
Database Systems Journal vol. VII, no. 3/2016 3

Solutions for Optimizing the Relational JOIN Operator
using the Compute Unified Device Architecture

Alexandru PIRJAN

The Romanian-American University, Bucharest, Romania
alex@pirjan.com

In this paper it is implemented the inner JOIN operator in the latest Pascal Compute Unified
Device Architecture (CUDA), using two approaches developed in the CUDA Toolkit 8.0: a
classical approach in which a thread selects one element from the first table and performs a
binary search for the corresponding keys residing in the second table; a second approach that
makes use of the dynamic parallelism feature of the Pascal architecture to solve the problem
of task processing unbalance that may occur when the number of corresponding elements is
different along the threads. The Compute Unified Device Architecture dynamic parallelism
feature is used to invoke a supplementary kernel function in order to build in parallel the final
output set of elements.
Keywords: CUDA, Pascal architecture, Dynamic Parallelism, GPU, inner JOIN operator

Introduction
In recent years, due to the
unprecedented huge increase of the

data volume that must be processed in a
wide area of applications, scientists had
to devise novel and efficient solutions for
surpassing these difficulties. One of the
most prominent breakthroughs in
scientific computing is marked by the
Compute Unified Device Architecture,
released by the NVIDIA Company in
2007.
This solution allowed the developers of
software applications to make use of the
tremendous parallel processing power of
the Graphics Processing Units (GPUs) to
solve computational intensive problems
efficiently and in a timely manner [1].
This major development had a massive
impact on the industry, economy, and
medicine and on many scientific research
fields. The shift from the traditional
sequential programming to the parallel
processing one has opened up new paths
and numerous possibilities in the
information technology landscape,
facilitating huge leaps and advances in
technology, bringing many advantages
through this new computing approach.
Until the release of the CUDA
architecture, the primary role of the GPU
has been solely to process graphics tasks,

mainly in parallel. The introduction of this
concept has provided the necessary means to
the programmers for using the parallel
processing power of the GPUs without
having to know in detail specialized
graphics programming.
The Graphics Processing Units are not
targeting exclusively games developers
anymore. Through the CUDA approach, the
GPU becomes a general purpose
programmable equipment that can be
addressed by the developers in a wide area
of applications.
In the last decade, there have been
conducted a lot of researches that target the
development of software optimization
solutions using the Compute Unified Device
Architecture [2], [3], [4]. Improving the
software performance of data processing
represents the main focus of researches from
various fields, because of their multiple
applications in: decision support systems
[5], [6], electronic payments systems [7],
[8], complex solutions for the office
environment [9], temporal data mining [10].
The latest GPU Compute Unified Device
Architecture, Pascal, released in the Spring
of 2016, brings multiple improvements and
new features to the previous versions, like:
a new 16 nm Fin Field Effect Transistor
(FinFET) production process that provides
an improved performance and efficiency per

1

4 Solutions for Optimizing the Relational JOIN Operator Using the
Compute Unified Device Architecture

Watt, a new interconnect offering
significant speeds up, support for a new
type of memory architecture, an
improved programming model and
specifically optimized artificial
intelligence algorithms. Thus, the Pascal
architecture offers new opportunities for
improving the software performance of
compute intensive applications [11].
The newly developed software
applications that have to process huge
volumes of data differ significantly in
terms of memory requirements and in the
order of processing the instructions of the
source code. This is the main reason why
CUDA developers must take into account
the hierarchical nature of parallelism, that
is strictly tied to the tasks that have to be
processed and the resulting processing
time.
The research issues of significant
importance consist in obtaining efficient
and high performance parallel
implementations in the Compute Unified
Device Architecture of algorithms that
handle complex data structures, scaling
the problem to be solved according to the
GPU features, thus obtaining an increased
memory bandwidth and low execution
time.
This article addresses the above
mentioned issues in a specific situation
regarding the implementation of the inner
JOIN operator in the latest Pascal
Compute Unified Device Architecture.
The JOIN operator is a relational algebra
operator that is frequently used in
relational database applications. The
inner JOIN operator processes two tables
and returns a new one, using in the
process one or more columns from each
of the tables as a key and computes the
Cartesian product for all the rows that
correspond to the respective keys.
The article brings contributions to the
current state of knowledge by developing
and implementing two approaches in the
latest Pascal Compute Unified Device
Architecture using the CUDA Toolkit
8.0: a classical approach in which a

thread selects one element from the first
table and uses the method described in [1] to
perform a binary search for the
corresponding keys residing in the second
table; a second approach that makes use of
the dynamic parallelism feature to solve the
problem of task processing unbalance that
may occur when the number of
corresponding elements is different along
the threads.
Although there have been conducted
extensive researches in the literature
regarding the CUDA dynamic parallelism
feature [12], [13], [14], to the extent of the
available information, none of the works so
far have analysed the impact of the Compute
Unified Device Architecture dynamic
parallelism feature when developing
applications targeting the latest Pascal
CUDA architecture.
In the following, the paper has the
subsequent structure: in the 2nd section, there
are presented the main features offered by
the Pascal CUDA architecture; the 3rd
section focuses on the main parallel
programming issues that have been taken
into consideration in developing the two
approaches; in the 4th section are presented
and compared the experimental results based
on the two developed approaches; the 5th
section presents the conclusions.

2 The main features offered by the Pascal
CUDA architecture
When compared to the previous Maxwell
and Kepler Compute Unified Device
Architectures, one can observe that the most
recent Pascal GP100 architecture offers
substantial enhancements to the streaming
multiprocessor (SM) such as: the level of
occupancy afferent to the cores, and
improved efficiency consisting in an
enhanced performance per Watt metric.
The Pascal architecture offers important
improvements, resulting in a higher overall
performance than on all the other previous
architectures. One can note that the Pascal
GP100 architecture comprises 64 CUDA
cores per each streaming multiprocessor,
with a single precision of FP32 (Fig. 1).

Database Systems Journal vol. VII, no. 3/2016 5

Fig. 1. A detailed insight of thelatest

Pascal GP100 SM architecture1

In contrast with this, the previous
Maxwell architecture comprises 128
CUDA cores (FP32 precision) within
each streaming multiprocessor, while the
Kepler CUDA architecture contains 192
CUDA cores (FP32 precision) in each of
the streaming multiprocessors. In
addition to this, the Pascal GP100
architecture incorporates 32 CUDA cores
having a FP64 precision, thus resulting in
half a rate when performing floating point
computations with a FP64 precision. The
Pascal architecture offers the technical
possibility to incorporate in certain
situations two operations having a
precision of FP16 into a computing core
that has a FP32 precision.
The Pascal GP100 SM architecture also
contains two schedulers for warps, two
buffers for instructions and two
dispatching units per each processing
block (Fig. 1). The Maxwell architecture
incorporates a double number of cores
than the Pascal one does, but the Pascal

1The Figure has been created based on the figure
provided by the official NVIDIA documentation
sitehttps://devblogs.nvidia.com/parallelforall/insi
de-pascal/ , accessed on 10.14.2016, at 23:10

architecture maintains the Maxwell's register
file's size and has the possibility to attain the
same occupancy level of the warps and
thread blocks.
The number of registers per streaming
multiprocessor has remained unchanged
when compared to the Maxwell and Kepler
architectures but it brings a significant
improvement. Although, the Pascal
architecture offers a higher total amount of
register memory because it has a higher
number of streaming multiprocessors than
the other CUDA architectures.
A comparison of the most popular Pascal
architecture implementations (GP100
implemented in Tesla P100, GP102
implemented in Titan X, GP104
implemented in GeForce GTX1080) and
their main technical characteristics are
depicted in Table 1.

Table 1. A comparison between the

technical features of the main
Pascal architecture implementations2

The graphic cards that implement the CUDA
Pascal architecture cover a broad range of
market segments, starting with game

2The table has been created according to the official
Nvidia documentation site
https://devblogs.nvidia.com/parallelforall/inside-
pascal/ , accessed on 10.15.2016, at 00:30

6 Solutions for Optimizing the Relational JOIN Operator Using the
Compute Unified Device Architecture

oriented cards (GTX1080, GTX 1070,
GTX 1060), up to scientific
computational dedicated ones (Tesla
P100). The novel CUDA Pascal
architecture offers new features and
innovations that provide the customers
the possibility to solve problems that
were previously impractical to approach,
due to the huge computational
requirements. Based on its undeniable
advantages and prospects regarding the
improvement of the parallel processing
software performance, energetic
efficiency and affordable price, the
CUDA Pascal architecture is a viable
option for developing solutions for
optimizing database operations on huge
datasets.
In the following section, there are
analysed the main parallel programming
issues that have been taken into
consideration when developing the two
approaches for implementing the inner
JOIN operator in the latest Pascal
Compute Unified Device Architecture
(CUDA).

3 Analyzing important parallel
programming aspects in order to
develop the CUDA implementation
The most important aspects that had to be
considered when developing the two
approaches consisted in the appropriate
management of the synchronization
process, of race conditions, of atomic
operations, avoiding memory leaks and
dynamic parallelism.
The management of race conditions can
be easily achieved when developing
classical applications that run on central
processing units and need only a single
thread of execution. In such a situation
the programmer only has to analyse the
data flow in order to notice if a certain
value has been retrieved from a variable
before the latest updated value has been
stored in it.
Nowadays, most of the existing
compiling tools are able to signal and
exactly point out these problems when

developing single threaded applications. In
the case of developing multi-threaded
applications, these aspects must be
meticulously analysed and prevented.
In the Compute Unified Device
Architecture, the threading system
automatically aims to attain the highest level
of performance, often having as a result the
fact that threads are executed without taking
into account a certain chronology. For
example, when processing an array in a
certain program loop and the result from a
certain step depends on the result obtained at
a previous step, if the programmer allocates
for every element a thread, the outcome will
be correct only when the threads are
executed in an ascending order and the
result from the previous step has already
been computed. If more threads are executed
in parallel, the risks are high for the result to
be incorrect or even the whole program may
crash [1].
In some situations, randomly, the program
may even produce the correct results if by
chance a thread gets to finish the processing
before another one needs the respective
value. These particular issues illustrate the
concept of a race condition, meaning that
certain parts of a program are running in the
same time to a certain execution point.
There are situations when a certain warp
reaches the execution point and computes
the result before another warp that needs the
respective value reaches that point and there
can also happen situations when the second
warp reaches the execution point first, thus
resulting in a computing error.
Therefore, a first characteristic for race
conditions is that they manifest only in
certain situations when particular conditions
have been met, making it very hard for the
developer to identify and pinpoint the
problem.
Another important characteristic of these
race conditions is that they are tightly
related to the moment of executing. There
are situations when introducing a breakpoint
in the source code execution in order to
debug the problem results in the altering of
the warp's execution pattern and sometimes

Database Systems Journal vol. VII, no. 3/2016 7

the error doesn't have the necessary
chronology to happen.
In this situation, one has to disregard the
place in the source code where the error
manifests itself but has to analyse
thoroughly how the threads are ordered
and the pattern execution of blocks in
order to pinpoint the trigger of the error.
A programmer that develops Compute
Unified Device Applications must keep
in mind the fact that the CUDA thread
mechanism does not enforce a certain
chronology in the execution of thread
blocks or of the warps.
If there is even a single place in the
source code where the programmer
implements the logic of the program by
presuming that a certain chronology will
be followed by the thread blocks, then the
whole application is faulty. There are
certain situations when a programmer can
and should state and create a certain order
of the elements that are processed (for
example, through sorting actions).
Nevertheless, the programmer must
develop his application by taking into
account that the order of execution in the
equipment is indeterminate and thus, one
must use a synchronization technique.
In the Compute Unified Device
Architecture, the synchronization process
makes it possible for the programmer to
exchange data among the threads of the
same block of threads or he can even
exchange information among multiple
blocks belonging to the same grid of
blocks. Each thread has available a local
memory region and its own register
memory [1].
In order for the threads belonging to a
certain block to be able to parallel
process a dataset and exchange
information with each other, they will
have to store and retrieve data using the
shared memory that is available at the
block level.
In the Compute Unified Device
Architecture, the warp has a size of 32
threads and offers to the device the
possibility to schedule their execution.

Therefore, in such a case the
synchronization problem may arise. In the
situation when the warps have the same
execution paths, the operations are
automatically serialized in the block, being
processed in warps, at different moments of
time. In spite of this, the pipelining of warps
cannot be maintained consistent, due to
external dependencies that may setback a
warp for a period of time.
Within a block of threads, there can happen
a situation when each warp inside the block
retrieves data from the global memory. All
the warps use the L1 cache memory except
the final one that has to retrieve its data from
global memory. In a situation like this, this
warp will lag more iterations behind the
others. It is obvious that without the
implementation of carefully selected
synchronization points, one cannot be
certain that he obtains the correct results
under all circumstances [1].
The synchronization process is mandatory in
situations when the threads from different
warps have to share data. When executing a
CUDA program, the scheduling mechanism
invokes considerable sets of block of threads
that have their identifiers increase in a linear
pattern. Only when a certain number of
blocks have been freed from memory, the
scheduling mechanism invokes new blocks
of threads.
This was particularly useful when
developing the two approaches for
implementing the inner JOIN operator in the
latest Pascal Compute Unified Device
Architecture, as this made it possible to
improve the access and availability of the L1
cache memory. Conversely, there is a risk of
diminishing the state of the warps that are
free and can be scheduled. The execution of
warps and of thread blocks is spread at
different points of the execution chronology
and as a consequence it is absolutely
necessary to assure that the computing has
finished at certain points of an application.
In order to achieve this, when developing
the two approaches, the "__syncthreads"
primitive along with shared memory have
been used to solve the race conditions and

8 Solutions for Optimizing the Relational JOIN Operator Using the
Compute Unified Device Architecture

achieve correct synchronization. When
developing the approaches, the
synchronization was mandatory but was
applied minimally as to ensure the
obtaining of the correct results, avoiding
the risk to keep the Graphics Processing
Unit idle.
The fact that the chronology of operation
is not assured also stands true for basic
operations like read, write and update as
one cannot be sure that these operations
will finish in the same time in all the
streaming multiprocessors of the
Graphics Processing Unit. For that
reason, when there are more threads that
have to store their result in the same area
of memory, the use of atomic operations
assures the fact that different operations
will be executed just as if they were a
whole serial one.
Until recently, the problem of memory
leaks was in strict conjunction with the
CPU code. However, the same stands true
when developing applications for the
Compute Unified Device Architecture.
Just like in the case of the CPU code, if a
programmer allocates memory
dynamically in CUDA, he must also
deallocate it explicitly when the
application no longer needs it.
There are some situations involving
streams and events, where the Compute
Unified Device Architecture runtime
allocates the necessary memory the first
time they are created. The programmer
must use explicit instructions to
deallocate the memory
(cudaStreamDestroy, cudaEventDestroy),
otherwise the Compute Unified Device
Architecture runtime is not signalled to
deallocate the memory [1].
When developing the two approaches, the
"cuda-memcheck" tool has been used in
order to identify and later solve problems
related to memory leaks and memory
usage.
The dynamic parallelism feature which is
available on the Pascal architecture
makes it possible for a CUDA kernel to
invoke and synchronize additional child

CUDA kernel functions. Until this feature
was implemented in the Kepler architecture,
the programmer had to invoke more kernel
functions or to make sure that some threads
within the block are left idle in order to be
used later on. These techniques consumed
high amount of resources and rendered
inefficient results, especially when
processing huge volumes of data.
The graphics processing unit was not used
appropriately and the kernel functions
couldn't store their data in the shared
memory area because this type of memory
exists only while the kernel does. In
essence, a child kernel function can be
invoked by a parent one and it is offered the
possibility to synchronize the results when
the child kernel has finished processing its
task. The parent kernel function can make
use of the result received from the child
kernel function, with no implication of the
Central Processing Unit.
A significant advantage that the dynamic
parallelism feature brings to the developer
consists in the fact that he no longer has to
marshal and move the data that needs to be
processed. Supplementary parallelism is
obtained and can be made available
dynamically to the Graphics Processing
Unit's scheduling and load balancing
mechanisms, in accordance to the volume of
data that has to be processed. Up to the
introduction of this feature, developers were
compelled to remove recursion techniques
when building algorithms and any other type
of looping elements that did not comply to a
single and flat-level of parallelism [12].
The Compute Unified Device Architecture
dynamic parallelism feature makes it
possible to set up and execute grids of thread
blocks, in addition to delay action until the
grids have completed the execution up to the
threads that are already processing inside a
grid of blocks. This means a certain thread
that belongs to a grid of blocks and
processes data can set up and execute
another grid of blocks, called child grid,
which will be owned by the parent grid of
blocks.

Database Systems Journal vol. VII, no. 3/2016 9

A mechanism of nesting is in place,
signifying that the finalization of the
parent cannot be finished while waiting
for the child grids to finalize. The
Compute Unified Device Architecture
runtime assures an implied
synchronization among the parent kernel
and the child kernel functions.

4 The CUDA implementation of the
inner JOIN operator
The inner JOIN operator has been
implemented in the latest Pascal CUDA
architecture using two approaches
developed in the CUDA Toolkit 8.0.
In the first classical approach, a thread
selects from the first table one element
and performs a binary search in parallel
according to the method described in [1],
in order to identify the corresponding
keys that reside in the second table.
The second approach implements the
dynamic parallelism feature of the Pascal
architecture for solving the problem of
task processing unbalance that is likely to
occur when the number of corresponding
elements is different along the threads.
The Compute Unified Device
Architecture dynamic parallelism feature
is used for invoking a supplementary
kernel function that builds in parallel the
final output set of elements. This
approach uses the parent thread from the
GPU to invoke a child kernel function.
The CUDA dynamic parallelism feature
has been implemented in the second
approach instead of the parallel looping
structures that were implemented in the
classical one.
The child kernels are allocated
dynamically by the parent threads in
order to process in parallel the tasks. In
contrast with the dynamic parallelism
approach, in the classical approach, a
loop structure is used by the threads
within the warps to process the data in a
different number of iterations,
corresponding to the workload and the
available resources.
One of the major advantages of the

dynamic parallelism approach is that the
resources of the graphics processing unit are
better employed and a higher occupancy
level of the GPU's resources is obtained
because the parent threads invoke child
kernel functions that process the tasks in
parallel by means of minimal or even no
control divergence.
A frequent problem when using this
approach can arise due to a lack of
parallelism (when the dataset has a small
dimension), that makes it unfeasible to
invoke the child kernel CUDA function. In
this case, the processing takes place in the
parent kernel function.
The patterns of memory access are different
in the two developed approaches. In the
classical approach, a thread accesses the
memory using more loop iterations, while in
the second approach, by using a single
instruction, the threads of the child kernel
function are contiguous and process the data
in memory more efficiently, thus improving
the alignment of memory and obtaining
optimal coalesced memory operations along
with an improved hit rate of the L1 cache.
In the case of the second approach, the
Compute Unified Device Architecture
dynamic parallelism feature allows to
execute the same kernel function
recursively, while in the case of the first
approach the repeated execution of the same
kernel function is achieved through multiple
looped iterations.
The dynamic parallelism feature makes it
possible for the parent kernel to invoke
multiple child kernel functions separately
that are processing the data in parallel. The
execution of the child kernel functions is
achieved by using a CUDA stream for every
child launch in order to strengthen the
chances of concurrent execution of the child
kernel functions [13].
In both the approaches, the tasks are
partitioned to multiple blocks of threads. In
the experimental tests, different sizes were
tested for both the number of blocks and
threads within a block and the best results
were obtained using the following allocation
of resources: the number of allocated thread

10 Solutions for Optimizing the Relational JOIN Operator Using the
Compute Unified Device Architecture

blocks is the smallest integer greater than
or equal to the ratio between the number
of records and 1024; if the number of
thread blocks is greater than 1, the size of
a thread block is 1024; otherwise, the
number of threads per block equals the
number of records that have to be
processed.
In the dynamic parallelism approach, the
best results are obtained when the thread
block size is a multiple of a warp size as
this avoids the occurring of divergent
threads within the warps. If the
dimension of the thread block is not a
multiple of a warp size, the parent kernel
function processes the rest of the threads.
The child kernels functions cannot
retrieve data directly from the shared
memory owned by the parent kernel
function. Whenever a child kernel
function has to retrieve the data from the
parent kernel's shared memory, it can
receive it as a kernel function argument,
or the respective value can be stored into
the global memory.
Both of these methods have their
drawbacks, the first one cannot pass an
increased number of elements as
arguments of the function, while the
second method suffers an enormous
penalty due to the performance
characteristics of the global memory.
In the second approach, the
synchronization process was used only
when strictly necessary, because even if
the dynamic parallelism feature offers the
possibility to synchronize among child
kernel functions and parent kernel
functions, the synchronization process
affects the overall performance of the
application tremendously.
As it is stated in the official NVIDIA
CUDA C Programming Guide 3 , even
though a single thread synchronizes, the
process affects all the other threads that
reside within the same thread block, even

3http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#ixzz4NGV8NesH
accessed on 10.16.2016, at 19:45

if they didn't perform a synchronization
operation.
A considerable penalty that the dynamic
parallelism feature brings is due to the fact
that the device must keep a detailed track of
the execution and also due to the whole
dynamic parallelism management
mechanism. In the following section, there
are presented the experimental results and it
is made an analysis of the two developed
approaches.

5 Experimental results and performance
analysis of the developed approaches
In this section, it is analyzed the
performance of the two developed
approaches that implement the inner JOIN
operator in the latest Pascal Compute
Unified Device Architecture (CUDA). The
following hardware and software
configurations have been used in the testing
methodology: Intel i7-5960x operating at 3.0
GHz with 32GB (4x8GB) of 2144 MHz,
DDR4 quad channel and the GeForce GTX
1080 NVIDIA graphics card with 8GB
GDDR5X 256-bit from the Pascal
architecture, the Windows 10 Educational
operating system, the CUDA Toolkit 8.0
with the NVIDIA developer driver.
The average execution time for both the
classical approach and the dynamical
parallelism approach has been calculated
using the "StopWatchInterface" included in
the Compute Unified Device Architecture
application programming interface, in order
to define, create and manage timestamps and
timers.
The set of developed tests computes the
average execution times obtained in the two
approaches, when implementing the inner
JOIN operator, when the input data tables
have a varying number of records, ranging
from 64 to 1,048,576 and the output data
table is the one computed through the JOIN
operator. The execution time (measured in
milliseconds) is computed as an average of
10,000 iterations, that has been calculated
after eliminating the first ten supplementary
iterations, as to be sure that the Graphics
Processing Unit has attained the highest

Database Systems Journal vol. VII, no. 3/2016 11

clock frequency. In Table 2 are presented
the registered experimental results.

Table 2. The registered experimental
results

The second column of this table contains
the number of total input records (NTIR),
the third column contains the average
execution times when developing the
classical CUDA implementation of the
inner JOIN operator (CIT), while the last
column contains the average execution
times when developing the dynamic
parallelism CUDA implementation of the
inner JOIN operator (DPT).

Of particular interest was to analyze the
economic efficiency of the two approaches.
Thus, it was computed the total number of
processed records, the total CIT time and the
total DPT time for all the tests, taking into
account all the 10,000 iterations.
Afterwards, using a Voltcraft Energy Logger
4000 meter that measures the consumption
of energy, it has been measured the system's
power (expressed in kW) and it has been
computed the total energy consumption
(measured in kWh) for each approach.

Fig.2. The execution time corresponding to

the two developed approaches

After having executed the two approaches
and having analysed the experimental results
provided by the test suite, one can observe
the following: in all the cases, the CIT value
(corresponding to the classical approach) is
lower than the DPT value (corresponding to
the dynamic parallelism approach) (Fig.2).
When running the test suite, the total
execution time of all the 10,000 iterations
and the corresponding system power
consumption of the first approach were 17%
lower than in the case of the second
approach, thus the first approach offers an
improved economic efficiency compared to
the other one.
Although the dynamic parallelism feature
allows the developer to make use of
consecrated programming techniques, it
suffers a considerable overhead due to the
fact that the Graphics Processing Unit must
monitor in detail the whole execution of the

12 Solutions for Optimizing the Relational JOIN Operator Using the
Compute Unified Device Architecture

parent and child kernel functions and
keep a detailed track of their execution,
due to the way of how the management
mechanism of the dynamic parallelism is
implemented.

6 Conclusions
Both the developed approaches that
implement in CUDA the JOIN operator
in the Pascal architecture offer a high
level of performance when processing
high volumes of data (1,048,576 records
processed in 0,1 milliseconds).
Although the dynamic parallelism feature
allows a more robust implementation and
makes it possible to generate work
directly from the GPU, allowing the
developer to tackle important
programming techniques, like recursion,
directly on the device, in the case of the
inner JOIN operator the use of the
dynamic parallelism in the Compute
Unified Device Architecture creates a
penalty on performance due to the
overhead that is generated by invoking
new child kernels.
The new Pascal Compute Unified Device
Architecture offers an effective solution
for processing huge data sets and data
operators.

References
[1] S. Cook, CUDA Programming. A

Developer's Guide to Parallel
Computing with GPUs, 1st Edition,
Morgan Kaufmann, San Francisco,
2012.

[2] D. M. Petroșanu and A. Pîrjan,
"Economic considerations
regarding the opportunity of
optimizing data processing using
graphics processing units", Journal
of Information Systems &
Operations Management, Vol. 6,
Issue 1, May 2012, ISSN 1843-
4711, pp. 204-215.

[3] A. Pîrjan, "Optimization
Techniques for Data Sorting
Algorithms", Annals of DAAAM for
2011 & Proceedings of the 22nd

International DAAAM Symposium, pp.
1065-1066, Vienna, Austria, 23-26
November 2011.

[4] I. Lungu, A. Pîrjan and D. M.
Petroşanu, "Optimizing the
Computation of Eigenvalues Using
Graphics Processing Units",
University Politehnica of Bucharest,
Scientific Bulletin, Series A, Applied
Mathematics and Physics, Vol. 74,
Issue 3, 2012, ISSN 1223-7027, pp.21-
36.

[5] I. Lungu, G. Căruțașu, A. Pîrjan, S. V.
Oprea and A. Bâra, "A Two-step
Forecasting Solution and Upscaling
Technique for Small Size Wind Farms
located in Hilly Areas of Romania",
Studies in Informatics and Control,
Vol. 25, Issue 1, 2016, ISSN 1220-
1766, pp. 77-86.

[6] I. Lungu, A. Bâra, G. Căruțașu, A.
Pîrjan and S. V. Oprea, "Prediction
Intelligent System in the Field of
Renewable Energies Through Neural
Networks", Journal of Economic
Computation and Economic
Cybernetics Studies and Research,
Vol. 50, Issue1, 2016, ISSN online
1842– 3264, ISSN print 0424 – 267X,
pp. 85-102.

[7] A. Pîrjan and D. M. Petroşanu,
"Dematerialized Monies – New Means
of Payment", Romanian Economic and
Business Review, Vol. 3, Issue 2,
2008, ISSN 1842 – 2497, pp. 37-48.

[8] A. Pîrjan and D. M. Petroşanu, "A
Comparison of the Most Popular
Electronic Micropayment Systems",
Romanian Economic and
BusinessReview, Vol. 3, Issue 4, 2008,
ISSN 1842–2497, pp. 97-110.

[9] A. Pîrjan and D. M. Petroşanu,
"Solutions for Developing and
Extending Rich Graphical User
Interfaces for Office Applications",
Journal of Information Systems &
Operations Management, Vol. 9, Issue
1, May 2015, ISSN 1843-4711, pp.
157-167.

Database Systems Journal vol. VII, no. 3/2016 13

[10] A. Pîrjan, "The Optimization of
Algorithms in the Process of
Temporal Data Mining Using the
Compute Unified Device
Architecture", Database Systems
Journal, Vol. I, Issue 1, 2010,
ISSN 2069-3230, pp. 37-47.

[11] ***, Whitepaper NVIDIA Tesla
P100, "The Most Advanced
Datacenter Accelerator Ever Built -
Featuring Pascal GP100, the
World’s Fastest GPU".

[12] J. Wang and Y. Sudhakar,
"Characterization and Analysis of
Dynamic Parallelism in
Unstructured GPU
Applications", Proceedings of the
2014 IEEE International
Symposium on Workload

Characterization (IISWC), Raleigh,
North Carolina, USA, 26-28 October
2014.

[13] F. Wang, J. Dong and B. Yuan,
"Graph-based Substructure Pattern
Mining Using CUDA Dynamic
Parallelism", Intelligent Data
Engineering and Automated
Learning–IDEAL, Springer, 2013, pp.
342–349.

[14] J. DiMarco and M. Taufer,
"Performance Impact of Dynamic
Parallelism on Different Clustering
Algorithms", SPIE Defense, Security,
and Sensing, International Society for
Optics and Photonics, 2013, pp. 87.

Alexandru PIRJAN has graduated the Faculty of Computer Science for
Business Management in 2005. He holds a BA Degree in Computer Science
for Business Management since 2005, a MA Degreein Computer Science
for Business since 2007, a PhD in Economic Informatics since 2012 and a
Habilitation Certificate in the Economic Informatics field since 2016. He
joined the staff of the Romanian-American University as a stagiary
Teaching Assistant in 2005, a Lecturer Assistant in 2008 and a Lecturer

since 2014. He is currently a member of the Department of Informatics, Statistics and
Mathematics from the Romanian-American University. He is the author of more than 45
journal articles, 8 scientific books and a member in 8 scientific research projects. His work
focuses on parallel processing architectures, parallel programming, database applications,
artificial intelligence and software quality management.

