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With rapid development of powerful computer systems during past decade, parallel and 
distributed processing becomes a significant resource for fast neural network training, even 
for real-time processing. Different parallel computing based methods have been proposed in 
recent years for the development of system performance. The two main methods are to 
distribute the patterns that are used for training – training set level parallelism, or to 
distribute the computation performed by the neural network – neural network level 
parallelism. In the present research work we have focused on the first method. 
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Introduction 
An Artificial Neural Network (ANN), 

usually called neural network (NN), is a 
mathematical or computational model 
that is inspired by the structure and/or 
functional aspects of biological neural 
networks. From a biological point of 
view, a neural network consists of an 
interconnected group of artificial 
neurons, and it processes information 
using a connection approach to 
computation. In most cases, an ANN is 
an adaptive system that changes its 
structure based on external or internal 
information flowing through the network 
during the learning phase. Specifically 
and technically saying, in a neural 
network model simple nodes (also called 
neurons or units), are connected together 
to form a directed grap hence the term 
neural network. While a neural network 
does not have to be structurally adaptive 
by itself, its practical use comes with 
algorithms designed to alter the weights 
of the connections in the network to 
produce the desired signal flow. 
Nowadays, neural networks are perceived 
as non-linear statistical data modeling 
tools; in the past the linearity of the 
neural networks was considered an 
inconvenience. They are usually used to 

model complex relationships between inputs 
and outputs or to find patterns in data. 
Neural networks are applicable in virtually 
every situation in which a relationship 
between the predictor variables 
(independents, inputs) and predicted 
variables (dependents, outputs) exists, even 
when that relationship is very complex [1, 
2]. In the artificial intelligence field, neural 
networks have been successfully applied to 
identification and control (vehicle control, 
process control), game-playing and decision 
making (backgammon, chess, racing), 
pattern recognition (radar systems, face 
identification, object recognition), sequence 
recognition (gesture, speech, handwritten 
text recognition), medical diagnosis, 
financial applications, data mining (or 
knowledge discovery in databases), 
visualization and e-mail spam filtering [3]. 
For such neural networks practical 
applications, fast response to external events 
within short time are highly demanded and 
expected. However, the extensively used 
gradient descent based learning algorithms 
obviously cannot satisfy real-time learning 
needs in many applications, especially large 
scale application and when higher learning 
accuracy and generalization performance are 
required [4]. This drawback made artificial 
neural networks to lose their scientific 
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enthusiasm, but not for long time. As the 
hardware performances (multithreading, 
multicore, big clusters and grids) began 
to increase so the neural networks 
regained interest[5]. 
 
2.  Challenges, Motivation and Aim  
 
When applied on a large scale, large scale 
learning system, in cases such as Netflix 
[6] or Google spam filters [7], machine 
learning mechanisms require massive 
amounts of computational resources. 
These resources are also needed when we 
talk about neural networks and only 
because of the training phase that passes 
through an iterative process with a very 
slow convergence rate. For daily 
problems where the training data is large, 
training times of the order of days and 
weeks are not unusual on serial 
computers. This has been the main 
problem for artificial neural network use 
in real-world applications and has also 
made its wider acceptability decrease. At 
first sight the graph structure of a neural 
network may reveal several degrees of 
parallelism within it, such as weight 
parallelism, node parallelism, and layer 
parallelism, but because of its strong 
dependencies between layers (a complete 
feedforward network connects weights 
from any node of one layer with any node 
of a next layer) it makes the whole 
problem very difficult to apply on a large 
scale distributed system (a network- 
based parallelism requires fine grained 
synchronization and communication – 
high overhead). Also, the size of the 
training set raises a challenge for the 
computational complexity of the neural 
network learning algorithm. This is more 
obvious in cases where training data is 
being continuously generated, and it must 
be absorbed quickly by the model, or else 
the model will become stale. One good 
example of such a situation is monitoring 
a person living at home [8, 9], with a set 
of sensors, in the context of AAL 
(Ambient Assisted Living [10]). 

Assuming that we are building a classifier 
that announces the caregivers when the 
monitored person is in a dangerous situation, 
what is normal or not can change on a daily 
basis, especially when the person suffers a 
chronic illness with complications. 
Recent research has shown the possibility of 
using distributed computing for machine 
learning, known as distributed learning. 
While in the past the whole attention has 
been drawn over the neural network training 
with multiprocessors or multicore computers 
using network level parallelism or pipeline 
[4, 11, 12, 13], now is pointed on using large 
scale distributed machines with training set 
parallelism [14, 15]. Basically, a training set 
parallelism means that the training set is 
split across multiple processing units. Each 
unit has a local copy of data-subset and 
collects change-values (deltas) for the given 
training patterns. After that, the data is 
updated using different aggregation 
methods. By far, for processing large 
distributed data Map-Reduce seems to be the 
right choice – it is highly scalable and also 
has a great potential in distributed learning 
[16]. Map-Reduce is a framework 
introduced by Google in 2004 for processing 
highly distributable problems across huge 
datasets using a large number of computers 
(nodes), collectively referred to as a cluster 
or a grid. Computational processing can 
occur on data stored either in a filesystem 
(unstructured) or in a database (structured) 
[17]. It allows programmers to write 
functional- style (using two functions map 
and reduce) code that is automatically 
parallelized and scheduled in a distributed 
system. Google's Map Reduce 
implementation runs on a large commodity 
cluster (simple machines wired up in a local 
network) and is highly scalable: a typical 
Map-Reduce job processes many terabytes 
of data on thousands of machines. Software 
engineers find the system easy to use: 
hundreds of Map- Reduce programs have 
been implemented and upwards of one 
thousand Map-Reduce jobs are executed on 
Google's clusters every day [18]. However, 
there are also cases where researchers use in 



Database Systems Journal vol. VIII, no. 1/2017  5 

 

their experiments Phoenix [19] or 
Hadoop [16] for the implementation of 
Map-Reduce and in others they 
developed custom frameworks using 
PThreads or other multicore methods [20] 
(multicore Map-Reduce frameworks). 
 
3. Distributed Learning Algorithms 
 
On top of the parallel architecture comes 
the machine learning algorithm. In order 
to use Map-Reduce, a machine learning 
algorithm must be mapped on both the 
map-stage and reduce-stage. One parallel 
programming method [20] that is easily 
applied to many different learning 
algorithms is to adapt them in a certain 
“summation form”, which allows easy 
parallelization on multicore and 
distributed computers. Algorithms that 
calculate sufficient statistics or gradients 
fit this model, and since these 
calculations may be batched, they are 
expressible as a sum over data points. 
Divide the dataset into as many pieces as 
there are cores, give each core its share of 
the data to sum the equations over, and 
aggregate the results at the end. This form 
of the algorithm is the “summation form” 
and allows adapting Map-Reduce 
paradigm to demonstrate this parallel 
speed up technique on a variety of 
learning algorithms. A brief description 
of backpropagation's (NN learning 
algorithm) Map-Reduce adaptation is 
presented by Cheng-Tao Chu & Co. [20]. 
The authors define a simple network 
structure (with one hidden layer) and use 
each mapper to propagate subsets of data 
through the networks (each mapper has 
its own network) and to compute the 
partial gradient for each of the weights in 
the network when the error is back 
propagated. After that, reducers sums the 
partial gradients from each mapper and 
do a batch gradient descent to update the 
weights of the network. In this manner 
backpropagation performs a batch 
learning phase, otherwise updating a set 
of values after each training example 

creates a bottleneck for parallelization. The 
authors have implemented their adapted 
algorithm on top of a custom multicore 
Map- Reduce framework – their aim was to 
prove that the “summation form” of a 
learning algorithm allows an easy 
parallelization on multicore computers. 
 
3.1 Research Approach 
 
During our research we covered many 
scientific papers with topics about using 
neural networks on large scale, read 
thoroughly and understood different learning 
algorithms and also dug for several 
comercial neural training engines' insights. 
However, it is clear by now that we are 
going to focus on the idea of shaping a batch 
neural network training algorithm into a 
Map-Reduce form – applying the same map 
phase (split the data between mappers and 
process the partial gradient of its local 
network's weights) and for sure calling a 
complete reduce stage, instead of combiners, 
with the appropiate weight update function, 
which depends on the algorithm (we acheive 
parallel batch-training and parallel update). 
The approach followed by this research is 
to: 
- have a custom extensible/modular engine 
for neural network training (for feedforward 
networks) that will be easy to adapt with 
Hadoop's framework (we would have used 
Encog for this phase, but it is well 
encapsulated and a reverse engineering 
would have taken a long time) 
-add backpropagation, batch 
backpropagation and resilient 
backpropagation support in the engine, error 
plotting mechanism and object based run 
configuration (set up some specific members 
of an object, eg. input path, maximum 
number of epochs to train, etc, and send it to 
the base class) 
-adapt resilient backpropagation to a Map-
Reduce form and do analysis of large data 
by applying multiple identical neural 
networks to learn several sub dataset  
-use Hadoop's Map-Reduce implementation 
(but keeping the same interfaces, we want 
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both serial and distributed methods to be 
integrated under the same base 
application)  
-find a different mechanism than HDFS 
(hadoop distributed filesystem) to pass 
the internal data of a neural network to a 
mapper/reducer (weights, errors, network 
structure),  
e.g. Cassandra Database 
-exploit at maximum capacity the reduce 
stage of the Map-Reduce paradigm (not 
just a single reducer) by performing a 
parallel update (almost 30% 
computational size) of the neural network  
-find datasets for accuracy, consistency, 
convergence, speed and scalability tests; 
the datasets used in our experiments will 
be from publicly available projects, will 
cover many of neural network's practice 
usage (classification, detection, 
prediction, etc) and some of them will be 
large enough to demonstrate our 
framework's performances (obtain 
speedup with Map-Reduce). 
 
3.2. Algorithms Research  
 
As one would believe there is not a single 
algorithm for designing a neural network 
model, each of the available with its own 
advantages and disadvantages. The main 

difference between them lies in formulation 
of how to alter the weights of the neurons 
and in the relations of the neurons to their 
environment [4]. Though, we restrained our 
view just on two of them that we 
encountered during our research: 
backpropagation and resilient back-
propagation. 
 
4. Resilient Backpropagation in Map-
Reduce Form 
 
Resilient backpropagation(Rprop)is a 
learning scheme that solves the 
convergence's issue of the batch 
backpropagation algorithm. The difference 
between these two methods resides in the 
update function of the weight, which has the 
following features [21]: 
• eliminates the negative influence of 
the size of the gradient on the weight step  
• the direction of the weight update is 
indicated by the sign of the gradient 
 
We know from [21] he previous sections 
that the resilient backpropagation algorithm 
respects the summation form (batch 
learning), so now let us examine each stage 
of our rprop Map-Reduce form like we did 
in the word count example (Figure 1): 

 

 
Fig. 1. Map-Reduce applied on resilient backpropagation algorithm 
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Data split 
-the input data is split in equal size 
chunks of training vectors ('\n' separator)  
Map 
- each chunk is taken by a mapper 
and independently trained with the 
updated neural network pulled from the 
system – partial gradients are computed 
for every arc of the neural network and 
also the partial sum of the output neurons' 
squared error; each mapper outputs pairs 
of values <arc i, gp> - where arci is an 
output arc from nodei to the nodej (arci = 
<ni,nj>), gp the partial gradient 
associated with arc i - and pairs of values 
<epx> meaning the partial sum of the 
output neuron nx squared errors 
Partition 
- when the map stage is finished the 
collection of output pairs <arci, gp> is 
partitioned by the neuron ni defined in 
arci ; we will have as many list of pairs 
<arci, <gp, … gp>> as different neurons 
ni are in the collection; analogue for 
<epx> 
Shuffle 
- each list of <arci, <gp, … gp>> is sent 
to only one available reducer 
Reduce 
- sums (aggregates) the partial gradients 
from the given list to compute the total 
gradient of its correspondent arc; the final 
gradient is used to update the arc’s 
weight to a new value that will be (along 
with the rest of the results from the other 
reducers) saved into the system in order 
to be used in the next training epoch. 
 
5.  The classes Driver – Mapper – 
Reducer 
 
 Basically, our three main classes (Driver 
– Mapper – Reducer) respect the same 
structure like those presented above, but 
it is obvious that they are more complex 
(figure2). We are now going to briefly 
explain them from a technical point of 
view in the following paragraphs: 
 

Driver: Our driver reads the run parameters 
XML file uploaded by the user on the cluster 
(manually or using the GUI client) and then 
creates a network object structure (using the 
same RunParams class that fnn uses) based 
on the specified values from the file (input 
neurons, number of middle layers, etc). In 
the same time a shorter XML file with just 
the names of the experiment and network is 
copied to Hadoop's Distributed Cache [22]. 
Mappers need to know from where they are 
going to read the network structure and the 
updated weights' values during their phase 
(the network and experiment names are 
names of Cassandra column families). On 
start, the neural network is initialized with 
random values and is pushed into the 
NetStruct Cassandra's column family for 
further use in the next phases. One step 
before pushing the network we try to 
establish a connection to the database and 
also we check the presence of the key space 
we use. If there is no such keyspace a new 
one with the default name 'mrtsdb' is created 
automatically. After that, our driver starts 
the map-reduce cycle by launching 
computational jobs until it achieves the 
desired network's error or the maximum 
number of epochs (both values are taken 
from the XML file). At the end of the cycle 
we save the resulted neural network in 
Cassandra's NetSave column family. 
Mapper 
In the current framework's version our 
mapper takes the input from HDFS (in a 
future version it may also take the input 
directly from Cassandra Database). We use 
the default TextInputFormat to get chunks 
delimited by the carriage return symbol 
('\n'). Each chunk represents an equal set of 
training vectors delimited by “#” symbol – 
the dataset is manually parsed prior to its 
upload on HDFS. Before reading the input 
data we use the file copied to the Distributed 
Cache to know the location of the network 
structure with the updated values from 
Cassandra (or the initial ones if is the first 
map-stage run). From an input chunk we 
extract the training vectors and we train 
them with the updated local network (using 
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fnn component in a lightweight version 
without plotting features). Once an epoch 
has finished we collect the partial 
gradients and the sum of squared errors, 
values that we pass in a pair <key,value> 
formation to the following stage. 
Reducer 
Our reducer receives the list <key, 
<values...>> partitioned and sorted by the 
shuffle and sort stage. A key means a 
node and the values represent serialized 
internal objects which contain 
information (weight value, gradient, and 
so on) about the arcs that start from the 
corespondent key- node. The only things 
that a reducer does are: aggregates data to 
obtain a global value (upon all the 
mappers) and updates the weights or the 
output node squared error, using the 
previous arc values and the global 
computed value (we query Cassandra to 
retrieve those data). 
 
 

Fig. 2.Mrts component (internal workflow, driver
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fnn component in a lightweight version – 
Once an epoch 

has finished we collect the partial 
gradients and the sum of squared errors, 
values that we pass in a pair <key,value> 

 

Our reducer receives the list <key, 
<values...>> partitioned and sorted by the 

uffle and sort stage. A key means a 
node and the values represent serialized 
internal objects which contain 
information (weight value, gradient, and 
so on) about the arcs that start from the 

node. The only things 
aggregates data to 

obtain a global value (upon all the 
mappers) and updates the weights or the 
output node squared error, using the 
previous arc values and the global 
computed value (we query Cassandra to 

6. Workflow   
 
The initial workflow was based on a 
simplified diagram modelled
language notation (figure 3). After we went 
gone deeper into the implementation, we 
reshaped the workflow using proper 
technical notations (pair notations for the get 
and put operations implemented
component – figure 4). It helped us to define 
exactly the way we want our software 
framework to work, without knowing the 
hardware infrastructure we are going to 
experiment on. We also used this diagram to 
separate concerns between cust
components, for example: client (mrts
client), database support (cassdb), import
export (mrts-io), driver – mapper 
(mrts), and so on. 
In a real scenario our project works as 
follows: 

Mrts component (internal workflow, driver-mapper-reduce cycle)

Distributed algorithm to train neural networks using the Map Reduce paradigm 

workflow was based on a 
modelled with a natural 

). After we went 
gone deeper into the implementation, we 
reshaped the workflow using proper 
technical notations (pair notations for the get 

plemented in cassdb 
). It helped us to define 

exactly the way we want our software 
framework to work, without knowing the 
hardware infrastructure we are going to 
experiment on. We also used this diagram to 
separate concerns between custom 
components, for example: client (mrts-
client), database support (cassdb), import-

mapper – reducer 

In a real scenario our project works as 

 
reduce cycle) 
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• A researcher sets an experiment and 
starts the training pr
experiment is defined using a GUI 
set the neural network structure (number 
of layers and neurons), training 
parameters (maximum number of epochs, 
neural network target error, 
input path and the data output path (for 
extracting and saving the network on 
local computer – in CSV [
serialized format). All of the 
experiment’s configuration, including the 

Fig. 3.

Fig. 4. Extended Workflow 

VIII, no. 1/2017  

A researcher sets an experiment and 
starts the training process. The 
experiment is defined using a GUI – we 

network structure (number 
of layers and neurons), training 
parameters (maximum number of epochs, 
neural network target error, etc.), the data 
input path and the data output path (for 

ting and saving the network on 
in CSV [23] or a 

serialized format). All of the 
experiment’s configuration, including the 

network's structure, will be written to a .xml 
formatted file, which will be sent to the 
Hadoop cluster along with the
command. 
 
• The request to start the training process is 
received by the Driver which will have the 
job to: 
- push the network structure in Cassandra 
- initialize the network’s weights and save 
them in Cassandra 

 Basic Workflow – without technical notations

Extended Workflow – with specific get/put notations (Symbol “?” represents a wildcar
integer value bellow or equal to 0) 
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network's structure, will be written to a .xml 
formatted file, which will be sent to the 
Hadoop cluster along with the start 

The request to start the training process is 
received by the Driver which will have the 

push the network structure in Cassandra  
initialize the network’s weights and save 
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