
Database Systems Journal vol. VIII, no. 1/2017 3

Distributed algorithm to train neural networks using
the Map Reduce paradigm

Cristian Mihai BARCA 1, Claudiu Dan BARCA 2,

1 Electronics, Communications and Computers, University of Pitesti, Romania
2The Romanian-American University, Bucharest, Romania

With rapid development of powerful computer systems during past decade, parallel and
distributed processing becomes a significant resource for fast neural network training, even
for real-time processing. Different parallel computing based methods have been proposed in
recent years for the development of system performance. The two main methods are to
distribute the patterns that are used for training – training set level parallelism, or to
distribute the computation performed by the neural network – neural network level
parallelism. In the present research work we have focused on the first method.

Keywords: Artificial Neural Networks, Machine Learning ,Map-Reduce Hadoop, Distributed
System

Introduction
An Artificial Neural Network (ANN),

usually called neural network (NN), is a
mathematical or computational model
that is inspired by the structure and/or
functional aspects of biological neural
networks. From a biological point of
view, a neural network consists of an
interconnected group of artificial
neurons, and it processes information
using a connection approach to
computation. In most cases, an ANN is
an adaptive system that changes its
structure based on external or internal
information flowing through the network
during the learning phase. Specifically
and technically saying, in a neural
network model simple nodes (also called
neurons or units), are connected together
to form a directed grap hence the term
neural network. While a neural network
does not have to be structurally adaptive
by itself, its practical use comes with
algorithms designed to alter the weights
of the connections in the network to
produce the desired signal flow.
Nowadays, neural networks are perceived
as non-linear statistical data modeling
tools; in the past the linearity of the
neural networks was considered an
inconvenience. They are usually used to

model complex relationships between inputs
and outputs or to find patterns in data.
Neural networks are applicable in virtually
every situation in which a relationship
between the predictor variables
(independents, inputs) and predicted
variables (dependents, outputs) exists, even
when that relationship is very complex [1,
2]. In the artificial intelligence field, neural
networks have been successfully applied to
identification and control (vehicle control,
process control), game-playing and decision
making (backgammon, chess, racing),
pattern recognition (radar systems, face
identification, object recognition), sequence
recognition (gesture, speech, handwritten
text recognition), medical diagnosis,
financial applications, data mining (or
knowledge discovery in databases),
visualization and e-mail spam filtering [3].
For such neural networks practical
applications, fast response to external events
within short time are highly demanded and
expected. However, the extensively used
gradient descent based learning algorithms
obviously cannot satisfy real-time learning
needs in many applications, especially large
scale application and when higher learning
accuracy and generalization performance are
required [4]. This drawback made artificial
neural networks to lose their scientific

1

4 Distributed algorithm to train neural networks using the Map Reduce paradigm

enthusiasm, but not for long time. As the
hardware performances (multithreading,
multicore, big clusters and grids) began
to increase so the neural networks
regained interest[5].

2. Challenges, Motivation and Aim

When applied on a large scale, large scale
learning system, in cases such as Netflix
[6] or Google spam filters [7], machine
learning mechanisms require massive
amounts of computational resources.
These resources are also needed when we
talk about neural networks and only
because of the training phase that passes
through an iterative process with a very
slow convergence rate. For daily
problems where the training data is large,
training times of the order of days and
weeks are not unusual on serial
computers. This has been the main
problem for artificial neural network use
in real-world applications and has also
made its wider acceptability decrease. At
first sight the graph structure of a neural
network may reveal several degrees of
parallelism within it, such as weight
parallelism, node parallelism, and layer
parallelism, but because of its strong
dependencies between layers (a complete
feedforward network connects weights
from any node of one layer with any node
of a next layer) it makes the whole
problem very difficult to apply on a large
scale distributed system (a network-
based parallelism requires fine grained
synchronization and communication –
high overhead). Also, the size of the
training set raises a challenge for the
computational complexity of the neural
network learning algorithm. This is more
obvious in cases where training data is
being continuously generated, and it must
be absorbed quickly by the model, or else
the model will become stale. One good
example of such a situation is monitoring
a person living at home [8, 9], with a set
of sensors, in the context of AAL
(Ambient Assisted Living [10]).

Assuming that we are building a classifier
that announces the caregivers when the
monitored person is in a dangerous situation,
what is normal or not can change on a daily
basis, especially when the person suffers a
chronic illness with complications.
Recent research has shown the possibility of
using distributed computing for machine
learning, known as distributed learning.
While in the past the whole attention has
been drawn over the neural network training
with multiprocessors or multicore computers
using network level parallelism or pipeline
[4, 11, 12, 13], now is pointed on using large
scale distributed machines with training set
parallelism [14, 15]. Basically, a training set
parallelism means that the training set is
split across multiple processing units. Each
unit has a local copy of data-subset and
collects change-values (deltas) for the given
training patterns. After that, the data is
updated using different aggregation
methods. By far, for processing large
distributed data Map-Reduce seems to be the
right choice – it is highly scalable and also
has a great potential in distributed learning
[16]. Map-Reduce is a framework
introduced by Google in 2004 for processing
highly distributable problems across huge
datasets using a large number of computers
(nodes), collectively referred to as a cluster
or a grid. Computational processing can
occur on data stored either in a filesystem
(unstructured) or in a database (structured)
[17]. It allows programmers to write
functional- style (using two functions map
and reduce) code that is automatically
parallelized and scheduled in a distributed
system. Google's Map Reduce
implementation runs on a large commodity
cluster (simple machines wired up in a local
network) and is highly scalable: a typical
Map-Reduce job processes many terabytes
of data on thousands of machines. Software
engineers find the system easy to use:
hundreds of Map- Reduce programs have
been implemented and upwards of one
thousand Map-Reduce jobs are executed on
Google's clusters every day [18]. However,
there are also cases where researchers use in

Database Systems Journal vol. VIII, no. 1/2017 5

their experiments Phoenix [19] or
Hadoop [16] for the implementation of
Map-Reduce and in others they
developed custom frameworks using
PThreads or other multicore methods [20]
(multicore Map-Reduce frameworks).

3. Distributed Learning Algorithms

On top of the parallel architecture comes
the machine learning algorithm. In order
to use Map-Reduce, a machine learning
algorithm must be mapped on both the
map-stage and reduce-stage. One parallel
programming method [20] that is easily
applied to many different learning
algorithms is to adapt them in a certain
“summation form”, which allows easy
parallelization on multicore and
distributed computers. Algorithms that
calculate sufficient statistics or gradients
fit this model, and since these
calculations may be batched, they are
expressible as a sum over data points.
Divide the dataset into as many pieces as
there are cores, give each core its share of
the data to sum the equations over, and
aggregate the results at the end. This form
of the algorithm is the “summation form”
and allows adapting Map-Reduce
paradigm to demonstrate this parallel
speed up technique on a variety of
learning algorithms. A brief description
of backpropagation's (NN learning
algorithm) Map-Reduce adaptation is
presented by Cheng-Tao Chu & Co. [20].
The authors define a simple network
structure (with one hidden layer) and use
each mapper to propagate subsets of data
through the networks (each mapper has
its own network) and to compute the
partial gradient for each of the weights in
the network when the error is back
propagated. After that, reducers sums the
partial gradients from each mapper and
do a batch gradient descent to update the
weights of the network. In this manner
backpropagation performs a batch
learning phase, otherwise updating a set
of values after each training example

creates a bottleneck for parallelization. The
authors have implemented their adapted
algorithm on top of a custom multicore
Map- Reduce framework – their aim was to
prove that the “summation form” of a
learning algorithm allows an easy
parallelization on multicore computers.

3.1 Research Approach

During our research we covered many
scientific papers with topics about using
neural networks on large scale, read
thoroughly and understood different learning
algorithms and also dug for several
comercial neural training engines' insights.
However, it is clear by now that we are
going to focus on the idea of shaping a batch
neural network training algorithm into a
Map-Reduce form – applying the same map
phase (split the data between mappers and
process the partial gradient of its local
network's weights) and for sure calling a
complete reduce stage, instead of combiners,
with the appropiate weight update function,
which depends on the algorithm (we acheive
parallel batch-training and parallel update).
The approach followed by this research is
to:
- have a custom extensible/modular engine
for neural network training (for feedforward
networks) that will be easy to adapt with
Hadoop's framework (we would have used
Encog for this phase, but it is well
encapsulated and a reverse engineering
would have taken a long time)
-add backpropagation, batch
backpropagation and resilient
backpropagation support in the engine, error
plotting mechanism and object based run
configuration (set up some specific members
of an object, eg. input path, maximum
number of epochs to train, etc, and send it to
the base class)
-adapt resilient backpropagation to a Map-
Reduce form and do analysis of large data
by applying multiple identical neural
networks to learn several sub dataset
-use Hadoop's Map-Reduce implementation
(but keeping the same interfaces, we want

6 Distributed algorithm to train neural networks using the Map Reduce paradigm

both serial and distributed methods to be
integrated under the same base
application)
-find a different mechanism than HDFS
(hadoop distributed filesystem) to pass
the internal data of a neural network to a
mapper/reducer (weights, errors, network
structure),
e.g. Cassandra Database
-exploit at maximum capacity the reduce
stage of the Map-Reduce paradigm (not
just a single reducer) by performing a
parallel update (almost 30%
computational size) of the neural network
-find datasets for accuracy, consistency,
convergence, speed and scalability tests;
the datasets used in our experiments will
be from publicly available projects, will
cover many of neural network's practice
usage (classification, detection,
prediction, etc) and some of them will be
large enough to demonstrate our
framework's performances (obtain
speedup with Map-Reduce).

3.2. Algorithms Research

As one would believe there is not a single
algorithm for designing a neural network
model, each of the available with its own
advantages and disadvantages. The main

difference between them lies in formulation
of how to alter the weights of the neurons
and in the relations of the neurons to their
environment [4]. Though, we restrained our
view just on two of them that we
encountered during our research:
backpropagation and resilient back-
propagation.

4. Resilient Backpropagation in Map-
Reduce Form

Resilient backpropagation(Rprop)is a
learning scheme that solves the
convergence's issue of the batch
backpropagation algorithm. The difference
between these two methods resides in the
update function of the weight, which has the
following features [21]:
• eliminates the negative influence of
the size of the gradient on the weight step
• the direction of the weight update is
indicated by the sign of the gradient

We know from [21] he previous sections
that the resilient backpropagation algorithm
respects the summation form (batch
learning), so now let us examine each stage
of our rprop Map-Reduce form like we did
in the word count example (Figure 1):

Fig. 1. Map-Reduce applied on resilient backpropagation algorithm

Database Systems Journal vol. VIII, no. 1/2017 7

Data split
-the input data is split in equal size
chunks of training vectors ('\n' separator)
Map
- each chunk is taken by a mapper
and independently trained with the
updated neural network pulled from the
system – partial gradients are computed
for every arc of the neural network and
also the partial sum of the output neurons'
squared error; each mapper outputs pairs
of values <arc i, gp> - where arci is an
output arc from nodei to the nodej (arci =
<ni,nj>), gp the partial gradient
associated with arc i - and pairs of values
<epx> meaning the partial sum of the
output neuron nx squared errors
Partition
- when the map stage is finished the
collection of output pairs <arci, gp> is
partitioned by the neuron ni defined in
arci ; we will have as many list of pairs
<arci, <gp, … gp>> as different neurons
ni are in the collection; analogue for
<epx>
Shuffle
- each list of <arci, <gp, … gp>> is sent
to only one available reducer
Reduce
- sums (aggregates) the partial gradients
from the given list to compute the total
gradient of its correspondent arc; the final
gradient is used to update the arc’s
weight to a new value that will be (along
with the rest of the results from the other
reducers) saved into the system in order
to be used in the next training epoch.

5. The classes Driver – Mapper –
Reducer

 Basically, our three main classes (Driver
– Mapper – Reducer) respect the same
structure like those presented above, but
it is obvious that they are more complex
(figure2). We are now going to briefly
explain them from a technical point of
view in the following paragraphs:

Driver: Our driver reads the run parameters
XML file uploaded by the user on the cluster
(manually or using the GUI client) and then
creates a network object structure (using the
same RunParams class that fnn uses) based
on the specified values from the file (input
neurons, number of middle layers, etc). In
the same time a shorter XML file with just
the names of the experiment and network is
copied to Hadoop's Distributed Cache [22].
Mappers need to know from where they are
going to read the network structure and the
updated weights' values during their phase
(the network and experiment names are
names of Cassandra column families). On
start, the neural network is initialized with
random values and is pushed into the
NetStruct Cassandra's column family for
further use in the next phases. One step
before pushing the network we try to
establish a connection to the database and
also we check the presence of the key space
we use. If there is no such keyspace a new
one with the default name 'mrtsdb' is created
automatically. After that, our driver starts
the map-reduce cycle by launching
computational jobs until it achieves the
desired network's error or the maximum
number of epochs (both values are taken
from the XML file). At the end of the cycle
we save the resulted neural network in
Cassandra's NetSave column family.
Mapper
In the current framework's version our
mapper takes the input from HDFS (in a
future version it may also take the input
directly from Cassandra Database). We use
the default TextInputFormat to get chunks
delimited by the carriage return symbol
('\n'). Each chunk represents an equal set of
training vectors delimited by “#” symbol –
the dataset is manually parsed prior to its
upload on HDFS. Before reading the input
data we use the file copied to the Distributed
Cache to know the location of the network
structure with the updated values from
Cassandra (or the initial ones if is the first
map-stage run). From an input chunk we
extract the training vectors and we train
them with the updated local network (using

8 Distributed algorithm to train neural networks using the Map Reduce paradigm

fnn component in a lightweight version
without plotting features). Once an epoch
has finished we collect the partial
gradients and the sum of squared errors,
values that we pass in a pair <key,value>
formation to the following stage.
Reducer
Our reducer receives the list <key,
<values...>> partitioned and sorted by the
shuffle and sort stage. A key means a
node and the values represent serialized
internal objects which contain
information (weight value, gradient, and
so on) about the arcs that start from the
corespondent key- node. The only things
that a reducer does are: aggregates data to
obtain a global value (upon all the
mappers) and updates the weights or the
output node squared error, using the
previous arc values and the global
computed value (we query Cassandra to
retrieve those data).

Fig. 2.Mrts component (internal workflow, driver

Distributed algorithm to train neural networks using the Map Reduce paradigm

fnn component in a lightweight version –
Once an epoch

has finished we collect the partial
gradients and the sum of squared errors,
values that we pass in a pair <key,value>

Our reducer receives the list <key,
<values...>> partitioned and sorted by the

uffle and sort stage. A key means a
node and the values represent serialized
internal objects which contain
information (weight value, gradient, and
so on) about the arcs that start from the

node. The only things
aggregates data to

obtain a global value (upon all the
mappers) and updates the weights or the
output node squared error, using the
previous arc values and the global
computed value (we query Cassandra to

6. Workflow

The initial workflow was based on a
simplified diagram modelled
language notation (figure 3). After we went
gone deeper into the implementation, we
reshaped the workflow using proper
technical notations (pair notations for the get
and put operations implemented
component – figure 4). It helped us to define
exactly the way we want our software
framework to work, without knowing the
hardware infrastructure we are going to
experiment on. We also used this diagram to
separate concerns between cust
components, for example: client (mrts
client), database support (cassdb), import
export (mrts-io), driver – mapper
(mrts), and so on.
In a real scenario our project works as
follows:

Mrts component (internal workflow, driver-mapper-reduce cycle)

Distributed algorithm to train neural networks using the Map Reduce paradigm

workflow was based on a
modelled with a natural

). After we went
gone deeper into the implementation, we
reshaped the workflow using proper
technical notations (pair notations for the get

plemented in cassdb
). It helped us to define

exactly the way we want our software
framework to work, without knowing the
hardware infrastructure we are going to
experiment on. We also used this diagram to
separate concerns between custom
components, for example: client (mrts-
client), database support (cassdb), import-

mapper – reducer

In a real scenario our project works as

reduce cycle)

Database Systems Journal vol. VIII

• A researcher sets an experiment and
starts the training pr
experiment is defined using a GUI
set the neural network structure (number
of layers and neurons), training
parameters (maximum number of epochs,
neural network target error,
input path and the data output path (for
extracting and saving the network on
local computer – in CSV [
serialized format). All of the
experiment’s configuration, including the

Fig. 3.

Fig. 4. Extended Workflow

VIII, no. 1/2017

A researcher sets an experiment and
starts the training process. The
experiment is defined using a GUI – we

network structure (number
of layers and neurons), training
parameters (maximum number of epochs,
neural network target error, etc.), the data
input path and the data output path (for

ting and saving the network on
in CSV [23] or a

serialized format). All of the
experiment’s configuration, including the

network's structure, will be written to a .xml
formatted file, which will be sent to the
Hadoop cluster along with the
command.

• The request to start the training process is
received by the Driver which will have the
job to:
- push the network structure in Cassandra
- initialize the network’s weights and save
them in Cassandra

 Basic Workflow – without technical notations

Extended Workflow – with specific get/put notations (Symbol “?” represents a wildcar
integer value bellow or equal to 0)

 9

network's structure, will be written to a .xml
formatted file, which will be sent to the
Hadoop cluster along with the start

The request to start the training process is
received by the Driver which will have the

push the network structure in Cassandra
initialize the network’s weights and save

without technical notations

with specific get/put notations (Symbol “?” represents a wildcard

