Building a Spatial Database for Romanian Archaeological Sites

Aura-Mihaela MOCANU, Manole VELICANU Economic Informatics Department, Academy of Economic Studies Bucharest, ROMANIA mocanuaura@yahoo.com, mvelicanu@yahoo.com

Spatial databases are a new technology in the database systems which allow storing, retrieving and maintaining geospatial data. This paper describes the steps which we have followed to model, design and develop a spatial database for Romanian archaeological sites and their assemblies. The system analysis was made using the well known Entity-Relationship model; the system design included the conceptual, the external and the internal schemas design, and the system development meant developing the needed database objects and programs. The designed database allows users to load vector geospatial data about the archaeological sites in two distinct spatial reference systems WGS84 and STEREO70, temporal data about the historical periods and cultures, other descriptive data and documents as references to the archaeological objects.

Keywords: spatial databases, entity-relationship model, conceptual schema, external schema

1 Introduction

Spatial databases have the ability of storing and manipulating geospatial data. They are usually extensions of relational databases which contain special geometry objects with several mandatory attributes and methods defined in the Open Geospatial Consortium's (OGC) standard "Application objects", spatial indexing mechanism, operators and functions to make queries, joins and other spatial analysis operations.

Geospatial data means raster data (Earth photography's made either from satellite, either from plane) or vector data (points, lines, polygons which describe the location of the objects on the surface of the Earth and their outline).

Some spatial available database systems are: commercial software Oracle Spatial or IBM DB2 Spatial Extender, the open source spatial databases such as: PostgreSQL/PostGIS, Spatial Box, Ingress Geospatial, H2 Spatial, Spatial Lite, MySQL Spatial. Spatial databases store the geospatial data by providing either a proprietary object such as Oracle's object SDO_GEOMETRY, either assuring the support for the standard storage format well-known binary (WKB). Paper [1] describes a detailed comparative study between Oracle Spatial and PostgreSQL/PostGIS.

Store the geospatial data is not enough; one must retrieve the data also, and fast. That is why the spatially-enabled databases also have defined a special type of indexes, named RTree indexes, which we have noticed to be available in most of the spatial databases which we have analyzed, both commercial and open source.

Spatial operations such as spatial queries, create, update, insert, and delete operations, conversions, and operations on the map or analysis on grid cells are very well documented in paper [2].

We will further describe the steps we have followed in order to build a spatial database for our collaborators from the Romanian National History Museum (MNIR) to manage the archaeological sites and their assemblies.

2 System analyses - Entity-Relationship Model

We have started the analysis of the new database by finding out what kind of data is it needed to be maintained by the specialists about the archaeological sites and their assemblies, having as example an old application which was used by them, written in Microsoft Access.

Like in any other archaeology-related information system, the data model includes the following data categories [3]:

- temporal data historical periods and cultures are assigned to any archaeological site,
- spatial data location of the archaeological site (descriptive and vector geospatial data),
- archaeological objects description of archaeological sites and assemblies,
- documents attached to any site.

The most used technique to create the data model is the Entity-Relationship (ER). In order to create the ER diagram, we have identified first the entities (users. archaeological sites, assemblies, geographical coordinates, waters, counties, historical periods. historical cultures, assemblies' classes) and their attributes. The main entities and their attributes are described in below table.

Entity	Attribute	Description	
	id_sit	ID site	
	cod_siruta	SIRUTA code	
	cod_lmi	LMI code	
	cod_ran	RAN code	
	denumire	name of the site	
site	alternativ	another site's	
Site		name	
	ape	waters	
	punct	a point mark	
	repere	landmarks	
	sursa	site's references	
	observatii	observations	
ensem	id_ansambl	ID ensemble	
ble	u		
	denumire	name	
	clasa	ensemble's class	
	tip	ensemble's type	
	cercetare	research	
	reper_supl	landmark	
	inventar	inventory	
	perioada	historical period	
	cultura	historical culture	
	sursa	references	

Entity	Attribute	Description		
	observatii	observations		
	id_coordon	ID coordinate		
coordi	tip_date	data type (information about GPS receiver)		
nate	elevat	elevation		
	eroare	error		
	geom	geographical coordinates		
	observatii	observations		

After describing all the entities and their attributes, we have drawn the ER diagram (figure 1) with WebRatio tool, commercial software which supports the Web Modeling Language (WebML), whose purpose is the design of data intensive web sites. We have chosen this CASE tool because after building the database, a geoportal will be also designed.

The diagram has to be read as follows: one archaeological site is composed from one or more assemblies, which are loaded in the database by the system's users; everv site has some geographical coordinates registered; the geographical coordinates refer only not to archaeological sites, but also to waters or Romania's counties boundaries; the

archaeological assemblies dates from a certain historical period and culture, they belong to a certain ensemble class and they are part of a certain research program.

The relationships between the entities are described in below table:

Entity	Linkage	One/	Entity
	Phrase	Many	
Site	is composed	many	Ensemb
	from		le
Site	has assigned	many	Coordin
			ate
Site	is last	one	User
	maintained		
	by		
Coordi	refer to	one	Site
nate			
Coordi	refer to	one	Water
nate			
Coordi	refer to	one	County
nate			
Ensem	is part of	one	Site
ble			
Ensem	is last	one	User
ble	maintained		
	by		
Ensem	dates from	one	Period
ble			
Ensem	belongs to	one	Culture
ble			
Ensem	belongs to	one	Class
ble			
Ensem	is part of	one	Researc
ble			h
Period	belongs to	many	Ensemb
			le
Cultur	belongs to	many	Ensemb
e			le
Resear	studies	many	Ensemb
ch			le
Class	describes	many	Ensemb
			le
User	maintain	many	Site
User	maintain	many	Ensemb
			le

 Table 2. Relationships between entities

The "geom" attribute of "coordinate" entity is the vector geospatial data: points, lines or polygons representing the archaeological sites in two different spatial reference systems (SRS): WGS84 (which is the world's most used SRS) or STEREO 70 (which is Romania's most used SRS).

The geospatial data describing the Romania's counties and waters is loaded from a shapefile (.shp) provided by the Romanian geospatial community (http://earth.unibuc.ro/). The shapefiles are the ESRI's proprietary storage format for geospatial data.

3 System design

PostgreSQL/PostGIS was chosen to be used as the spatially-enabled database by analyzing the following decision factors:

- technical capabilities: it includes support for all of the functions and objects defined in the OpenGIS 'Simple Features for SQL' specification,
- documentation: it is available online with a lot of coding examples,
- support: it has an online bug tracking mechanism (http://trac.osgeo.org),
- ease of use: it is easy to install, easy to develop the database,
- usage rate: many scholars have used with success this database for their projects,
- price: open source tools are very interesting for the archaeologists who usually deal with low budget projects.

3.1 Conceptual Schema

The conceptual schema of the database is designed starting from the previous modeled ER diagram. Each entity from the ER model is transformed into a database table, and for each relationship foreign keys (FK) are defined. The conceptual schema will be improved step by step, following the normalization technique, until a balance is reached between the maintenance requirements and system's exploitation performance [4].

The corresponding database tables for the main entities which we have described

in the previous section are detailed in below table.

Column	Column	Data	P	F
descriptio	name	Туре	K	K
n				
ID site	id_sit	integer	Х	
SIRUTA	cod_sirut	integer		Х
Code	а			
LMI Code	cod_lmi	integer		Х
RAN	cod_ran	integer		Х
Code				
Name	denumire	text		
Alternativ	alternativ	text		
e name				
Point	punct	text		
Landmark	repere	text		
S	_			
Reference	sursa	text		
S				
Comment	observatii	text		
S				

Table 3. SI	TE table dese	cription
-------------	---------------	----------

Table 4. ASSEMBLIES table description

Column	Column	Data	P	F
description	name	Туре	K	K
ID site	id_sit	integer		Х
ID	id_ansam	integer	Х	
ensemble	blu	_		
Name	denumire	text		
ID	id_clasa	integer		Х
assemblies				
class				
ID	id_tip	integer		Х
assemblies				
types				
ID research	id_cercet	integer		Х
	are			
Landmark	reper_supl	text		
Inventory	inventar	text		
ID historical	id_perioa	integer		Х
period	da			
ID historical	id_cultura	integer		Х
culture				
References	sursa	text		
Comments	observatii	text		
Last	data_ulti	timesta		
mutation	ma_actua	mp		

Column	Column	Data	Р	F
description	name	Туре	K	K
date	liz			
Last	utiliz_ulti	text		
mutation	ma_actua			
user	liz			

Table 5. COORDINATES	table
description	

	1			
Column	Column	Data	P	\mathbf{F}
description	name	Туре	K	K
ID	id_coordo	integer	Х	
coordinate	nate			
ID sit	id_sit	integer		Х
Data type	tip_date	text		
(GPS				
receiver)				
Elevation	elevat	integer		
Error	eroare	numeri		
		c		
Geographic	geom	geomet		
al		ry		
coordinates				
Comments	observatii	text		

Because "geom" column of "coordinates" table is defined as a geometry data type column (being used to store vector geospatial data about the archaeological sites), it has to be included special PostGIS table in "geometry columns". This table defines: all the tables containing geometry columns, the spatial dimension (2, 3 or 4 dimensional) of the geometry columns, the ID of the spatial reference system used for the coordinate geometry, and the type of the spatial object (POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION).

The spatial reference systems which

could be assigned to the geospatial data stored in PostGIS are defined in PostGIS table named "spatial_ref_sys". This technical table lists over 3000 known spatial reference systems (SRS) and details needed to transform/reproject between them. The geospatial data which will be filled by the users of currently described system might be in the following spatial reference systems: WGS84 whose corresponding PostGIS SRID is 4326 and STEREO70 whose SRID is 31700. One can find out the Well-Known Text (WKT) representation of a certain SRS by using the following select statement:

se	lect	sr	text	from	spati	al_	ref	sys
where	srid	=	4326;	;				

"GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["E PSG","7030"]],TOWGS84[0,0,0,0,0,0,0],A UTHORITY["EPSG","6326"]],PRIMEM["Green wich",0,AUTHORITY["EPSG","8901"]],UNIT ["degree",0.01745329251994328,AUTHORIT Y["EPSG","9122"]],AUTHORITY["EPSG","43 26"]]"

The WKT representation of a spatial reference system offers a standard to describe, as a text, the information about the geospatial data projection system. The projection system must be specified in the geospatial data source (file or database), because it is very important especially when the data from different sources is used together. One can overlay on a map only layers in the same projection (or spatial reference system). The WGS84 (World Geodetic System of 1984) models the world as a spheroid. No ellipsoid/spheroid model perfectly the Earth, but corrections are made in order to get a better approximation for each territory. These special corrections of the initially spheroid are named datum [5]. In country the Stereographic 70 our (STEREO70) system was adopted.

3.2 External Schema

In order to draw maps in different spatial reference system, we have created several views (table 6) on the database table COORDINATES filtering the geospatial data by its type (point, line or polygon) and by the spatial reference system in which it was represented.

Table 6. Database views

View	Description
vw_point	The representation of the
_wgs	archaeological sites, as
	points, in 4326 projection
	(also known as WGS84).
vw_point	The representation of the
_stereo	archaeological sites, as
	points, in 31700 projection
	(also known as Stereo70).
vw_point	The representation of the
_google	archaeological sites, as
	points, in 900913 projection
	(also known as Web
	Mercator).
vw_polyg	The representation of the
on_wgs	archaeological sites, as
	polygons, in 4326 projection
	(also known as WGS84).
vw_polyg	The representation of the
on_stereo	archaeological sites, as
	polygons, in 31700 projection
	(also known as Stereo70).
vw_polyg	The representation of the
on_googl	archaeological sites, as
e	polygons, in 900913
	projection (also known as
	Web Mercator).

These views are important when the map layers will be defined in the Web Mapping Service (WMS) software, because one layer can be associated with a "geometry" database column only if this column contains data about one single type of geospatial data, in one single SRS. We will detail in section 4 of this paper how the geospatial data stored in the database is rendered on a map by using WMS software.

Regarding the security policy, there were designed two user group roles with different rights in the database. The select action on the tables is granted to user role "guest" and insert/update/delete actions are granted to the user role "admin". Each time a user is created, one of the two group roles ("guest" or "admin") will be granted to the user, so that the access to the database is done in a rigorous way. Also for security reasons, each change on the 3 main tables (archaeological sites, assemblies and coordinates) will trigger an insert action into a history table, so that the "admin" role user will know when was it done an update on these tables, by which user and what data did he modified.

3.3 Internal Schema

In this step we have defined RTree indexes for each table which contains geometry columns. RTree approximates each geometry through a *Minimum Bounding Rectangle (MBR)*. The Postgres query optimizer will consider using an RTree index whenever an indexed attribute is involved in a comparison using one of the following geometric operators: <<, &<, &>, >>, @, ~=, && which are explained in below table:

Table 7. Geometric operators

Operator	Description
&&	Overlaps?
~=	Same as?
a	Center
<<	Is strictly left of?
>>	Is strictly right of?
&<	Does not extend to the right
	of?
&>	Does not extend to the left
	of?

The disk space can be estimated in three ways: using special SQL functions (table 8), using vacuum information, and from the command line using the tools in contrib/oid2name. The SQL functions are the easiest to use and report information about tables, tables with indexes and long value storage (TOAST), databases, and tablespaces. Using psql on a recently vacuumed or analyzed database, queries could be written to see the disk usage of any table [6], such as:

SELECT relfilenode, relpages FROM
pg_class WHERE relname = `coordonate';

Each page is typically 8 kilobytes and the relfilenode value is of interest to examine the table's disk file directly.

Table 8. Database	Object Size
Functions	

Nomo	Doturn
Ivanie	Netul II
	Туре
pg_column_size(any)	int
pg_database_size(oid)	bigint
pg_database_size(name)	bigint
pg_relation_size(oid)	bigint
pg_relation_size(text)	bigint
pg_size_pretty(bigint)	text
pg_tablespace_size(oid)	bigint
pg_tablespace_size(name)	bigint
<pre>pg_total_relation_size(o id)</pre>	bigint
<pre>pg_total_relation_size(t ext)</pre>	bigint

4 System developments

We have first created the database tables, as shown in figure 2.

In PostGIS, there is used following syntax in order to add a geospatial column: AddGeometryColumn(<table_name>, <column name>, <srid>, <data type>,

<column_name>, <slid>, <data_type>,
<dimension number>)

For example, we have used the following statement in order to add "geom" column from "coordonate" table: AddGeometryColumn(coordonate, geom, 4326, point, 2);

The PostGIS storage format for the geometric object is Well Known Binary (WKB). The Well Known Binary Representation for Geometry (WKBGeometry) provides a portable representation of a geometric object as a contiguous stream of bytes. It permits geometric object to be exchanged between an SOL/CLI client and an SOLimplementation in binary form. The Wellknown Binary Representation for Geometry is obtained by serializing a geometric object as a sequence of numeric types drawn from the set {Unsigned Integer, Double} and then serializing each numeric type as a sequence of bytes using one of two well defined, standard, binary representations for numeric types (NDR, XDR) [7].

 Table 9. Integer codes for geometric types

Туре	Code
Geometry	0
Point	1
LineString	2
Polygon	3
MultiPoint	4
MultiLineString	5
MultiPolygon	6
GeometryCollection	7
CircularString	8
CompoundCurve	9
CurvePolygon	10
MultiCurve	11
MultiSurface	12
Curve	13
Surface	14
PolyhedralSurface	15
TIN	16

The master data tables which store the geospatial data regarding the Romanian counties and waters were loaded from an ESRI shapefile, into the database, using the *shp2pgsql* tool according to the below schema.

Fig. 3. Load geospatial data from a shapefile into the database

A GiST index was created on "coordonate" table:

CREATE INDEX idx_geo ON coordonate USING gist (geom);

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method that acts as a base template in which to implement arbitrary indexing schemes. B-trees, R-trees and many other indexing schemes can be implemented in GiST [6].

The views on "coordonate" table, used to split geospatial data by its type and SRS, were created using some PostGIS spatial functions, such as ST_TRANSFORM. For example, to create a view with all the POINT geospatial data, either in WGS84, either in STEREO70, and reprojected in Web Mercator SRS, we have used below statement:

```
CREATE OR REPLACE VIEW vw_point_google
AS
SELECT coordonate.id_sit,
sit.denumire, sit.cod_siruta,
sit.repere, sit.ape,
coordonate.tip_date,
st_transform(coordonate.geom, 900913)
AS geom, coordonate.tip_coordonate,
coordonate.elevat, coordonate.eroare,
coordonate.elevat, coordonate.eroare,
coordonate.observatii
FROM coordonate, sit
WHERE coordonate, sit
WHERE coordonate.id_sit = sit.id_sit
AND geometrytype(coordonate.geom) =
'POINT'::text;
```

PostGIS function ST TRANSFORM uses the open source PROJ4 library in order to reproject the geospatial data from one spatial reference system to another. PROJ4 is a cartographic projections library used by many other GIS tools to reproject the geospatial data from one spatial reference system (SRS) to another. This function returns a new geometry with its coordinates transformed to spatial reference system referenced by the SRID integer parameter. The destination SRID must exist in the "spatial_ref_sys" table.

```
Some history tables of the main
tables ("sit",
                "ansamble",
                             and
"coordonate") were created. These
history tables will be filled with
the
      old
           data
                    from
                           their
corresponding tables when
                            each
maintenance action will happen.
This
      automatically action
                              is
possible
          by
               developing
                             some
triggers.
```

The trigger will be associated with the specified table and will execute the specified function *funcname* when certain

events occur. The trigger can be specified to fire either before the operation is attempted on a row (before constraints are checked and the INSERT, UPDATE, OT DELETE is attempted) or after the operation has completed (after constraints are checked and the INSERT, UPDATE, OT DELETE has completed). If the trigger fires before the event, the trigger may skip the operation for the current row, or change the row being inserted (for INSERT and UPDATE operations only). If the trigger fires after the event, all changes, including the last insertion, update, or deletion, are "visible" to the trigger [6].

For example, the trigger which was developed for "coordonate" table:

```
CREATE TRIGGER coord_audit
  AFTER INSERT OR UPDATE OR DELETE
  ON coordonate
  FOR EACH ROW
 EXECUTE PROCEDURE
process coord audit();
CREATE OR REPLACE FUNCTION
process_coord_audit()
 RETURNS trigger AS
$BODY$
  BEGIN
   IF (TG_OP = 'DELETE') THEN
       INSERT INTO coordonate_hist
SELECT OLD.*;
      RETURN OLD;
    ELSIF (TG_OP = 'UPDATE') THEN
      INSERT INTO coordonate_hist
SELECT OLD.*;
       RETURN NEW;
    ELSIF (TG_OP = 'INSERT') THEN
      INSERT INTO coordonate_hist
SELECT NEW.*;
      RETURN NEW;
   END IF;
 RETURN NULL;
 END;
$BODY$
  LANGUAGE 'plpgsql' VOLATILE
  COST 100:
ALTER FUNCTION process_coord_audit()
OWNER TO postgres;
```

PL/pgSQL can be used to define trigger procedures. A trigger procedure is created with the **CREATE FUNCTION** command, declaring it as a function with no arguments and a return type of trigger. The function must be declared with no arguments even if it expects to receive arguments specified in **CREATE** **TRIGGER** - trigger arguments are passed via TG_ARGV.

In order to render the geospatial data about the archaeoloical sites on a map (figure 4), we have further configured the open source WMS GeoServer. The WMS has as output maps of spatially referenced dynamically from geographic data information. To make the interoperability possible between GeoServer and PostGIS, have defined in GeoServer a we connection to PostGIS database ("data store") by providing the database name, location, port; the layers of the map ("feature types") and the style in which the map will be drawn. In GeoServer, a feature type was created for each of the designed views containing the geospatial data. The style means how the layers will be drawn on the map: which colors and which symbols to use for our point or linestring or polygon data. To define a style, a XML based file named Style Layer Description (SLD) file must be developed. SLDs were developed for all the map layers, defining that the counties bounderies are drawn with black lines, the waters with blue lines and the archaeological sites with red dots (in case of POINT data) or red lines (in case of LINESTRING/POLYGON data).

Fig. 4. Map rendered by GeoServer for the geospatial data stored in PostGIS

5 Conclusions

In this paper, we have shown that the spatial databases are modeled and designed like any other database, drawing the ER

diagram, defining the conceptual, external and internal schemas, taking care though by one very important particularity: the "geometry" type column of some tables which store geospatial data as well. In order to use this kind of column further. when integrating the spatial database with Web Mapping Server (WMS), the а geospatial data has to be split by its type (point/linestring /polygon) and by its spatial reference system (SRS). Our proposal of creating different views for each type / SRS combination has proved to be an easy and efficient way for making possible the interoperability between PostGIS database and GeoServer WMS. Also, we have shown that the open source database PostGIS can successfully be used to develop a rigorous spatial database.

References

[1] D. Litan, A.M. Mocanu, S. Olaru, A. "Modern Apostu. Information Technologies Used In Market Research". Q^{th} Proceedings **WSEAS** of the International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS'10), pp. 245-250, Merida. Venezuela, December 14-16, 2010

[2] A. Velicanu. "Spatial Operations". *Database Systems Journal*, vol. 1, pp. 5-8, 2010

[3] E. Meyer, P.Grussenmeyer, J.P. Perrin, A. Durand and P.Drap. "A web information system for the management and the dissemination of Cultural Heritage data". *Journal of Cultural Heritage*, vol. 8 (4), pp. 396-411, 2010

[4] M. Velicanu, M. Muntean, I. Lungu, S. Ionescu, *Sisteme de baze de date*, Ed. Petrion, Bucharest, 2003

[5] M. Bădut, *Sisteme geoinformatice pentru electroenergetică*, Ed. Polirom, Iasi, 2008

[6] PostgreSQL, *PostgreSQL* 8.2.20 *Documentation*,

http://www.postgresql.org/docs/8.2/static/i ndex.html

[7] Open Geospatial Consortium, OpenGIS® Implementation Specification for Geographic information - Simple feature access - Part 1: Common

Information Systems integration, Programming languages.

architecture, http://www.opengeospatial.org/standards/s fa

Aura-Mihaela MOCANU has graduated The Bucharest Academy of Economic Studies, Faculty of Cybernetics, Statistics and Economic Informatics in 2007. She holds a Master diploma in Databases - Support for business from 2009 and in present she is a PhD Candidate in Economic Informatics with the Doctor's Degree Thesis: Software technologies to build a Geographical Information System for a public institution. Her areas of interest are: Geographical Information Systems, Databases,

Manole VELICANU is a Professor at the Economic Informatics Department at the Faculty of Cybernetics, Statistics and Economic Informatics from the Academy of Economic Studies of Bucharest. He has graduated the Faculty of

Economic Cybernetics in 1976, holds a PhD diploma in Economics from 1994 and starting with 2002 he is a PhD coordinator in the field of Economic Informatics. He is the author of 18 books in the domain of economic informatics, 64 published articles (among which 2 articles ISI indexed), 55 scientific papers published in conferences proceedings (among which 5 papers ISI indexed and 7 included in international databases) and 36 scientific papers presented at conferences, but unpublished. He participated (as director or as team member) in more than 40 research projects that have been financed from national research programs. He is a member of INFOREC professional association, a CNCSIS expert evaluator and a MCT expert evaluator for the program Cercetare de Excelenta - CEEX (from 2006). From 2005 he is co-manager of the master program Databases for Business Support. His fields of interest include: Databases, Design of Economic Information Systems, Database Management Systems, Artificial Intelligence, Programming languages.