

time.

• DATETIME or TIMESTAMP:

Used to store both the date and

time in a single field.

− Boolean:

• BOOLEAN: For storing values

like true/false.

− Binary:

• BLOB: For binary data, such as

images or files.

− Others:

• ENUM: To define a limited list of

possible values for a field.

• SET: To store a set of values.

Tools and Frameworks for Managing

NoSQL Databases

MongoDB Atlas is a fully managed

platform for MongoDB, which offers

cloud services for managing MongoDB

databases. It allows developers to create,

monitor, and scale MongoDB-based

applications without having to manage

the infrastructure [6].

Use cases:

• Development of modern web

applications.

• Mobile and IoT applications.

• Content management systems and

user profiles.

Apache Cassandra is a distributed

NoSQL database that is extremely

scalable and fault-tolerant. It is ideal for

applications that require a large volume

of distributed data and cannot tolerate

service interruptions.

Use cases:

• Applications that manipulate Big

Data, such as real-time data analysis.

130 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

• Write-heavy distributed systems.

• Social media and e-commerce

applications that require massive

scalability.

Redis is an in-memory NoSQL database

that offers high performance for storing

and manipulating temporary data, such as

sessions, queues, and caches. Redis is

widely used in applications that require

low latency and fast response.

Use cases:

• Storing sessions in web applications.

• Caching to accelerate data access.

• Message queues and jobs in

distributed applications.

Couchbase is a document-oriented

NoSQL database that combines the

features of document databases with

those of key-value databases. It is

optimized for applications that require

high scalability and performance.

Use cases:

• Web and mobile applications with

high scalability and performance

requirements.

• Applications for managing semi-

structured data.

• Authentication and user management

systems.

Amazon DynamoDB is a fully managed

NoSQL database service offered by

AWS, which ensures automatic

scalability and high performance for

applications that require a large volume

of data and low latency [6].

Use cases:

• Mobile and web applications that

require rapid scalability and low

costs.

• IoT and Big Data applications.

• Management of structured and semi-

structured data.

Comparing performance between SQL

and NoSQL

Performance in CRUD operations:

CRUD operations (Create, Read, Update,

Delete) are essential for any database

management system. Their performance

varies depending on the database

architecture.

SQL: Read efficiency, write difficulties:

• SQL databases are optimized for

complex queries and read operations.

Due to advanced indexing and

normalization, they allow for rapid

data retrieval.

• Write operations (Create, Update) can

be slower due to strict referential

integrity checks and asynchronous

index updates.

NoSQL: Optimized for writing, high

flexibility:

• NoSQL databases are faster for write

operations because they do not

require strict integrity checks.

• They use techniques such as

partitioning (sharding) and replication

to efficiently distribute the workload.

Practical example:

Financial analysis applications: SQL is

preferred due to complex queries.

Logging systems: NoSQL is ideal due to

its high data write speed.

Consistency Models and Transaction

Management:

Data consistency is a critical factor in

choosing a database, influenced by the

ACID and BASE models.

SQL: The ACID Model (Atomicity,

Consistency, Isolation, Durability):

• Offers reliable and secure

transactions.

• It is essential in financial, medical, or

other fields where data integrity is

crucial.

• Cost: Performance can be affected by

the bottlenecks caused by maintaining

strict consistency.

NoSQL: The BASE Model (Basically

Available, Soft-state, Eventual

consistency):

Database Systems Journal vol. XVI/2025 131

• It offers high availability but allows

eventual consistency.

• It is used in distributed applications,

such as social networks or caching

systems.

• Cost: Data can be temporarily

inconsistent.

Practical example:

• Banks and hospitals: They require

strict consistency, so SQL is

preferred.

• Social networks: They can tolerate

eventual consistency, so NoSQL is

more suitable.

Scalability and Availability:

Scalability is essential for managing the

growth of data volume and the number of

users.

SQL: Vertical scalability, limitations on

horizontal:

• Performance improvement is

achieved by adding hardware

resources (vertical scalability).

• Horizontal scalability (adding nodes)

is difficult due to the complex

relationships between tables.

NoSQL: Horizontal scalability, efficient

distribution:

• Allows for the easy addition of new

nodes.

• Techniques such as sharding and

replication ensure balanced data

distribution.

• It is used in large systems, such as

Amazon, Facebook, or Google.

Practical example:

• Banking systems: The vertical

scalability of SQL is sufficient for

many financial applications.

• E-commerce: NoSQL allows for rapid

scaling and handling of high traffic

[7].

Current trends and the future of

databases in modern business

applications

In today's digital era, databases play an

essential role in managing information

for modern business applications. Current

applications require high scalability,

optimized performance, and great

flexibility to handle the volume of data in

an ever-changing world. In this context,

recent and future trends in the field of

databases, both SQL and NoSQL, are

directed towards solutions that meet the

complex needs of modern businesses.

Another important trend in database

development is the migration to cloud

databases and serverless databases.

Currently, many business applications are

migrating to cloud-based solutions to

reduce costs and the complexity of

infrastructure management. Cloud

databases, such as AWS Aurora or

Google Cloud SQL, offer flexibility and

scalability, being managed by cloud

service providers. Additionally, the

concept of serverless databases,

exemplified by Firebase Firestore and

AWS Aurora Serverless, allows

applications to automatically scale based

on traffic needs, without the need to

manage a server or fixed resources. These

solutions are extremely attractive for

startups and businesses that do not want

to invest heavily in infrastructure but

need performance and scalability as their

business grows.

At the same time, another significant

trend in database usage is the adoption of

graph databases, especially for analyzing

complex data. Graph databases, such as

Neo4j or Amazon Neptune, are

increasingly used by businesses that need

to analyze complex relationships between

entities in their data systems, such as

users, products, transactions, or

connections in social networks. These

databases allow for a much more intuitive

representation of relationships between

data, facilitating analyses and the

discovery of relevant information, such

as fraud detection, product

recommendations, or supply chain

optimization.

In addition to these, Artificial

Intelligence (AI) and Machine Learning

132 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

(ML) are having an increasingly

significant impact on the management

and optimization of databases. AI

algorithms are used to analyze query

behavior and optimize database

performance by dynamically adjusting

allocated resources (storage, CPU,

memory) based on application

requirements. Additionally, AI is used to

identify anomalies and predict potential

system failures before they impact

operations, thereby contributing to

reduced downtime and increased

reliability.

Another important direction for the future

of databases in business applications is

the integration of multi-model databases.

Businesses that have diverse

requirements regarding data types

(relational, graph, document, etc.) can

adopt database solutions that integrate

multiple data models into a single

platform. This allows them to meet

various storage and processing

requirements, providing greater

flexibility in data management.

One of the most notable aspects of the

evolution of databases in modern

business applications is the transition to

solutions capable of providing horizontal

scalability. While traditional SQL

databases were excellent for managing

complex relationships between data, they

had limitations in terms of horizontal

scalability, meaning they could not

efficiently scale as the volume of data

grew exponentially. In contrast, NoSQL

databases, such as Cassandra and

MongoDB, are built to support excellent

horizontal scalability, allowing business

applications to manage large volumes of

data distributed across multiple servers.

These solutions are ideal for applications

that handle semi-structured or

unstructured data, such as those in the

field of IoT (Internet of Things) or Big

Data, making them a popular choice for

businesses that need to process data

quickly in a distributed manner [8, 9].

Case study: Migration from SQL to

NoSQL

A notable example of migration from

SQL to NoSQL is the case of Netflix, a

global video streaming platform, which

migrated from a relational database

(SQL) architecture to an infrastructure

based on NoSQL databases, such as

Cassandra and Amazon DynamoDB. The

decision was motivated by the need to

scale rapidly and efficiently as their

storage and data processing requirements

grew exponentially, in the context of an

increasing number of users and video

content.

Data Migration: The migration was a

multi-step process, involving an initial

massive migration ("forklift"), followed

by incremental replication and data

consistency validation. These stages

aimed to transfer data from SimpleDB to

Cassandra without interrupting the

service and without degrading

performance:

• Forklift (Initial Migration): In the first

stage, all data from SimpleDB was

copied to Cassandra. The process was

carried out over the course of 30

hours, and the number of threads and

instances was adjusted to minimize

the impact on SimpleDB's

performance during the migration.

• Incremental Replication: After the

forklift, changes from the Queue

continued to be written only in

SimpleDB. Incremental replication

ensured that the changes made to the

data in the post-migration period were

also reflected in Cassandra.

• Consistency Checker: To verify if the

migration and incremental replication

were correct, a consistency checker

was used. It compared the data

between SimpleDB and Cassandra,

updating only the records that did not

match between the two databases.

• Shadow Writes: At this point, data

continued to be read from SimpleDB,

Database Systems Journal vol. XVI/2025 133

but for each Queue update, the data

was also written to Cassandra. This

allowed for the validation of

performance and consistency of

writes in Cassandra, without

disrupting the existing user flow.

• Shadow Reads (Parallel Reads): After

shadow writes were implemented, the

shadow reads functionality was also

activated, where the data from the

Queue was read from both SimpleDB

and Cassandra. The differences

between the data from the two

sources were monitored and

corrected.

• Ending the use of SimpleDB: After

the discrepancies between SimpleDB

and Cassandra were minimal

(<0.01%), SimpleDB was eliminated,

and Cassandra became the primary

source of truth for the data in Queue.

All reads and writes to Queue were

now exclusively managed by

Cassandra.

Results: The migration from SimpleDB

to Cassandra allowed Netflix to improve

the scalability, performance, and

availability of the Queue service, without

interruptions and with minimal impact on

users.

Fig. 2. Migration from SQL to NoSQL

Advantages of migration:

• Horizontal scalability: NoSQL allows

the addition of nodes to manage large

volumes of data, unlike SQL, which

has limitations in this regard.

• Improved write performance: NoSQL

is more efficient for write operations,

ideal for high-traffic platforms like

Netflix.

• Flexibility: NoSQL allows for the

storage of semi-structured and

unstructured data, which is suitable

for movie metadata and user

interactions.

• Availability and fault tolerance:

NoSQL, such as Cassandra, offers

continuous availability even in the

event of hardware failures.

Disadvantages of migration:

• Costs and complexity in migration:

Migrating from SQL to NoSQL

required significant investments in

resources and time, and development

teams had to learn new paradigms.

• Lack of ACID transactions: NoSQL

does not guarantee the same complex

transactions and data integrity as

SQL, which can be problematic for

financial applications.

• Challenges with complex queries:

NoSQL databases are not ideal for

complex queries, such as joins

between tables, requiring alternative

solutions like Apache Kafka and

ElasticSearch.

• Eventual consistency: NoSQL uses

the eventual consistency model,

which can lead to temporary data

inconsistencies.

Migration issues and solutions:

• Team adaptability: Teams had to learn

the new architectures and paradigms.

The solution was to form specialized

teams in NoSQL and conduct training

sessions.

• Data inconsistency during migration:

A gradual migration process was

used, with both databases running in

parallel, to minimize risks.

• Monitoring: An internal monitoring

system was implemented to track the

performance and health of the

distributed NoSQL database [10, 11,

12].

What are hybrid solutions and

interoperability between SQL and

NoSQL?

134 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

Hybrid solutions allow the integration of

both relational and non-relational

databases into a single technological

architecture, to meet a wide range of

requirements related to performance,

scalability, flexibility, and data

consistency. These solutions aim to

utilize the best features of each type of

database according to the specific needs

of the applications, without sacrificing

performance or data integrity.

Challenges of integration:

• Implementation complexity:

Integrating SQL and NoSQL

databases into a hybrid solution can be

technically complex. This can involve

managing multiple data storage

solutions and query mechanisms,

which can lead to increased

operational costs and the need for

specialized technical teams.

• Data consistency: In some cases,

NoSQL databases allow for a weaker

consistency model (in accordance with

the eventual consistency model), while

SQL databases guarantee consistency

through ACID transactions. In a

hybrid system, it can be difficult to

maintain uniform consistency between

the two databases, which can lead to

issues related to data integrity.

• Integrating queries and APIs: Another

challenging aspect is the integration of

queries between SQL and NoSQL

databases. Each type of database has

its own query language (SQL for SQL

and custom APIs for NoSQL), and

combining them may require

additional development effort.

Examples of hybrid systems that

combine SQL and NoSQL:

• Microsoft Azure Cosmos DB:A

notable example of a hybrid

solution is Microsoft Azure

Cosmos DB, which supports both

SQL and NoSQL data models.

Cosmos DB offers the integration

of a relational database model

based on SQL, as well as the

possibility to use various NoSQL

models, such as document, graph,

and key-value models. It thus

offers a scalable platform that can

manage both structured and semi-

structured or unstructured data as

applications develop [13].

• MongoDB with SQL

integration: Although MongoDB

is a document-based NoSQL

database, there are solutions like

MongoDB Atlas that allow

integration with SQL databases.

This allows developers to manage

both relational and semi-

structured data simultaneously.

Additionally, MongoDB includes

advanced search and indexing

functionalities that are compatible

with SQL queries, and users can

also use APIs to interact with the

data in a hybrid manner [14].

• PostgreSQL with NoSQL

extensions: PostgreSQL, one of

the most popular SQL relational

databases, has implemented

extensions to support NoSQL

functionalities. For example, with

the HStore extension, PostgreSQL

can store semi-structured data in a

key-value pair format.

Additionally, with the JSONB

extension, PostgreSQL can store

and query JSON documents,

making it compatible with the

data models used by NoSQL

databases [15].

• Amazon Aurora and

DynamoDB: In the AWS

ecosystem, Amazon Aurora (a

relational database compatible

with MySQL and PostgreSQL)

can be used together with

Amazon DynamoDB, a NoSQL

database. Aurora is used for

managing transactions and

relational data, while DynamoDB

is used for managing data that

Database Systems Journal vol. XVI/2025 135

requires scalability and low

latency. This combination offers a

robust hybrid solution that can be

rapidly scaled according to the

application's needs [16].

• Couchbase and SQL: Couchbase

is a document-oriented NoSQL

database that provides support for

SQL queries through the N1QL

language. This allows users to

write standard SQL queries to

query data stored in JSON format,

thus combining the advantages of

a NoSQL model with the

familiarity of SQL queries [17].

Modern database architectures:

Polyglot Persistence and microservices

In modern business applications, database

performance is closely tied to how they

are integrated into the overall system

architecture. The microservices model,

increasingly adopted, assumes that each

functional module can use a database

specific to its needs. This principle is

called Polyglot Persistence and allows the

combination of relational databases

(SQL) with non-relational ones (NoSQL)

[18].

A practical example is in e-commerce:

the SQL database is used for processing

orders and transactions where

consistency and integrity are critical

while NoSQL is preferred for comments,

reviews, or recently viewed products,

where flexibility and speed are essential.

This approach brings increased flexibility

and allows for independent scaling of

components. At the same time,

technologies like Apache Kafka facilitate

data exchange between microservices,

eliminating bottlenecks between

components and providing a more

adaptable and stable architecture.

According to Fowler [18], using a

combination of databases within a

complex ecosystem helps avoid the

limitations specific to each type of

technology, thereby increasing the

application's reliability.

Artificial Intelligence and Machine

Learning in databases

The performance of modern databases no

longer depends solely on indexes or well-

designed structures, but also on the use of

advanced technologies such as artificial

intelligence (AI). More and more

solutions use machine learning

algorithms to automatically optimize how

queries are executed or resources are

managed [19].

For example, Oracle Autonomous

Database can automatically adjust the

execution plan of a query or decide when

and how to create indexes, without

human intervention. On the NoSQL side,

systems are becoming increasingly

intelligent in resource management: they

learn application behaviors and pre-load

the most frequently accessed data,

optimizing cache memory and response

times.

This AI-based automation not only

optimizes performance but also helps

reduce human errors. In a large-scale

organizational environment, where data is

critical and updates are frequent, AI

becomes a reliable ally for ensuring

service continuity [20]. Özsu and

Valduriez explain in detail this type of AI

integration in distributed systems in their

seminal work [19].

Real-time data management

We live in an era of instantaneity, users

and businesses expect real-time reactions

and analyses. In this context, databases

must be capable of processing large

volumes of data continuously and quickly

[21].

NoSQL solutions are often the primary

choice for such scenarios. They easily

integrate with real-time processing

platforms like Apache Kafka or Apache

Flink and can handle real-time data

streams, such as bank transactions,

messages from IoT sensors, or user

activities on a website.

On the other hand, SQL has also evolved,

and some modern solutions (such as

136 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

Snowflake or ClickHouse) offer very

good performance in the near-instant

processing of semi-structured data.

However, these usually come with a

higher cost and a steeper learning curve.

As Tyler Akidau shows in the work

"Streaming Systems" [21], systems

capable of handling real-time data are

essential for modern applications that

cannot afford processing delays.

Cost comparison: SQL vs NoSQL in

the cloud

Beyond performance, cost is one of the

most sensitive criteria for any company.

In the cloud, the differences between

SQL and NoSQL become evident from

the perspective of pricing and flexibility.

SQL is usually billed based on reserved

resources (processor, RAM, storage

space), which means you pay even when

the database is inactive. In contrast, many

NoSQL services such as DynamoDB,

allow flexible billing based on the actual

number of operations performed [22].

NoSQL also has the advantage of open-

source implementations that can

completely eliminate licensing costs.

However, in such cases, other hidden

costs come into play: maintenance teams,

security, backup. It is important for a

Total Cost of Ownership (TCO) analysis

to be conducted before the final decision

is made [23].

According to Joe Weinman, in

"Cloudonomics" [23], a balanced

approach between performance and costs

is essential to achieve a sustainable

competitive advantage in dynamic digital

environments.

The impact of database choice on user

experience

The choice of database not only affects

the technical aspect of the application but

also the way users interact with it. If the

data loads slowly, if there are consistency

errors, or if certain functions are

unavailable at key moments, the user will

perceive the application as weak,

regardless of how well the code is

written.

NoSQL databases, by their distributed

nature and optimization for fast reads,

can provide an extra level of fluidity.

This is especially evident in social

applications (e.g., Facebook with TAO)

or messaging apps (e.g., Snapchat with

DynamoDB), where responses need to

come in milliseconds.

In contrast, applications where accuracy

is more important than speed, such as

financial or medical reporting will benefit

more from an SQL database, which offers

strict consistency and secure transactions

[24].

Performance benchmarks: SQL vs

NoSQL in practice

To truly understand the performance

differences between SQL and NoSQL, it

is important to analyze concrete data

from independent benchmarks. For

example, in the tests conducted by the

Yahoo! Cloud Serving Benchmark

(YCSB), it was found that MongoDB

(NoSQL) has superior performance in

distributed write operations, while

PostgreSQL (SQL) stands out for its

efficiency in complex JOIN queries [25,

26].

These benchmarks highlight that the

choice of database is not universal: for

applications involving complex

aggregations and multiple relationships

between data, SQL is superior. In

contrast, for applications that require fast

writes and horizontal scalability, NoSQL

is more efficient. The study conducted by

Zdravevski et al. (2023) [26] confirms

this conclusion, indicating that MySQL

offers stable performance in OLTP tasks,

while MongoDB excels in handling semi-

structured data in Big Data tasks.

Choosing the database based on the

domain

The selection between SQL and NoSQL

databases must be guided by the specific

requirements of the application domain.

Database Systems Journal vol. XVI/2025 137

For example, in the financial sector,

where data consistency and integrity are

essential, SQL databases are often

preferred due to their compliance with

ACID properties [27]. In contrast, in

fields such as social networks or video

game applications, where scalability and

flexibility are crucial for managing large

volumes of data and high interaction

rates, NoSQL databases offer significant

advantages.

A notable example is Netflix's use of

Cassandra for managing personalized

recommendations, demonstrating

NoSQL's ability to quickly process large

amounts of unstructured data and provide

real-time responses. In e-commerce, a

hybrid approach is often preferred: SQL

is used for transactions, while NoSQL is

used for the product catalog and user

interactions.

Challenges in adopting NoSQL

Although NoSQL databases offer

numerous benefits, their adoption also

comes with significant challenges. One of

the main difficulties is the lack of native

support for ACID transactions, which can

affect data consistency in critical

applications [28]. To address this issue,

researchers such as Alflahi et al. (2023)

have proposed transaction management

models in MongoDB that include

specialized locking algorithms and

logical separation of read/write

operations, improving both performance

and data consistency [28].

Another challenge is the lack of

standardization among different NoSQL

solutions, which can lead to

interoperability issues and risks related to

vendor lock-in. Therefore, it is essential

for organizations to conduct pilot tests

and choose vendors with active support

and a strong technical community.

NewSQL and multi-model databases

To combine the advantages of relational

databases with the flexibility and

scalability offered by NoSQL, hybrid

solutions such as NewSQL and multi-

model databases have emerged. NewSQL

aims to provide the performance and

scalability of NoSQL while maintaining

the ACID properties characteristic of

SQL [29]. These systems are designed to

efficiently manage online transaction

processing (OLTP) tasks in the context of

Big Data.

On the other hand, multi-model

databases, such as ArangoDB and

OrientDB, allow for the storage and

querying of data using multiple models

(documents, graphs, columns), providing

increased flexibility in managing various

types of data and complex relationships

[27]. These solutions represent a bridge

between the advantages of both worlds,

allowing developers to choose the most

suitable data model for each component

of their application.

Consistency models in distributed

systems: trade-offs and options

In modern distributed architectures, the

choice of consistency model has a

significant impact on the performance

and behavior of the application. NoSQL

databases like Cassandra or DynamoDB

adopt the eventual consistency model,

which offers availability and scalability at

the expense of immediate consistency.

On the other hand, traditional SQL

systems promote strong consistency,

ideal for critical applications where data

must always be accurate [30].

More and more modern databases offer

configurable consistency options. For

example, Cosmos DB allows the choice

between five consistency levels

(including bounded staleness and session

consistency), giving developers fine

control over the balance between

performance and accuracy [31]. This

flexibility comes with direct implications

for architectural design: stricter

consistency involves increased latency

and higher replication costs, while weak

consistency can lead to users viewing

outdated data.

138 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

Another important aspect is the

integration of consistency models based

on the type of data and usage. In critical

applications, such as banking or

healthcare systems, strict consistency is

preferred to ensure the absolute

correctness of transactions. In contrast,

for social network applications, a small

temporary lag between the states of

replicas is acceptable, as long as

availability and scalability are

maximized.

The CAP theorem (Consistency,

Availability, Partition tolerance) remains

a fundamental theoretical benchmark in

this context. In a distributed environment,

only two of the three characteristics can

be guaranteed simultaneously. The choice

of the right strategy thus depends on the

application's priorities: performance,

reliability, or absolute consistency.

Query and index optimization in

dynamic environments

Query optimization is a constant

challenge in managing large and dynamic

databases. Traditional query optimization

algorithms rely on estimated costs and

the analysis of data statistics, but in

modern environments characterized by

constantly changing data, this approach is

not always sufficient.

PostgreSQL, for example, uses a cost-

based planner that evaluates all possible

data access strategies and selects the one

with the lowest estimated cost. However,

in distributed environments, costs can

vary over time, and dynamic query

reoptimization becomes a necessity.

NoSQL databases, such as MongoDB

and Couchbase, offer powerful tools for

performance optimization through

compound indexes, geospatial indexes, or

TTL indexing. For example, in location-

based applications, geospatial indexes

dramatically reduce the response time for

queries involving coordinates.

Another growing trend is the use of

"adaptive indexing" algorithms, which

dynamically adjust the structure of the

indexes based on user access patterns.

This technique is effective in applications

with variable traffic, as it eliminates the

need for constant manual reconfiguration.

Modern observability and profiling tools,

such as Query Profiler in MongoDB or

EXPLAIN ANALYZE in PostgreSQL,

provide granular visibility into the time

spent at each stage of execution. Thus,

developers can quickly identify

bottlenecks and propose targeted or

strategic optimizations [32, 33].

Database security in modern

architectures

Database security is a constantly evolving

field, considering the increase in the

number and complexity of cyberattacks.

In modern cloud-native architectures,

data circulates through multiple layers

and systems, significantly increasing the

risk of interception, loss, or unauthorized

modification.

In the case of relational databases,

protection mechanisms are well-defined

and include column or table-level

encryption, role-based access control

(RBAC) policies, and detailed operation

logging. Systems like Oracle or SQL

Server offer advanced auditing

functionalities, including for preventing

internal threats.

NoSQL databases have also evolved

significantly in this regard. MongoDB,

Couchbase, or Cassandra now offer

support for full encryption (end-to-end),

certificate-based authentication, and

integration with complex identity

management systems (LDAP, Kerberos).

The new versions also include audit

functions, protection against injection

attacks, as well as field-level security

controls.

Additionally, distributed systems require

the protection of communication

channels between nodes. The TLS 1.3

protocol is used for traffic encryption,

and network access control is achieved

through security groups, isolated subnets,

and declarative firewall policies.

Database Systems Journal vol. XVI/2025 139

A key element is also context-based

rights management. Modern systems

implement models such as Attribute-

Based Access Control (ABAC), which

allow flexible policies based on user,

device, or location attributes. Thus, a user

can access a specific database only under

certain conditions (e.g., only within the

company's network and during working

hours).

In the future, a closer integration between

databases and cybersecurity threat

analysis platforms is expected. These will

enable the automatic identification and

blocking of suspicious behavior in real-

time, through behavioral analysis and

machine learning [34, 35, 36].

Integration of databases into Big Data

and Artificial Intelligence ecosystems

An increasingly important development

direction in modern business applications

is the integration of databases with Big

Data processing platforms and artificial

intelligence, aspects also addressed in the

recent works of Abadi and Pavlo [37, 38].

In this context, both SQL and NoSQL

play essential roles.

SQL databases are used in the stages of

data preprocessing and cleaning, where

the rigid structure and transactionality

ensure data integrity. On the other hand,

NoSQL databases are preferred for

storing and quickly accessing large

volumes of unstructured data, used in

training machine learning algorithms.

For example, Apache Spark offers native

connectors for both PostgreSQL and

MongoDB or Cassandra, allowing for

distributed in-memory processing. Thus,

data can be extracted from relational

databases, transformed, and then

combined with NoSQL sources for

predictive analytics or real-time

recommendation systems.

More and more modern databases are

starting to integrate artificial intelligence-

based functionalities directly into their

structure. Oracle Autonomous Database

and Microsoft SQL Server use machine

learning algorithms for auto-tuning and

anomaly detection, according to the

technical documentation and research

published by Microsoft and Oracle [39]

for automatic query optimization,

anomaly detection, and index proposal.

Integration with artificial intelligence

also entails challenges: massive volumes

of data must be managed, processing

ethics ensured, and traceability of

automated decisions guaranteed. For this

reason, hybrid systems that combine the

flexibility of NoSQL with the stability

offered by SQL become ideal solutions

for complex organizations with diverse

data management needs.

Conclusions

The choice between SQL and NoSQL

depends on the application's context.

There is no universal solution. Relational

databases are essential for critical

applications that require complex

transactions and strict consistency, while

NoSQL offers flexibility and scalability

for modern applications that handle large

volumes of unstructured data.

Migrating to NoSQL brings benefits, but

also challenges. Cases like Netflix

highlight the advantages of horizontal

scalability and superior performance for

distributed data. However, the transition

from SQL to NoSQL involves significant

technical challenges, particularly in

maintaining data consistency and

adapting the architecture.

Hybrid and multi-model architectures are

increasingly being adopted. Combining

the flexibility of NoSQL with the

reliability of SQL, along with approaches

like Polyglot Persistence and

microservices, offers an adaptable

solution for complex organizations,

allowing for independent scaling and

varied technological integration.

Artificial intelligence fundamentally

changes the way databases are designed

and managed. AI integration allows for

automatic query optimization, dynamic

resource adjustment, and early error

140 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

detection, reducing human intervention

and increasing operational efficiency.

AI and machine learning are becoming

integral to the future direction of

databases. Machine learning algorithms

are increasingly used for predictive

analysis, intelligent resource allocation,

and anomaly detection, while graph

databases are gaining ground in analyzing

complex relationships and information

networks.

Cloud-native technologies and serverless

architectures are redefining database

infrastructure. Migrating to cloud-based

solutions and pay-per-use models allows

companies to reduce operational costs

and dynamically manage resources

without compromising performance or

security.

References
[1] "The Evolution of Database

Technologies", IEEE Journals, 2023

[2] "SQL vs NoSQL: Choosing the Right

DBMS," SimeonOnSecurity.

[Online]. Available:

https://ro.simeononsecurity.com/articl

es/sql-vs-nosql-choosing-the-right-

database-management-system.

[Accessed: March 24, 2025]

[3] "Ce este SQL?" NewTech. [Online].

Available:

https://www.newtech.ro/blog-ce-este-

sql/. [Accessed: March 24, 2025].

[4] Oracle, "What is NoSQL?" [Online].

Available:https://www.oracle.com/ro/

database/nosql/what-is-nosql/.

[Accessed: March 24, 2025].

[5] CodeGym, "Hibernate: SQL vs

NoSQL." [Online]. Available:

https://codegym.cc/ro/quests/lectures/

ro.questhibernate.level19.lecture00.

[Accessed: March 24, 2025].

[6] Guru99, "SQL Tools Overview."

[Online]. Available:

https://www.guru99.com/ro/sql-

tools.html. [Accessed: March 25, 2025].

[7] "Conf-TehStiint-UTM-

StudMastDoct-2024-V1-p585-

588.pdf," Proceedings of UTM

Conference, pp. 585–588, Chisinau,

Moldova, 2024. [Online]. Available:

https://repository.utm.md/bitstream/h

andle/5014/27928/Conf-TehStiint-

UTM-StudMastDoct-2024-V1-p585-

588.pdf. [Accessed: March 25,

2025].

[8] Budibase, "Data Management

Trends." [Online]. Available:

https://budibase.com/blog/data/data-

management-trends/. [Accessed:

March 24, 2025].

[9] "Database Management Trends in

2024," Dataversity. [Online].

Available:

https://www.dataversity.net/database-

management-trends-in-2024/.

[Accessed: March 24, 2025].

[10] Netflix Tech Blog, "Netflix

Queue Data Migration for a High-

Volume Web Application." [Online].

Available:

https://netflixtechblog.com/netflix-

queue-data-migration-for-a-high-

volume-web-application-

76cb64272198. [Accessed: March 26,

2025].

[11] Netflix Tech Blog, "NoSQL at

Netflix." [Online]. Available:

https://netflixtechblog.com/nosql-at-

netflix-e937b660b4c. [Accessed:

March 26, 2025].

[12] P. Krill, "Big Movies, Big Data:

Netflix Embraces NoSQL in the

Cloud," InfoWorld, 2012. [Online].

Available:

https://www.infoworld.com/article/21

71162/big-movies-big-data-netflix-

embraces-nosql-in-the-cloud.html.

[Accessed: March 26, 2025].

[13] Microsoft, "Azure Cosmos DB

Documentation." [Online]. Available:

https://learn.microsoft.com/en-

us/azure/cosmos-db/. [Accessed:

March 26, 2025].

[14] MongoDB, "Atlas Database

Platform." [Online]. Available:

https://www.mongodb.com/products/

https://ro.simeononsecurity.com/articles/sql-vs-nosql-choosing-the-right-database-management-system
https://ro.simeononsecurity.com/articles/sql-vs-nosql-choosing-the-right-database-management-system
https://ro.simeononsecurity.com/articles/sql-vs-nosql-choosing-the-right-database-management-system
https://www.newtech.ro/blog-ce-este-sql/
https://www.newtech.ro/blog-ce-este-sql/
https://www.oracle.com/ro/database/nosql/what-is-nosql/
https://www.oracle.com/ro/database/nosql/what-is-nosql/
https://codegym.cc/ro/quests/lectures/ro.questhibernate.level19.lecture00
https://codegym.cc/ro/quests/lectures/ro.questhibernate.level19.lecture00
https://www.guru99.com/ro/sql-tools.html
https://www.guru99.com/ro/sql-tools.html
https://repository.utm.md/bitstream/handle/5014/27928/Conf-TehStiint-UTM-StudMastDoct-2024-V1-p585-588.pdf
https://repository.utm.md/bitstream/handle/5014/27928/Conf-TehStiint-UTM-StudMastDoct-2024-V1-p585-588.pdf
https://repository.utm.md/bitstream/handle/5014/27928/Conf-TehStiint-UTM-StudMastDoct-2024-V1-p585-588.pdf
https://repository.utm.md/bitstream/handle/5014/27928/Conf-TehStiint-UTM-StudMastDoct-2024-V1-p585-588.pdf
https://budibase.com/blog/data/data-management-trends/
https://budibase.com/blog/data/data-management-trends/
https://www.dataversity.net/database-management-trends-in-2024/
https://www.dataversity.net/database-management-trends-in-2024/
https://netflixtechblog.com/netflix-queue-data-migration-for-a-high-volume-web-application-76cb64272198
https://netflixtechblog.com/netflix-queue-data-migration-for-a-high-volume-web-application-76cb64272198
https://netflixtechblog.com/netflix-queue-data-migration-for-a-high-volume-web-application-76cb64272198
https://netflixtechblog.com/netflix-queue-data-migration-for-a-high-volume-web-application-76cb64272198
https://netflixtechblog.com/nosql-at-netflix-e937b660b4c
https://netflixtechblog.com/nosql-at-netflix-e937b660b4c
https://www.infoworld.com/article/2171162/big-movies-big-data-netflix-embraces-nosql-in-the-cloud.html
https://www.infoworld.com/article/2171162/big-movies-big-data-netflix-embraces-nosql-in-the-cloud.html
https://www.infoworld.com/article/2171162/big-movies-big-data-netflix-embraces-nosql-in-the-cloud.html
https://learn.microsoft.com/en-us/azure/cosmos-db/
https://learn.microsoft.com/en-us/azure/cosmos-db/
https://www.mongodb.com/products/platform/atlas-database

Database Systems Journal vol. XVI/2025 141

platform/atlas-database. [Accessed:

March 26, 2025].

[15] PostgreSQL, "JSON Data Types."

[Online]. Available:

https://www.postgresql.org/docs/curr

ent/datatype-json.html. [Accessed:

March 26, 2025].

[16] Amazon Web Services, "AWS

Home." [Online]. Available:

https://aws.amazon.com/. [Accessed:

March 27, 2025].

[17] Couchbase, "Documentation

Home." [Online]. Available:

https://docs.couchbase.com/home/ind

ex.html. [Accessed: March 27, 2025].

[18] M. Fowler, "NoSQL and Polyglot

Persistence," martinfowler.com,

2012.

[19] T. Özsu, P. Valduriez, Principles

of Distributed Database Systems,

Springer, 2020

[20] Oracle, "AI-powered database

optimization," oracle.com, 2023.

[21] T. Akidau et al., Streaming

Systems: The What, Where, When,

and How of Large-Scale Data

Processing, O’Reilly Media, 2018.

[22] Amazon Web Services, "Amazon

DynamoDB Pricing." [Online].

Available:

https://aws.amazon.com/dynamodb/pr

icing/ [Accessed: March 27, 2025].

[23] J. Weinman, Cloudonomics: The

Business Value of Cloud Computing,

Wiley, 2012.

[24] M. Stonebraker, "The Case for

NewSQL Databases"

Communications of the ACM, 2018.

[25] Yahoo! Cloud Serving

Benchmark, "YCSB Project" GitHub

Repository, 2023.

[26] E. Zdravevski et al., "Comparison

of SQL and NoSQL databases with

different workloads: MongoDB vs

MySQL evaluation," International

Journal of Database Management

Systems, vol. 6, no. 3, pp. 1-14, 2023.

[27] S. Patro, "SQL vs. NoSQL:

Choosing the Right Database for Your

Data Needs," LinkedIn, 2024.

[28] A. A. E. Alflahi et al., "An

Enhanced Model for Transactional

Consistency in MongoDB," arXiv

preprint arXiv:2308.13921, 2023.

[29] A. B. M. Moniruzzaman,

"NewSQL: Towards Next-Generation

Scalable RDBMS for Online

Transaction Processing (OLTP) for

Big Data Management," arXiv

preprint arXiv:1411.7343, 2014.

[30] E. A. Brewer, CAP twelve years

later: How the 'rules' have changed,

Computer, 2012.

[31] Microsoft Azure Cosmos DB,

Consistency levels documentation,

2024

[32] A. Pavlo et al., Self-tuning

database systems: a review, ACM

Computing Surveys, 2021

[33] M. Stonebraker et al., Readings in

Database Systems, 5th Edition, MIT

Press, 2015.

[34] A. Gupta et al., Security in

Modern Databases: Challenges and

Techniques, ACM Computing

[35] S. Ghazali et al., A Survey on

Secure NoSQL Databases in Cloud

Environment, Journal of Network and

Computer Applications, 2020.

[36] Microsoft Docs, SQL Server

Security Features, Microsoft.com,

2024.

[37] D. Abadi, Data Management in

the Cloud: Limitations and

Opportunities, IEEE Data Eng. Bull.,

2020.

[38] A. Pavlo, Big Data meets Big

Query: Lessons from Real-World

Systems, Proceedings of the VLDB

Endowment, 2021.

[39] Oracle & Microsoft, AI in

Databases: Technical Briefs and

Innovations, Whitepapers, 2023.

https://www.mongodb.com/products/platform/atlas-database
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://aws.amazon.com/
https://docs.couchbase.com/home/index.html
https://docs.couchbase.com/home/index.html
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/

142 Comparation of the Performance of

SQL and NoSQL Databases in Modern Business Applications

Aniela BORCAN graduated in 2023 with a Bachelor’s degree in

Economic Cybernetics from the Faculty of Cybernetics, Statistics and

Economic Informatics at the Bucharest University of Economic Studies.

She continued her studies at the same institution, earning a Master’s

degree in Databases – Support for Business in 2025. With a background

in both IT and the financial industry, Aniela has contributed to the

development of digital solutions aimed at enhancing business efficiency

and enabling data-driven decision-making. She has practical experience in backend

development and database management, with key interests in scalable data infrastructures,

process automation and the integration of secure and efficient digital banking systems.

Diana CAPTARI completed her undergraduate studies in 2023, earning a

degree in Economic Cybernetics from the Faculty of Cybernetics,

Statistics and Economic Informatics at the Bucharest University of

Economic Studies. She further pursued graduate studies at the same

university, obtaining a Master’s degree in Data Bases – Support for

Business in 2025. Currently active in the banking industry, she works as a

programmer, with hands-on experience in software development and

database technologies tailored to financial services. Her professional

interests focus on digital solutions in banking, optimization of data systems, and the

integration of programming tools in business processes.

Emanuela-Cristina CARP graduated in 2023 with a Bachelor's degree in

Economic Cybernetics from the Faculty of Cybernetics, Statistics and

Economic Informatics of the Bucharest University of Economic Studies.

She obtained her Master’s degree in Data Bases – Support for Business

from the same institution in 2025. She is currently employed in the private

sector, with professional experience in databases, artificial intelligence,

and software development. Her research interests include database

systems, intelligent data processing, and the integration of AI technologies into modern

business solutions.

