
Database Systems Journal, vol. X/2019 75

Waterative Model: an Integration of the Waterfall and Iterative Software

Development Paradigms

Mohammad Samadi GHARAJEH

Young Researchers and Elite Club, Tabriz Branch,

Islamic Azad University, Tabriz, Iran

m.samadi@iaut.ac.ir; mhm.samadi@gmail.com

Software development paradigms help a software developer to select appropriate strategies to

develop software projects. They include various methods, procedures, and tools to describe

and define the software development life cycle (SDLC). The waterfall and iterative models are

two useful development paradigms, which have been used by various software developers in

the last decades. This paper proposes a new software development methodology, called

waterative model, which applies an integration of the waterfall and iterative development

paradigms. In this model, the iterative model is embedded into the waterfall model to use the

advantages of both models as an integrated one. It, in the most cases, is appropriate for large

software products that need a long-term period of time for the development process.

Experimental results demonstrate that the customer satisfaction score could be high by using

the proposed model in various software projects.

Keywords: Software Engineering, Software Development, Waterfall Model, Iterative Model,

Waterative Model

Introduction

Software is formed by using a

collection of executable programming

codes, associated libraries, and essential

documentations. Software product is

developed for a specific requirement,

which is composed of various phases

such as system analysis, coding, and

testing. Software engineering is, in fact,

the development process of software

products using well-defined methods,

tools, and procedures. It includes some of

the important challenges such as

scalability, cost, and quality management

that should be considered by software

development teams, precisely. The

development process of software

products is not possible without

considering such challenges [1-6].

A software developer should choose

appropriate software development models

in the development process. A new

software development model, called

waterative model, is proposed in this

paper. This model uses an integration of

the waterfall and iterative software

development paradigms. Since the

waterfall and iterative models have useful

advantages in the software development

process, their integration could be very

useful compared to some of the existing

models. This model, in the most cases, can

be used to develop large software products.

The remainder of this paper is organized as

the follows. Section 2 represents the

elements of software development life cycle.

Section 3 presents a literature review on

some of the software development

paradigms. Section 4 describes various steps

of the proposed model. Section 5 includes

the evaluation results of some software

projects that have been developed by the

proposed model. Finally, the paper is

concluded by Section 6.

2 Software development life cycle

Software development life cycle (SDLC) [7]

is a well-defined and structured sequence of

various stages in software engineering to

develop various types of software products.

SDLC framework includes various steps that

are entitled by Fig. 1. The remainder of this

section describes a short description about

each stage.

Communication is the first step of SDLC,

which indicates the user’s requirements for a

1

mailto:m.samadi@iaut.ac.ir
mailto:mhm.samadi@gmail.com

76 Waterative Model: an Integration of the Waterfall and Iterative Software Development Paradigms

desired software product. Requirement

Gathering leads the software

development team to conduct the

project’s requirements. Requirements

consist of user requirements, system

requirements, and functional

requirements. They can be conducted by

studying the desired software, referring to

the database, or collecting answers from

questionnaires. Feasibility Study

investigates whether a software project

can be designed to fulfill all of the user’s

requirements or not. Moreover, it

analyzes the financial, practical, and

technical feasibilities of the project.

System Analysis assists developers to

determine a roadmap about their plan and

also define an appropriate software model

for the project. It considers some of the

features such as product limitations,

problems identification, and the effect of

project on organization. Software Design

brings down the user’s requirements and

any other knowledge about development

process to design the software project. It

is composed of two designs: logical

design and physical design. Moreover,

this step can be conducted by using

various tools such as data dictionaries,

logical diagrams, and use cases. Coding

is also known as programming step. It

implements the software product via

writing the program codes by a suitable

programming language and developing

an error-free executable program. Testing

determines the acceptance rate of a

software product, which is done by

testing team and, later, by the customer. It

can be managed while writing the codes

by the developers and at various levels of

the coding step such as module testing,

programming testing, and product testing.

Integration step can be used to integrate

the software product with libraries,

databases, and other programs.

Implementation means installing the

software product on the user’s machines.

It can be used to test the portability and

acceptability features of product.

Maintenance determines the efficiency

and error-free rate of software product.

Furthermore, it aids to train the users by

using some of the required documentations.

Software product can timely be maintained

by updating the program code based on the

changes taking place in users, environment,

and/or technology.

SDLC

Communication

Requirement

Gathering

Feasibility Study

System Analysis

Software Design

Coding

Testing

Integration

Implementation

Maintenance

Fig. 1. An overall view of the SDLC

framework

3 A literature review on software

development paradigms

Waterfall model [8, 9] is the simplest

development model from among a list of

available software development paradigms.

All steps of the SDLC framework are

conducted one after another through a linear

manner. That is, the second step will start

only after the first step is finished and so on.

This model considers that every process is

perfectly conducted as planned in the

previous step without any need to think

about the past issues. Therefore, if there are

some of the issues that are left from the

previous step, this model will not work

smoothly. This model is more appropriate

for development teams when they have

already designed and developed the same

software in the past so they are aware of any

development conditions. Fig. 2 shows an

overall viewpoint of the model.

Database Systems Journal, vol. X/2019 77

Requirement Gathering

System Analysis

Coding

Testing

Implementation

Operations and Maintenance

Fig. 2. Elements of the waterfall model

Iterative model [10] works based on

iteration in the software development

process. It conducts the development

process via a cyclic manner so that every

step is repeated after another. Firstly,

software is developed on a small scale so

that all of the steps are followed

sequentially. Afterwards, more features

and modules are designed, tested, and

appended to the project on next iterations.

In fact, the software at every iteration has

more features and capabilities than the

previous iterations. It is worth noting the

management team can investigate risk

managements of the project after

completing each iteration in order to

prepare the next iteration. Fig. 3

illustrates elements and processes of this

model.

Coding

Design

Testing

Verify

Coding

Design

Testing

Verify

Iteration nn-1 n+1

Fig. 3. A schematic of the iterative model

Spiral model [11-13] is a combination of

iterative model and one of the SDLC

models. In addition to any other process, it

considers risk management that is often

neglected by the most development models.

In the first phase, it determines objectives

and constraints of the software product at

the beginning of iteration. In the next phase,

the model conducts prototyping of the

software and risk analysis. Afterwards, one

of the SDLC models is applied to develop

the software. The plan of next iteration is

prepared in the final phase. Fig. 4 depicts a

schematic of the spiral model.

Review

Release

C
u

m
u

la
ti

v
e

C
o

stObject

Identification

Alternate

Evaluation

Next Phase

Planning

Product

Development

Risk
 M

an
ag

em
en

t

Prototypes

Design

Code
Integration

T
est

Im
p
lem

en
tatio

n

Progress

Fig. 4. An overall view of the spiral model

V-model [14, 15] facilitates the testing

capabilities of software at each step via a

reverse manner. It can solve the major

drawback of waterfall model in which every

step should be started only after the previous

step is finished, without any chance to go

78 Waterative Model: an Integration of the Waterfall and Iterative Software Development Paradigms

back. In this model, test plans and test

cases are created at every step to verify

and validate the software product based

on the requirements of that step. This

process leads both verification and

validation to be conducted

simultaneously. It is worth noting this

model is also known as verification and

validation model. Fig. 5 shows all

elements and steps of the v-model.

Coding

Module

Design

Unit

Testing

Software

Design

Integration

Testing

System

Analysis

System

Testing

Requirement

Gathering

Acceptance

Testing

Verification Valid
atio

n

Fig. 5. An overall description of the v-

model

Big bang model [16, 17] is the simplest

model compared to the other

development paradigms. It can be

conducted by little planning, lots of

programming, and lots of funds. This

model is, in fact, similar to the process of

universe in which lots of galaxies,

planets, stars are created after an event. If

the lots of programming and funds are

put together, the best software product

maybe will be achieved. A small amount

of planning is required for this model.

There is not any especial process to conduct

the model as well as customers are not sure

about the current and future requirements of

product. In this model, the input

requirements and conditions are arbitrary. It

is worth noting this model is not appropriate

for large software projects, but it is suitable

for the learning and experimental purposes.

Fig. 6 depicts a brief schematic of the big

bang model.

Big Bang

Time

Efforts

Resources

Software

Fig. 6. An overall schematic of the big bang

model

4 Waterative model

Waterative model is formed based on an

integration of the waterfall and iterative

software development paradigms. It can be

useful in software projects because it uses

the advantages of both waterfall and

iterative models. However, some of the new

steps are involved in the proposed model as

well as some of the steps are merged

together. Since large software projects

require a long-term development time, this

model is suitable for such projects. Fig. 7

shows an overall view of the proposed

development model. The most steps of this

model have feedback to previous steps in

order to solve the problems of software

product at any step.
Requirement

Gathering

System

Analysis

Design

Implementation
Customer

Testing

Updating

Integration

Team Testing

Coding

Module nModule n-1 Module n+1

......

Maintenance

Customer

Evaluation

Customer

Testing

Updating

Integration

Team Testing

Coding

Fig. 7. Overall view of the proposed waterative model

Database Systems Journal, vol. X/2019 79

Requirement Gathering includes both

communication and requirement

gathering of the SDLC framework. The

service provider receives the request from

the customer about developing a new

software product. Afterwards, the

development team manages the

requirements according to user

requirements, system requirements, and

functional requirements. This step is a

fundamental and essential step in this

development model.

System Analysis involves both feasibility

study and system analysis of the SDLC

framework. The development team

analyzes the feasibility and useful

features of software product based on the

user’s requirements. The developers can

use various algorithms to evaluate the

financial, practical, and technical

feasibilities of the product. Afterwards,

the development team specifies a suitable

roadmap to develop the software product

according to requirements and

feasibilities. It can consider development

constraints, apply some of the learning

systems, determine the scope, schedule,

and resources of the project, and analyze

other specifications of the project.

Design is, in fact, the software design

step of SDLC. The software product is

designed at this step based on the user’s

requirements and system analysis. The

logical and physical designs of the

product are also carried out in this step.

They can be conducted by using some of

the logical diagrams, data-flow diagrams,

and pseudo codes. These designs should

be organized carefully because the

customer’s initial evaluation and the team

evaluation will be done by using meta-

data and diagrams of this step.

Customer Evaluation is used is the

proposed model before going on coding

and the other development process. The

reason is that the most problems of

product at the system analysis and design

steps should be solved by the customer’s

initial evaluation. This process leads

further problems at the customer testing step

of every module to be reduced considerably

and, thereby, the most modules will be

created and delivered to the customer during

an acceptable period of time.

After the customer confirmed the

correctness of development process until the

design step, the software product will be

divided into several modules to develop

every module one after another,

sequentially. Every module is composed of

Coding, Team Testing, Integration,

Implementation, Customer Testing, and

Updating. All of the modules can be

delivered to the customer sequentially to

reduce fault rate of the whole system and

decrease the project delivery time. After the

code is programmed by programmers, all

units of the code will be tested by tester

team. Afterwards, the source codes are

integrated with each other and the

integration testing and system testing will be

conducted by testers. Finally, the module

will be implemented on the customer’s

machine to perform an acceptance testing by

the customer. If the module has any problem

according to the user’s requirements then the

module will be updated and tested by the

team; otherwise, the next module will be

created until the whole product will be

delivered to the customer.

Maintenance is the final step in the proposed

development model. In this step, the code

could be updated based on any changes in

the customer’s requirements, technology,

and platforms. It can also solve some of the

challenges from the unpredicted problems

and hidden bugs.

5 Evaluation results

Table 1 represents the experimental results

related to some of my software projects in

the last decade. In the most cases, I have

attempted to use the proposed development

model to accomplish various steps of these

projects. However, this model has been

progressed during a long-term period of time

based on my experiences in developing

various software projects. Customer

80 Waterative Model: an Integration of the Waterfall and Iterative Software Development Paradigms

satisfaction score indicates that the

customers have highly been satisfied by

the development process.

Table 1. Experimental results

Project subject

Number

of

updates

Customer

satisfaction

score

1

Financial

accounting

software

7 85/100

2

Management

software for civil

engineering

34 95/100

3
Accounting

software for shops
5 90/100

4

Thesis management

software for

universities

4 100/100

5

Educational

scheduling software

for educational

institutes

6 100/100

6 Conclusions

A software developer should use a proper

software development paradigm to

develop software products from the

requirements phase to the maintenance

phase. All phases of the software

development life cycle (SDLC) are

defined and expressed by every

development model. The developer can

use various methods, tools, and

procedures of any model to facilitate the

development process of software

products.

This paper proposed a new software

development methodology, called

waterative model. It uses an integration

of the waterfall and iterative software

development paradigms, which uses all

phases of the SDLC framework through

an efficient process. The iterative model

is embedded into the waterfall model to

use advantages of both models. In the

most cases, large software projects can be

developed by this model via a long-term

development process. Evaluation results

indicated that the customer satisfaction

score was enhanced by using the

waterative development model in various

software projects.

I have used the proposed model in various

software projects in the last 15 years. My

experiences have demonstrated that this

model could be useful in the most projects,

especially large software products.

Therefore, I decided to present this model as

a new development platform to could be

used by other software development teams.

References

[1] R. Mall, Fundamentals of software

engineering. Delhi: PHI Learning Pvt.

Ltd., 2014.

[2] N. Fenton and J. Bieman, Software

metrics: a rigorous and practical ap-

proach. Boca Raton, Florida: CRC press,

2014.

[3] F. Tsui, O. Karam, and B. Bernal,

Essentials of software engineering.

Burlington, Massachusetts: Jones &

Bartlett Learning, 2016.

[4] E.J. Braude and M.E. Bernstein,

Software engineering: modern ap-

proaches. Long Grove, Illinois:

Waveland Press, 2016.

[5] B. Fitzgerald and K. -J. Stol,

“Continuous software engineering: A

road-map and agenda,” Journal of

Systems and Software, vol. 123, pp. 176-

189, 2017.

[6] M. Solari, S. Vegas, and N. Juristo,

“Content and structure of laboratory

packages for software engineering

experiments,” Information and Soft-ware

Technology, vol. 97, pp. 64-79, 2018.

[7] D.J. Mayhew, “The usability engineering

lifecycle,” CHI'99 Extended Ab-stracts

on Human Factors in Computing

Systems, New York City, New York:

ACM, pp. 147-148, 1999.

[8] Y. Bassil, “A simulation model for the

waterfall software development life

cycle,” The International Journal of

Engineering & Technology, vol. 2, no. 5,

pp. 742-749, 2012.

[9] S. Madgunda, U. Suman, G.S. Praneeth,

and R. Kasera, “Steps in re-quirement

stage of waterfall model,” International

Database Systems Journal, vol. X/2019 81

journal of computer & mathematical

sciences, vol. 4, no. 7, pp. 86-87,

2015.

[10] S.C. Ahluwalia, D.B. Bekelman,

A.K. Huynh, T.J. Prendergast, S.

Shreve, and K.A. Lorenz, “Barriers

and strategies to an iterative model of

advance care planning

communication,” American Journal of

Hospice and Pallia-tive Medicine, vol.

32, no. 8, pp. 817-823, 2015.

[11] B.W. Boehm, “A spiral model of

software development and

enhancement,” Computer, vol. 21, no.

5, pp. 61-72, 1988.

[12] B. Boehm, J. Lane, S.

Koolmanojwong, and R. Turner, The

Incremental Commitment Spiral

Model. Boston, Massachusetts:

Addison Wesley, 2014.

[13] B. Boehm, J.A. Lane, S.

Koolmanojwong, and R. Turner, The

incremental commitment spiral

model: Principles and practices for

successful systems and software. Boston,

Massachusetts: Addison-Wesley, 2014.

[14] S. Mathur and S. Malik,

“Advancements in the V-Model,”

International Journal of Computer

Applications, vol. 1, no. 12, pp. 29-34,

2010.

[15] G. Whyte and A. Bytheway, “The V-

model of service quality: an African case

study,” European Journal of Marketing,

vol. 51, no. 5/6, pp. 923-945, 2017.

[16] A. Finkelstein and J. Kramer, Software

engineering: a roadmap. New York City,

New York: ACM Press, 2000.

[17] J. Ludewig, “Models in software

engineering–an introduction,” Software

and Systems Modeling, vol. 2, no. 1, pp.

5-14, 2003.

Mohammad Samadi Gharajeh received ASc in Computer Software on 18

February 2005, BSc in Engineering of Computer Software Technology on

18 February 2009, and MSc in Computer Engineering – Computer Systems

Architecture on 3 February 2013. He has already developed various

software programs, simulations, intelligent systems, and research projects.

His research interests include software engineering, artificial intelligence,

soft computing, intelligent control, and embedded systems. He was a

Technical Program Committee member and a Reviewer in some of the

international conference proceedings. Besides, he is an Editorial Board member and a

Reviewer in some of the international scientific journals, a Lecturer of university, and an

IEEE Member now.

