
Database Systems Journal vol. V, no. 4/2014 3

‘Shared-Nothing’ Cloud Data Warehouse Architecture

Janina POPEANGĂ
University of Economic Studies, Bucharest, Romania

janina.popeanga@yahoo.com

Energy management systems from Romania do not have the capabilities of energy specific
management due to lack of technology for real-time monitoring. As was the case in many
other countries, the advent of smart metering technology will increase the level of energy data
significantly. Therefore, the purpose of this paper is to present solutions that need to be taken
to solve problems linked with the increasing amount of data recorded by sensors.
For a better demonstration of theoretical elements exposed, we considered a data warehouse
specific to utility companies.
Section 2 of this article defines the three widely used parallel data warehouse architectures,
while in Section 3 we clarify what architecture is suited to develop a data warehouse in the
cloud. In the last part we transposed our tables in a “shared-nothing” architecture, trying to
analyze queries performance.
Keywords: Shared-nothing architecture, Data Warehouse, Replication, Distribution, Cloud

Introduction
The amount of data being collected by

utility companies has increased
enormously in many countries with the
advent of the smart metering technology.
Before smart grids, utilities had collected
from their customers data regarding their
consumption on a monthly frequency.
With the smart metering technology
readings are taken at shorter intervals -
every few seconds, so the increase is very
significant.
The increasing volume of data and the
variety of new data sources (devices and
sensors) have created new challenges for
utilities industry in terms of how to
organize the amount of data from
different sources in order to ease the data
analysis.
Data warehouse is a centralized storage
method of organizing data from
different sources, undergo the process
of extraction, transformation and
loading, and of aggregate storing on
hierarchical levels, data which are used
in various complex processing and
dynamic analysis. A data warehouse is
hosted on an enterprise mainframe server
or in the cloud.
Unlike operational systems, data
structures in a data warehouse are

optimized for dynamic queries and fast
analysis. Data are historical and are
updated at regular intervals, depending on
the reporting requirements.
However, faced with the growing weight of
explosive volumes of data and the expansive
variety of data types, the capacity of a
centralized data warehouse seems too
limited.
Consider a data warehouse designated to
customers application which permits them
visualizing their consumption data over a
period of time and several analysis on those
data. (Fig. 1)
Consider that the data warehouse that we
mentioned contains 3 dimensions and one
fact table:
User – table which contains the main user
information, like: UserID, User Name,
Street, City, District, Region, Phone, Email,
Income Level, House Area (square meters),
Persons (number of persons in the house),
El_Heaters (number of electric heaters in the
home), HeatingH (heating time),
Refrigerators (number of refrigerators),
AirCond (number of reverse cycle air
conditioners), HWLights (number of high-
watt lights), HinHome (number of hours
spent at home during the day), Requip
(renewable energy equipment), Password.

1

4 ‘Shared-Nothing’ cloud data warehouse architecture

Sensors – table which contains data
about sensors: SensID (sensor ID),
SensType (sensor type), Status (Down,
Down (Partial), Down (Acknowledged),
Warning, Up, Paused, Unusual,
Unknown), Installation date, Last
Revision.
Time – a dimension on data warehouse,
since utilities will frequently want to

aggregate about it. Full_Date, Time
(hh:mm:ss), Hour, Day, Month, Quarter,
Year, Day of Week, Holiday and Weekend
flags are implemented in application by
using the dimensional attributes.
In the EnergyConsumption fact table,
energy consumption is measured below the
level of calendar day, down to hour or
minute or even seconds.

Fig. 1. Considered Energy Data Warehouse

The volume of data collected from
consumers is increasing as time goes by,
the number of concurrent queries is also
rising.
The scalability issue becomes a huge
challenge for centralized data
warehouses. The solution addressing this
dare is to distribute the large-scaled
dataset and calculate the queries in
parallel.
This paper focuses on the importance of
solving these issues when creating a data

warehouse in the cloud. The rest of the
paper is structured as follows:

 Section 2 defines parallel data
warehouse arhitechtures

 Section 3 discusses what should
utilities look for in their cloud data
warehouse

 Section 4 outlines how our tables
should be split up across the nodes
using a shared-nothing architecture –
case study Microsoft SQL Server
Parallel Data Warehouse (PDW)

Database Systems Journal vol. V, no. 4/2014 5

Finally, we conclude this article in
Section 5.

2 Better performance through
Parallelism
Three widely used parallel hardware
architectures for data warehousing exist,
including shared-memory, shared-disk
and shared-nothing. Consider also three
basic elements in a parallel system: the
central processing unit (CPU), the storage
device (S) and memory (M).

The Shared Memory (Shared
Everything) architecture is a system
architecture where all existing CPUs
share a global memory (M) and a single
collection of disks (S). (Fig. 2)

Fig. 2. Shared Memory

Only one Database Management System
(DBMS) is present and can be executed
in multiple processes or threads, in order
to utilize all processors. [1]
Since there is a single memory, the lock
manager and buffer poll are both stored
there and this gives the chance to be
easily accessed by all the CPUs.
There are two variations of Shared-
Everything architecture [2]:

 The symmetric multiprocessing
architecture (SMP), where all the
processors share a single pool of
memory for read–write access
concurrently and uniformly
without latency.

 The distributed shared memory
architecture (DSM), where the
latency to access memory depends

on the relative distances of the
processors and their dedicated
memory pools.

The Shared Disk architecture is
characterized by a number of independent
processors (CPUs), each with its own
memory (M), but a shared collection of
disks (S) that is accessible to the DBMS of
any Processing Node (PN). This means there
is no longer a competition for shared
memory, but for access to the shared disk.
(Fig. 3)

Fig. 3. Shared Disk

Since there is no pool of memory that is
shared by all the CPUs, there is no place for
the lock table or buffer pool to reside. To set
locks, one must either centralize the lock
manager on one processor or resort to a
complex distributed locking protocol. [3]

The Shared Nothing architecture is a
distributed computing architecture where
nodes are networked to form a scalable
system.
Each node has its own private memory (M),
processor (CPUs) and storage devices (S)
independent of any other node in the
configuration. (Fig. 4) This means that every
node stores its own lock table and buffer
pool.
Such architectures are especially well suited
to the star schema queries present in data
warehouse workloads, as only a very limited
amount of communication bandwidth is
required to join one or more (typically

6 ‘Shared-Nothing’ cloud data warehouse architecture

small) dimension tables with the
(typically much larger) fact table. [3]
Data is horizontally partitioned across
nodes, such that each node has a subset of
the rows from each table that was
distributed and all the replicated tables.

Fig. 4. Shared Nothing

The key feature of shared-nothing
architecture is that the operating system
not the application server owns
responsibility for controlling and sharing
hardware resources. [2]

3 What architecture is suited for a
cloud data warehouse?
Cloud computing is probably the simplest
and best fitted way for smart grids due to
its scalable and flexible characteristics,
and its capability to manage large
amounts of data. [4]
Exactly these two major characteristics
have contributed to the importance of
parallel data warehousing:

 Data warehouses can become very
large and exceedingly resource
demanding

 queries and analyses must be
answered within acceptable time
limits.

One major advantage of shared-memory
architecture is that the responsibility to
handle the concurrency issues that result
from the multiple parallel executions
belongs to the operating system.

Unfortunately, shared-memory systems have
fundamental scalability limitations, as all
I/O and memory requests have to be
transferred over the same bus that all of the
processors share, causing the bandwidth of
this bus to rapidly become a bottleneck. It is
unusual to see shared-memory machines of
larger than 8 or 16 processors unless they
are custom-built from non-commodity parts,
in which case they are very expensive. [3]
Therefore, there are significant scalability
limits to any data warehouse based on
shared-memory architecture.

One major advantage of shared-disk is that
all the data is stored in the shared collection
of disks. This means that there is no need to
distribute parts of the data in each node.
It has the disadvantage of creating a possibly
critical bottleneck and scalability limitations
in the storage subsystem and
interconnections, as all processing units
share the same storage system. [1]
Therefore, shared disk architecture gives
extremely limited capacity to scale.

Shared nothing does not typically have
nearly as severe bus or resource contention
as shared-memory or shared-disk machines,
shared nothing can be made to scale to
hundreds or even thousands of machines.
Because of this, it is generally regarded as
the best-scaling architecture [5].
Shared-nothing architecture scales better and
is well suited for a cloud data warehouse
considering very low-cost commodity PCs
and networking hardware.
Nowadays, the popular distributed systems

have almost all adopted the shared-nothing

architectures, including peer-to- peer,

cluster, Grid, and the Cloud. [6]

The shared-nothing architecture is used for
overcoming the scalability limitations, to
improve performance when loading and
querying data concurrently as well as
performing complex joins.

Database Systems Journal vol. V, no. 4/2014 7

4 Parallel Data Warehouse
SQL Server Parallel Data Warehouse is a
Massively Parallel Processing (MPP)
solution, which means PDW uses a
“shared-nothing” architecture, where there
are multiple physical nodes, each running
its own instance of SQL Server with
dedicated CPU, memory, and storage.

PDW has two primary types of tables:
replicated and distributed.

Fig.5. Dimension tables are replicated on
every node

The code for replicating a dimension table
from the Energy Data Warehouse looks like
this:
CREATE TABLE User (

UserID varchar(10) NOT NULL,

UserName varchar(50),

Street varchar(50),

City varchar(20),

District varchar(15),

Region varchar(20),

Phone varchar(10),

Email varchar(50),

Income Level varchar(20),

House_Area int,

Persons int,

El_Heaters int,

The purpose of replicating tables is to
improve performance by keeping a copy of
them on each compute node to support local
joins, without having to handle complicated
types of parallel queries or dimension-only
queries between nodes. This type of table is
most often used for dimension tables, but for a
very large dimension table is recommended to
use distribution. (Fig. 5)

HeatingH decimal(3,1),

Refrigerators int,

AirCond int,

HWLights int,

HinHome decimal(3,1),

Requip varchar(30),

Password varchar(10))

WITH

(DISTRIBUTION = REPLICATE);

 If the distribution clause is omitted, the
default is REPLICATE.

The same applies for creating the other
dimension tables (Sensors and Time).

8 ‘Shared-Nothing’ cloud data warehouse architecture

The purpose of distribution is to improve
performance by spreading all the rows of a
distributed table across all nodes, with the
condition that each row from the source
table ends up in only one node. (Fig. 6)

Large fact or transaction tables that contain
billions or even trillions of rows are usually
distributed.

Fig. 6. Fact table is distributed on every
node

 Is recommended not to use as
distributed key a column that is
frequently restricted to a single
value in queries.

 When distributing multiple fact
tables, the needed analyzes are other
considerations that must be taken
into account.

For example, by distributing
multiple fact tables on the same
distribution key, rows from the first
table will be evenly distributed
across all nodes and the rows from
the other tables will be co-located
on the same distribution. This way,
queries that may need to join
multiple distributed fact tables will
perform fast.

The rows are mapped using a hash function on
a distribution key from the table.

The distribution key must be a single
attribute column, selected considering
several criteria:

 High cardinality and even row
counts – data must be distributed as
evenly as possible across all the
distributions on all nodes;

The code for distributing the
EnergyConsumption fact table from the
Energy Data Warehouse, having UserID as
the distribution key, looks like this:

The rows are mapped to the distributions using
a hash function on the column that was chosen
as the distribution key from the table, in our
case UserID. (Fig.7)

Database Systems Journal !" #$ % " &'()*& �-

��

��
�4���"�%���9�%��3578,5I086> ���������"�
���
���������*�����
��

-@;8 8@I!6

J26 476,.3 _69 -, < 6@;2 , R -, < 826
:%6,19D %70<G85 % -@;8 >@8@ 57 G@776>
82, 012 @ H@72 M0%;85 %" J26 2@726>
@!067 <@G 8 @ 75%1!6 >578,5I085 % % @
75%1!6 % >6"

M , 6S@<G!6$ 826 , R - , 476,.3
)b&WjXim)) 2@7267 8)S*B$ R25;2 <@G7
8 826 76; %>P!@78 >578,5I085 % - 826 -5,78
; <G086 % >6" `U >6Y*$ 3578,5I085 %YX$
A RYba

J26 , R - , 476,.3 (b&WjXim)* 2@7267 8
)S&W$ R25;2 <@G7 8 U >6Yb$ 3578,5I085 %Y
($ A RY("

B-86, 826 8@I!67 @,6 ! @>6> R582 >@8@$ 076,7
R5!! 076 =e/ 78@86<6%87 8 ^06,9 +3T
8@I!67"

M , 6S@<G!6$ 826 - !! R5%1 I@75; k72@,6>P
% 825%1l Q 5% ,0%7 @1@5%78 826 >578,5I086>
:%6,19D %70<G85 % 8@I!6 ;,6@86> @I 6
@%> 826 ,6G!5;@86> 8@I!67 476, @%> J5<6Y

�����������������'�3�	 �
�������������
�'���
�����3���"�#�
�'���.�����"�#�� ��
�4�����5���	�
�������' ��
�6�����������#�����!�����"�#�
�'���.�����"�#���������������'�3�	�
�����������0��
�����3�	�
�������� ��
�6���������������������������������3���������������0�����3������������ ��
�,�&���������'�3�����!���"�#���0���7���%�����#�����7�����#�)�����3�8���������0��
�7� �����9�7��
�:�����	�$�����8���'�3�	�
�������� ��

.% 8257 ;@76 076, R@%87 8 -5%> 08 826 @< 0%8
 - 6%6,19 ; %70<G85 % 5% ())& - , 6 6,9
; %70<6, -, < N!86%5@"

J26 ^06,9 R5!! I6 76%8 8 6@;2 % >6$ 58 R5!! I6
6S6;086> 5% G@,@!!6! % 6@;2 ; <G086 % >6$
826% 826 +3Tn7 C++ 6%15%6 ; !!6;87 @%>
<6,167 @!! 826 G@,@!!6! ,670!8 7687 -, < 826
% >67 @%> 76%>7 I@;_ 8 826 ;!56%8 @ 75%1!6
,670!8 768" �/�4���"�%���:�0
J257 ^06,9 G6,- ,<7 6,9 R6!! 6 6% 5-
:%6,19D %70<G85 % 57 @ 6,9 !@,16 >578,5I086>
8@I!6" L5 5%1 826 -@;8 82@8 826 >5<6%75 % 8@I!67
@,6 ,6G!5;@86> % 6 6,9 % >6$ 6@;2 ; <G086
% >6 ;@% @%7R6, 587 G@,8 - 826 G@,@!!6! ^06,9"

= <6 - 826 <@%9 I6%6-587 G, 5>6> I9 826
=e/ =6, 6, +@,@!!6! 3@8@ T@,62 076 @,6
query performance `*)P*)) 85<67 5%;,6@76>
>06 8 G@,@!!6! 6S6;085 %a$ data loading
performance `*)P&) 85<67 -@786, >06 8 G@,@!!6!
! @>5%1 >@8@a$ the integration with cloud-born
data `T5%> R7 BE0,6 H3.%75128$ T5%> R7
BE0,6 I! I 78 ,@16a @%> the HDInsight
integration 5%8 826 +3T ,@;_"

H3.%75128 5%861,@867 H@> G R5825% @ G@,@!!6!
>@8@ R@,62 076 G, ;6775%1 `+3Ta" =;@!5%1 8
826 ;! 0> 57 @!7 6@75!9 6%@I!6> R582 826
H3.%75128 H@> G 76, 5;6 % T5%> R7
BE0,6" gXh
��

