
Database Systems Journal VII, no. 2/2016 19

A new approach to adaptive data models

Ion LUNGU, Andrei MIHALACHE
Faculty of Cybernetics, Statistics and Economic Informatics,

Academy of Economic Studies, Bucharest, Romania
ion.lungu@ie.ase.ro , andrei@mdata.ro

Over the last decade, there has been a substantial increase in the volume and complexity of
data we collect, store and process. We are now aware of the increasing demand for real time
data processing in every continuous business process that evolves within the organization. We
witness a shift from a traditional static data approach to a more adaptive model approach.
This article aims to extend understanding in the field of data models used in information
systems by examining how an adaptive data model approach for managing business processes
can help organizations accommodate on the fly and build dynamic capabilities to react in a
dynamic environment.
Keywords: adaptive data model, dynamic capabilities, data models

Introduction
Data dominates every information

system and if data structures are properly
chosen and organized things go well, any
algorithm is almost always understood by
itself to be optimally built to perform.
Algorithms are essential in programming,
but data models will always fill the
central place [1].
The business environment is the sum of
all those factors which are available
outside the business and over which the
business has no control. Some of these
factors can include objects such as:
clients, suppliers, competitive companies,
investors and owners, improvements in
technology, laws and government
activities, market, social and economic
trends.

2 Data models
A model can be defined as a simplified
abstraction of a complex reality,
highlighting the essentials and ignoring
the details.
Data modeling is a method used to define
and analyze data requirements needed in
business processes deployed in
companies. Software applications store
data in order to use them in the future.
When data is saved, most of the times a
relational database is chosen due to
performance and accessibility (data is

understandable). The data term refers to
facts that characterize objects or events that
can be recorded and stored in a computer
system and it has significance and meaning
for users.
Data governance is a set of processes that
ensures that important data assets are
formally managed throughout the enterprise
and take into account data definition and
data integrity constraints in the data model
[2].

3 Data model types
The 1975 ANSI/SPARC data architecture
study group divided database-centric
systems into three models:

 Internal model: describes the logical
data structures and may contain
logical descriptors of the collections,
attributes, XML markers, etc. These
models are represented in accordance
with the requirements of a particular
technology implementation using
flowcharts.

 Conceptual model: represents the
scope and semantics of the classes
designating entities of interest to the
study area and assertions about
associations between these entities.
They are represented by the
conceptual diagram.

 External model: defines how data is
stored. These models contain

1

20 A new approach to adaptive data models

partitions, tablespaces, indexes
etc. and it is represented through
the physical schema.

Looking back to the late 1960s, IBM
launched the hierarchical model, together
with data manipulation language DL/1.
Hierarchical database systems organize
data as a collection of trees. All
recordings have an owner or root (one
and only one), and thus all other records
have a single parent.
To locate a certain record, you must
travel the path from root parent of the tree
to the level where the desired child is
located. Access to data in hierarchical
databases is achieved by low-level calls
that programmers write to sail records
from the root towards the leaves of
interest. Therefore, the programmer must
know the physical representation of the
database.
This data model can be used in systems
containing data that can be organized
hierarchically, without compromising the
information (e.g.: Fig. 1).
Hierarchical databases support two means
of representing information: specific
records containing data and records
containing the type of parent-child links
that defines the relationship 1:N between
one parent and N child records.
This approach has major limitations due
to restrictions of data representation. The
data structures which are not represented
hierarchy by default is difficult, if not
artificially structured in such database.

SalespersonsSalespersons Eduard Mirabela Cezar

SuppliersSuppliers Eurodomus Printech Metalcom

ProductsProducts 18316 20473 35916 61947 84698

Fig. 1. Example of

hierarchical data model

The network model was originally created
by Bachman for General Electric, where
he developed the first commercial

database system (IDS - Integrated Data
Store) in 1964.
Data modeling in a network database is
different from the equivalent hierarchical
approach. Networked databases arrange data
in a directed graph and use a standard
navigation language.
The model has brought new opportunity to
move the access from a specific point of a
set of data directly to another record in
another data set.
Network databases provide an effective
pathway to access data and are capable of
representing any data structure containing
simple types (such as integers, real
characters and strings). This is achieved by
using different types of mapping
mechanisms known as sets.
A set is a container of pointers identifying
the type of data set that can be accessed
from the current record. These sets are
defined by standard CODASYL: sets of
system (single), multimembers or recursive.
Using these sets, database designers and
programmers can represent and navigate
relationships 1:1, 1:N and N:M.

Eduard Mirabela Cezar

Eurodomus Printech Metalcom

18316 20473 35916 61947 84698

SalespersonsSalespersons

SuppliersSuppliers

ProductsProducts

Fig. 2. Example of network data model

To access the data, the programmer must
know the physical representation of data and
use a low-level navigation language.
This approach to system database is more
flexible than the hierarchical model, but the
programmer must know the physical
representation of data you can access them.
Therefore applications using a network
database need to be altered with every
change in the database structure.
The relational model provides a different
approach to data storage and it was first
represented by Edgar F. Codd in 1970 [3]. In
a relational database, all data are represented
as simple tabular data structure

Database Systems Journal VII, no. 2/2016 21

(relationships) that are accessed using a
high-level non-procedural language.
This language is used to achieve the
desired relationships and datasets. Thus,
the physical implementation of the
database is hidden, and the programmer
does not need to know the physical
implementation to access the data. In
1974 the name was proposed SEQUEL
for high-level non-procedural language,
which was later changed to SQL. In 1986
ANSI committee X3H2 accepted as
standard ANSI SQL language.

Products TableProducts Table
Name

Supplier Phone Address

Group Measure Unit Supplier

Suppliers TabblleeSuppliers Table

Fig. 3. Example on an instance of

relational data model

Relational databases connect different
data files by using key fields or some
common data (e.g.: Fig. 3). Records are
stored in different tables or files that are
composed of rows and columns. In the
databases terminology, tables are called
"relations", the rows are called "tuples"
and the columns are called "attributes".
The advantage of a Relational Database
Management System (RDBMS) is that
users and programmers do not have to
know the data structures or pointers.
Tables and rows are much more
comprehensible than pointers and
pointers that point to records.
The downside is that some orders
retrieval requires more processing time
compared to other database models.
SQL (Structured Query Language) is a
language based on the declarative
transformations as opposed to specific
languages based on navigation.
The relational approach separates the
physical implementation of the program
database. The programs are less sensitive
to changes in the physical representation
data, linking data and metadata in the
database. Application development is
more efficient and independent of

changes in the physical representation. This
is the reason why SQL and relational
database systems are widely used: due to the
separation of physical and logical
representation.
The relational model is sustained by the
entity-association model whose purpose was
not to be implemented, but to represent the
data at the abstract and conceptual levels
used in computer systems. It was defined in
1976 by P.S. Chen and its specification does
not impose any specific data patterning or
processing [4].
The entity-association model provides an
overview and classification of terms used
and their relationships, holistic for an entire
system or just one area of interest.
The Enhanced Entity-Relationship Model
includes extensions of the model of Chen
and allows the definition of subtypes of a
type of entities that inherit attributes from
the type of entity that you extend (which in
this context is called super type) and
additionally attributes their significance. In
terms of this model, an entity is an object
that exists and can be distinguished from
other similar objects [5].
In terms of standard construction of
databases, an entity may correspond to a
record and its attributes correspond to fields
registration. This model is implemented
physically, but is used in the analysis of
information systems at the logical level.
The object-oriented model allows "objects"
depositing as elements in the database. An
object is composed of text, sound, images
and actions that can be applied to the data.
Hierarchical, network or relational data
models, storage allow only numeric data and
text, while object-oriented data model may
additionally contain multimedia data like
images or video.
The object-oriented database management
systems provide persistent objects, including
associations between objects, and methods.
A basic concept of object-oriented model is
defined orthogonal persistence [6] by three
principles:
The principle of independent persistence:
the lifespan of a program is independent of

22 A new approach to adaptive data models

the data they manipulate. Programs that
manipulate data in the short and long
term look the same.
The principle of data types orthogonality:
All data objects must have full
persistence, regardless their type. There
are no special cases for items not to be
allowed to have a long lifespan or not to
be transient.
The principle of persistent identification:
Choosing how to identify and supply the
items is orthogonally defined to the
persistent universe in the system. The
identification mechanism for persistent
objects is independent on the type of
system.
Objects’ persistence, including
orthogonal persistence, is often achieved
through the concept of persistence, when

accessibility makes a persistent object if it
can be accessed from a persistent root.
This is a completely different approaches
grid / tree using language low navigation,
and approaches relational or object-
relational using a high level language (HLL -
High Level Language) for navigation, query
and manipulation or combined with some
SQL data definition language (DDL - data
definition language).
The object-relational model extends the
database systems relational model to add
concepts from the object-oriented approach
and get more complex object structures and
rules and yet remain open to other systems.
An Object-Relational Database Management
System - ORDBMS is most simply defined
by the equation in Table 1:

Table 1. Defining object-relational model based on object-oriented and relational models

ORDBMS = ODBMS + RDBMS = (O + R) × DB × MS

At the logical level, an ORDBMS is a
management system MS that applies
methods to process data structures from
the database DB and complies both an
object O and relational R concepts.
An object is an entity with a clear role in
the system, characterized by state,
behavior and identity. Upon a certain
object we can take action that on her own
turn can trigger or perform another
action. The object can be concrete: a
tangible and visible entity, for example a
person, place, thing; an abstract entity
with it as a concept, an event, a
department, marriage, idea; or an artifact
of the design process, for example: user
interface, control, planning [4].
Any object exposes its behavior through
operations that may affect his or another
object’s state. The state of an object is
defined by the values held by properties
at a time. The behavior shows how an
object acts and reacts to events.
An operation is a simple action
performed by an object on another object

to get an answer. Operations performed by
an object or performed on an object,
implemented in a programming language are
called methods.
Classes which have links with specific
restrictions operations and object-oriented
approach, define the object-oriented data
model.
The need of persistent data has evolved from
sequential files to structured files, network
databases, hierarchical databases, RDBMS,
and recently into ORDBMS and OODBMS
offering more controlled and flexible
storage, interface, and transactional
capabilities on complex objects and
structures.
Fig 4 represents side by side all resembling
and complementary concepts and
characteristics in data models evolution at
conceptual, logical and physical levels.
Over time, there were developed several
conceptual models specific to each
databases management systems, each with
different capabilities, both in terms of
organization, data modeling, and access.

Database Systems Journal VII, no. 2/2016 23

Im
pl

em
en

ta
tio

n
De

ta
ils

O
bj

ec
t

O
rie

nt
ed

M

od
el

Da
ta

ba
se

Di

ag
ra

m

ID

Al
te

rn
at

e
Ke

y
Pr

im
ar

y
Ke

y
In

de
x

Ca
nd

id
at

e
Ke

y
ID

Ke
y

Po
in

te
r

Po
in

te
r

Re
la

tio
n

Se
t

Jo
in

Re
la

tio
n

Re
la

tio
n

In
he

rit
an

ce

Cl
as

s

M
et

ho
d

Ta
bl

e
Ro

w

O
bj

ec
t

At
tr

ib
ut

e
O

bj
ec

t
Ty

pe

Co
lu

m
n

Da
ta

Ty

pe

Do
m

ai
n

At
tr

ib
ut

e

En
tit

y
At

tr
ib

ut
e

Re
la

tio
n

Tu
pl

e
Do

m
ai

n

Da
ta

Ty

pe
Fi

el
d

Da
ta

Ty

pe
Fi

el
d

Se
gm

en
t

Re
co

rd

Re
co

rd

Ty
pe

Re
co

rd

Da
ta

Ty

pe

Da
ta

ba
se

Di

ag
ra

m
Im

pl
em

en
ta

tio
n

De
ta

ils

Re
la

tio
na

l
Th

eo
ry

Im
pl

em
en

ta
tio

n
De

ta
ils

Im
pl

em
en

ta
tio

n
De

ta
ils

Ph
ys

ic
al

 S
to

ra
ge

 o
f D

at
a

Co
nc

ep
tu

al

M
od

el
Ph

ys
ic

al

M
od

el
Lo

gi
ca

l

M
od

el

Th
re

e

Sc

he
m

es

Sc
he

m
es

 a
nd

su

bs
ch

em
es

UM
L C

la
ss

Di

ag
ra

m

 R
ep

re
se

nt
at

io
n

of

sig
ni

fic
an

t e
nt

iti
es

an

d
at

tr
ib

ut
es

N
et

w
or

k

M
od

el

Hi
er

ar
ch

ic
al

M

od
el

N
or

m
al

ise
d

re
pr

es
en

ta
tio

n
of

 a
ll

en
tit

ie
s

Re
la

tio
na

l
M

od
el

En
tit

y–
Re

la
tio

ns
hi

p
M

od
el

Vi
ew

Ex
te

rn
al

 K
ey

Re
fe

re
nc

e

Fi
g.

 4
. C

or
re

sp
on

de
nc

e
of

 th
e

da
ta

 m
od

el
s i

n
da

ta
ba

se
 sy

st
em

s e
vo

lu
tio

n

24 A new approach to adaptive data models

Essentially, data models should allow
different applications to be able to share
the same data. However, frequently
achievement and maintenance of
information systems cost more than
would be required, and data models, as a
result of weak implementation, become
an obstacle for business processes rather
than act as a support mechanism.

4 A new adaptable data model
The main role of data models is to ensure
data compatibility, a necessary and
sufficient framework that allows different
applications to share the same structures,
to store and access data [7].
This paper aims to define and implement
an adaptable data model to assist the
process models that can be modified on
the fly without recompiling modules
application. Thereby, at runtime the
system allows adding new types,
changing existing relations between
defined data types and methods, functions
and procedures for system processing.
To achieve this, the application must
have the ability to work with metaobjects,
to instantiate containers of objects that
assist workflows [8].
Most applications are too inflexible to
keep pace with business processes they
support. Built on an architecture with
three levels (e.g.: Fig. 5.), these
applications have two major problems:
"components sharing" and "application
integration".

Ap
pl

ic
at

io
n

SQL
Database XML File

Business Level

Data Access Level

Presentation Level

Fig. 5. Architecture based on components

Sharing components within heterogeneous
platforms is difficult, if not impossible.
When component-based applications need to
exchange data, most of the time a designated
user must take data manually from one
application and put them in the other one.
Adaptability is a characteristic of a system
or process. In organizational management,
adaptability is generally recognized as the
ability to change themselves or other objects
to match the changes occurring [9].
Service Oriented Architecture – SOA is an
abstract framework that turns business
applications into individual business
functions and processes. This collection of
services is built using compliant standards
for systems design integration in real time.
The basic principles of SOA: reuse,
granularity, modularity, composability, and
interoperability, enable creation of
interconnected services between information
systems that use middleware, to exchange
SOAP (Simple Object Access Protocol)
messages.
The SOAP standard represents the starting
point for messages exchange and exposes
behavior of objects, using web services.
SOA makes it possible to loosely couple and
reuse functions from processes between
different types of platforms [10].

SO
A

Se
rv

ic
es

SQL
Database XML File

Business Level

Data Access Level

Services Level

Mobile
Application

Web
Application

Thick Client
Application

Fig. 6. Service Oriented Architecture

Figure Fig. 6 exhibits an opposed vision to
component-based applications. The Service
Oriented Architecture exposes the third level
using services. This level describes its
interface using SOAP and WSDL (Web

Database Systems Journal VII, no. 2/2016 25

Service Definition Language) and
exposes a universal interface which can
be used by any interface for users
(presentation layer) regardless of device
or platform.
Data Oriented Architecture – DOA is a
result of "loosely coupled" software
components with data-oriented interfaces
that enable systems’ integration using
standards-based communication middle-
ware infrastructure [1].
A high level example of WSDL of a
supply process that includes the order
data model and methods for orders as
port types is listed below:

<?xml version="1.0" ?>
<definitions name="CerereOferta"
targetNamespace="http://example.com/a

gentvanzari/wsdl"
xmlns="http://schemas.xmlsoap.org/wsd

l/"
xmlns:bpws="http://schemas.xmlsoap.or

g/ws/2003/03/business-process/"
xmlns:plnk="http://schemas.xmlsoap.or

g/ws/2003/05/partner-link/">

<!-- data types and messages -->
<definitions xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:xsd="http://www.w3.org/2001/XML
Schema"
xmlns:xsi="http://www.w3.org/2001/XML
Schema-instance"
xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/
encoding/"
xmlns:tns="urn:docs_wsdl"
xmlns:soap="http://schemas.xmlsoap.or
g/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.or
g/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsd
l/" targetNamespace="urn:docs_wsdl">
<types>
 <xsd:schema
targetNamespace="urn:docs_wsdl">
 <xsd:import
namespace="http://schemas.xmlsoap.org
/soap/encoding/"/>
 <xsd:import
namespace="http://schemas.xmlsoap.org
/wsdl/"/>
 <xsd:complexType name="order">
 <xsd:all>
 <xsd:element name="id"
type="xsd:int"/>
 <xsd:element name="number"
type="xsd:string"/>

 <xsd:element name="dueDays"
type="xsd:int"/>
 <xsd:element name="issueDate"
type="xsd:date"/>
 <xsd:element name="delivery"
type="xsd:date"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="orders">
 <xsd:complexContent>
 <xsd:restriction base="SOAP-
ENC:Array">
 <xsd:attribute ref="SOAP-
ENC:arrayType"
wsdl:arrayType="tns:order[]"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:schema>
</types>

<!-- port type definitions -->
<portType name="InterfataAgentVanzari">
 <operation name="CerereOferta">
 <input message="cerereOferta"/>
 <output

message="confirmareOferta"/>
 </operation>

 <operation name="AnuleazaComanda">
 <input message="cerereAnulare"/>
 </operation>

 <operation name="LivreazaComanda">
 <input message="cerereLivrare"/>
 <output

message="confimareLivrare"/>
 </operation>
</portType>

<portType name="InterfataMerceolog">
 <operation name="NotificareAnulare">
 <input message="mesajAnulare"/>
 </operation>

 <operation

name="NotificareExpirareTimp">
 <input

message="mesajExpirareTimp"/>
 </operation>

 <operation name="NotificareReceptie">
 <input

message="receptieMateriale"/>
 </operation>
</portType>

<!-- partner link types definitions -->
<plnk:partnerLinkType

name="SerciciuAgentVanzari">
 <plnk:role name="AgentVanzari">
 <plnk:portType

name="InterfataAgentVanzari"/>
 </plnk:role>
 <plnk:role name="Merceolog">

26 A new approach to adaptive data models

 <plnk:portType
name="InterfataMerceolog"/>

 </plnk:role>
</plnk:partnerLinkType>

<!-- properties definition -->
<bpws:property name="IDrezervare"

type="xsd:string"/>

<!-- aliases for properties are

omitted -->
</definitions>

Keeping the metadefinition of data and
methods inside the application provides
an adaptable data model to assist the
process models that can be modified on
the fly without recompiling modules
application. All messages delivered using
SOAP over HTTP are self-described and
clients can interpret all data and methods
using the contained definition.
Low coupling abstract interfaces offered
by WSDL (including data types
definitions, messages and port types)
represent the premise and advantage for
building a flexible system with a design
meant to change on the fly.

5 Conclusions
Companies are performing in a dynamic
economic environment and information
systems assisting their business processes
are limited by high degree of coupling in
three major areas: systems are limited by
coupling between modules and their
interaction with other systems; data
model is fixed at compilation time and
does not allow deviations or subsequent
adjustments; and workflow models do not
allow improving and evolution of the
business processes.
Dynamic exposure of all evolving
process models and adaptive data models
by WSDL interfaces creates the premise
of a versatile system in which each
object, rule, function, or service interface
can be changed in a shorter time. The aim
is to optimize the process to obtain a
value or quality.
Therefore, the essence of SOA is to
dynamically link resources with chain
transformations, while the ground of

DOA is to expose the data and hide the
code.

Acknowledgment
We owe thanks to all the members of the
Department of Informatics, for the sessions
and Communications Conference on
Informatics where we could present case
studies and also published the results of our
research. It’s always a pleasure working
with members of the Database Collective
Faculty of Cybernetics, Statistics and
Informatics.

References
[1] I. Lungu, A. Mihalache – Enterprise

modeling and software engineering for
information systems improvement. Studii
şi Cercetări de Calcul Economic şi
Cibernetică Economică, pp. 18, Nr
2/2010, ISSN: 0585 – 7511, EISSN:
1843 – 0112

[2] Data Governance Institute,
Definitions of Data Governance,
http://www.datagovernance.com/adg_dat
a_governance_definition/.

[3] E. F. CODD, A Relational Model of
Data for Large Shared Data Banks, IBM
Research Laboratory, San Jose,
California, 1970, https://www.seas.
upenn.edu/~zives/03f/cis550/codd.pdf

[4] I. Lungu, A. Bâră, C. Bodea, I. Botha, V.
Diaconiţa, A. Florea, A. Velicanu, Tratat
de baze de date – Baze de date.
Organizare. Proiectare. Implementare,
2011, ISBN 978-606-505-481-3;

[5] I. Lungu, M. Velicanu, Database Systems
– Present and Future, Informatica
Economica Journal, Inforec, ISSN 1453-
1305, EISSN 1842-8088;

[6] M P. Atkinson and R. Morrison,
"Orthogonally Persistent Object
Systems", VLDB Journal 4 (3), 319-401,
1995, ISSN: 1066-8888

[7] I. Lungu, Ghe. SABĂU, M. Velicanu, M.
Munten, S. Ionescu, E. Posdarie, D.
Sandu, Sisteme Informatice. Analiză,
proiectare şi implementare, 2003, ISBN
973-590-830-1;

[8] I Lungu, A. Mihalache, “Adaptable

Database Systems Journal VII, no. 2/2016 27

Enterprise Modeling – A New
Challenge for Collaborative Data and
Process-Aware Management
Systems”. Proceedings of the World
Multiconference on Mathematics and
Computers in Business and Economics
(MCBE '10), Iaşi, România, pp. 261–
266, WSEAS Press 2010, ISSN: 1790-
2769

[9] K. Andersen, N. Gronau, An Approach
to Increase Adaptability in ERP
Systems, In: Managing Modern
Organizations with Information
Technology: Proceedings of the 2005
Information Recources Management
Association International Conference,
2005, ISBN: 978-1-59140-822-2;

[10] E. A. Marks, Service-Oriented
Architecture Governance for the Service
Driven Enterprise, John Wiley & Sons,
2008, ISBN 978-0-470-17125-7;

[11] A. Mihalache, C. Vintilă, A. Cornescu –
A New Model Approach for Business
Applications in Enterprise 2.0
Environment, In Proceedings of the
World Multiconference on APPLIED
ECONOMICS, BUSINESS AND
DEVELOPMENT (AEBD '09), June
2009, Tenerife, Canary Islands, Spain,
pp. 192–195, WSEAS Press 2009, ISSN:
1790-5109.

Ion LUNGU graduated from the Faculty of Cybernetics, Statistics and
Economic Informatics of the Academy of Economic Studies in 1974. He got
the title of doctor in economy in the specialty economic informatics in 1983.
He has been directing graduates who study towards getting a doctor’s degree
since 1999. At present he is a professor in the department of the faculty of
Cybernetics, Statistics and Economic Informatics of the Academy of
Economic Studies of Bucharest. He had documentary activity and

specialization with the Eindhoven Technical University of Holland, the Economic University
of Athens and Economic University of Milan. His domains of work are: informatics systems
and databases. Among his books are: "Databases, organization, design and implementation",
(1995), "Information Systems for Management" (1994), "SGBD Oracle Applications" (1998);
"Let’s learn Oracle in 28 lessons” (2003), "Database systems" (2003), "Information Systems –
Analysis, Design and Implementation" (2003).

Andrei MIHALACHE has a background in computer science and is
interested in database related issues and enterprise modeling techniques.
Currently, he is a PhD candidate in the field of Economic Informatics at the
Academy of Economic Studies. His research interests include: enterprise
data model, adaptable information systems, business process improvement,
and web collaborative technologies.

