
Database Systems Journal vol. V, no. 2/2014 33

Query Optimization Techniques in Microsoft SQL Server

Costel Gabriel CORLĂŢAN, Marius Mihai LAZĂR,
Valentina LUCA, Octavian Teodor PETRICICĂ

University of Economic Studies, Bucharest, Romania
gabi.corlatan@yahoo.com, lazar_mariusmihai@yahoo.com,
luca.valentina@ymail.com, octavian.petricica@ymail.com

Microsoft SQL Server is a relational database management system, having MS-SQL and
Transact-SQL as primary structured programming languages. They rely on relational
algebra which is mainly used for data insertion, modifying, deletion and retrieval, as well as
for data access controlling. The problem with getting the expected results is handled by the
management system which has the purpose of finding the best execution plan, this process
being called optimization. The most frequently used queries are those of data retrieval
through SELECT command. We have to take into consideration that not only the select
queries need optimization, but also other objects, such as: index, view or statistics.
Keywords: SQL Server, Query, Index, View, Statistics, Optimization.

Introduction
We consider the following problems as
being responsible for the low

performance of a Microsoft SQL Server
system. After optimizing the hardware, the
operating system and then the SQL server
settings, the main factors which affect the
speed of execution are:

1. Missing indexes;
2. Inexact statistics;
3. Badly written queries;
4. Deadlocks;
5. T-SQL operations which do not

rely on a single set of results
(cursors);

6. Excessive fragmentation of
indexes;

7. Frequent recompilation of queries.
These are only a few of the factors which
can negatively influence the performance
of a database. Further, we will discuss each

of the above situations and give more
details.

2. Missing indexes
This particular factor affects the most SQL
Server’s performance. When missing
indexing of a table, the system has to go
step by step through the entire table in
order to find the searched value. This leads
to overloading RAM memory and CPU,
thus considerably increasing the time
execution of a query. More than that,
deadlocks can be created when for
example, session number 1 is running, and
session number 2 queries the same table as
the first session.
Let’s consider a table with 10 000 lines
and 4 columns, among which a column
named ID is automatically incremented
one by one.

Table 1.1. Running a simple query to retrieve a row in a table

With clustered index (execution time / query
plan)

Without clustered index (execution time /
query plan)

1

34 Query optimization techniques in Microsoft SQL Server

Table 1.2. Running a 2 table join query

With clustered index (execution time / query
plan)

Without clustered index (execution time /
query plan)

Tabel 1.3. Running a junction between two tables

Query (Q1) Query (Q2)
select * from T_1where ID = 50000 select *

 from T_1as a
 innerjoin T_2as b
 ona. ID =b. ID
where a. ID = 50000

In Table 1.1, the query is created using a
single table, with and without a clustered
index on the column specified in the
WHERE clause (Q1). In the second table
(Table 1.2), the query has two tables, a join
on ID column of the two tables and a
WHERE clause (Q2).
According to [1] and [3], SQL Server
supports the following types of indexes:

- Clustered index;
- Nonclustered index;
- Unique index;
- Columnstore index;
- Index with included columns;
- Index on computed columns;
- Filtered index;
- Spatial index;
- XML index;
- Full-text index.

According to [2], the main index
optimization methods are the following:

- It is recommended that created indexes
to be used by the query optimizer. In
general, grouped indexes are better
used for interval selections and ordered
queries. Grouped indexes are also more
suitable for dense keys (more
duplicated values). Because the lines
are not physically sorted, queries which
run using these values which are not
unique, will find them with a minimum
of I/O operations. Ungrouped indexes
are more suitable for unique selections
and for searching individual lines;

- It is recommended for ungrouped
indexes to be created with as low
density as possible. Selectivity of an
index can be estimated using the
selectivity formula: number of unique
keys/ number of lines. Ungrouped
indexes with selectivity less than 0, 1
are not efficient and the optimizer will

Database Systems Journal vol. V, no. 2/2014 35

refuse to use it. Ungrouped indexes are
best used when searching for a single
line. Obviously, the duplicate keys
force the system to use more resources
to find one particular line;

- Apart from increasing the selectivity of
indexes, you should order the key
columns of an index with more
columns, by selectivity: place the
columns with higher selectivity first.
As the system goes through the index
tree to find a value for a given key,
using the more selective key columns
means that it will need less I/O
operations to get to the leaves level of
the index, which results in a much
faster query;

- When an index is created, transactions
and key operations in database are
taken into consideration. Indexes are
built so that the optimizer can use them
for the most important transactions;

- It is recommended that we take into
consideration at the time of index
creation, that they have to serve the
most often combining conditions. For
example, if you often combine two
tables after a set of columns (join), you
can build an index that will accelerate
the combination;

- Give up the indexes which are not
used. If, following the analysis of the
execution plans of queries which
should use indexes we see they cannot
actually be used, they should be
deleted;

- It is recommended creating indexes on
references to external keys. External
keys require an index with unique key
for the referred table, but we have no
restrictions on the table that makes the
reference. Creation of an index in the
dependent table can accelerate
checking the integrity of external keys
which result from the modifications to
the referred table and can improve the
performance of combining the two
tables;

- In order to deserve the rare queries and
reports of users, we recommend

creating temporary indexes. For
example, a report which is ran only
once a year or once a semester does not
require a permanent index. Create the
index right before running the reports
and give it up afterwards, if that makes
things happen faster than running the
report without any indexes;

- For unblocking page for an index, a
system procedure can be used:
sys.sp_indexoptions. This forces the
server to use blocking at line level and
table level. As long as the line
blockings do not turn too often into
table blockings, this solution improves
the performance in the case of multiple
simultaneous users;

- Thanks to using multiple indexes on a
single table by the optimizer, multiple
indexes with a single key can lead to a
better overall performance than an
index with a compound key. That is
because the optimizer can query the
indexes separately and can combine
them to return a set of results. This is
more flexible than using an index with
compound key because the index keys
on a single column can be specified in
any combination, which cannot be
done in the case of compound keys.
Columns which have compound keys
have to be used in order, from left to
right;

- We recommend using Index Tuning
Wizard application, which will suggest
the optimized indexes for your queries.
This is a very complex tool that can
scan tracking files collected by SQL
Server Profiler in order to recommend
the indexes that will improve the
performance.

3. Inexact Statistics
According to [3], the SQL Server database
management system relies mostly on cost
based optimization, thus the exact statistics
are very important for an efficient use of
indexes. Without these, the system cannot
estimate exactly the number of rows,
affected by the query. The quantity of data

36 Query optimization techniques in Microsoft SQL Server

which will be extracted from one or more
tables (in the case of join) is important
when deciding the optimization method of
the query execution. Query optimization is
less efficient when date statistics are not
correctly updated.
The SQL Server query optimizer is based
on cost, meaning that it decides the best
data access mechanism, by type of query,
while applying a selectivity identification
strategy. Each statistic has an index
attached, but there can be manually created
statistics, on columns that do not belong to
any index. Using statistics, the optimizer
can make pretty reasonable estimates
regarding the needed time for the system to
return a set of results.

Indexed column statistics
The utility of an index is entirely
dependent on the indexed column
statistics. Without any statistics, the SQL
Server cost-based query optimizer cannot
decide which is the most efficient way of
using an index. In order to satisfy this
requirement, it automatically creates
statistics on a index key every time the
index is created. The required mechanism
of data extraction in order to keep the cost
low can use changing data. For example, if
a table has a single row that matches some
value which is unique, then using a
nonclustered index makes sense. But if
data changes, when adding a big number of
rows with the same column value
(duplicates), using the same index does not
make any sense.
According to [5], SQL Server utilizes an
efficient algorithm to decide when to

execute the system procedure that updates
the statistics, based on factors such as
number of updates and table size:
- When inserting a line into an empty

table;
- When inserting more than 1000 lines in

a table that already has 1000 rows.
Automatic update of statistics is
recommended in the vast majority of cases,
except for very large table, where statistics
updates can lead to slowing down or
blocking the system. This is an isolated
case and the best decision must be taken
regarding its update.
Statistics update is made using the system
procedure sys.sp_updatestats on an
indexed table or view.

Unindexed column statistics
Sometimes there is the possibility of
executing a query on an unindexed
column. Even in this situation the query
optimizer can take the best decision if it
knows the data distribution of those
columns. As opposed to index statistics,
SQL Server can create statistics regarding
the unindexed columns. Information
regarding data distribution or the
probability of having some value in an
unindexed column can help the optimizer
establish an optimum strategy. SQL Server
benefits of query optimization even when
it cannot use an index to locate the values.
This automatically creates statistics on the
unindexed column when the information
that the system has, helps creating the best
plan, usually when the columns are used in
a predicate(ex: WHERE).

Table 1.4. Query plan

Database Systems Journal vol. V, no. 2/2014 37

Table 1.5. Statistical data of the table "T_1"
selecta.ID,a.Col_1,a.Col_2,b.Col_3

 fromT_1asa

 innerjoinT_2asb

 ona.ID=b.ID

wherea.ID= 50000

4. Badly written queries
Index efficiency depends a lot on the way
the queries are written. Taking a very large
number of lines from a table can lead to

inefficiency of the index. For improving
performances, SQL queries must be
written so that they use the existing
indexes.

Table 1.6. T-SQL query to identify the names of
the tables that contain at least one line using the

system view "sys.partitions" (Q1)

Table 1.7. T-SQL query to identify the names of
the tables that contain at least one line using the

system view "sys.sysindexes" (Q2)

Table 1.8. Query execution time using the system

view "sys.partitions"
Table 1.9. Query execution time using the system

view "sys.sysindexes"

As an example we select two T-SQL
inquiries executed on system tables
(views). Both return the names of the table
which start with “TI Word Map” from the
“dbo” layout and which contain at least
one line. This method is more efficient
than rolling a slider key on all tables from
“sys.tables”, than rolling an inquiry “select
count(*) from table name”, for each line
with slider key, insertion of tables which
contain at least one line in a temporary
table, and then its inquiry. However this
number can be determined by two
methods: Table 1.6 and Table 1. 7.
Although they may be identical the only
difference between the two inquiries is that
for determining the number of lines in Q1
table it extracts the number from
sys.partitions and for Q2 from sys.

sysindexes. As we may see Q1 is
aproximatively three times quicker than
Q2. In this case it is recommended using
the system view sys.partitions rather than
sys. sysindexes which according to
Microsoft will be erased in future versions
of SQL Server data bases.
Methods for optimizing SELECT option:
- Every time possible it is recommended

to use as search columns in inquiries,
the far left ones of the index. One index
on col_1 and col_2 is of no help in an
inquiry which filtrates results of col_2;

- It is recommended to build up WHERE
terms which inquiry optimizer should
recognize and use as searching tools;

- Don’t use DISTINCT or ORDER BY
without any need. They may be used
only to eliminate duplicate values or to

38 Query optimization techniques in Microsoft SQL Server

select a specific order in the result set.
With the sole exception when the
optimizer can find an index that might
serve them, they can engage an
intermediate working table, which can
be expensive when talking about
performance;

- Use UNION ALL instead of UNION
when eliminating duplicates from a
result set is not a priority. Because it
eliminates the duplicates, UNION must
sort or deal the result set before
returning it;

- You may use SET LOCK_TIMEOUT
when controlling the time limit a
connection is waiting for a blocked
resource. At the start of the session the
automatic variable
@@LOCK_TIMEOUT returns -1
which means that no value was
selected to expire. You can select as a
value for LOCK_TIMEOUT any
positive number which establishes the
number of milliseconds which an
inquiry waits a blocked resource before
to expire. In more difficult stages this
is necessary to prevent apparent
blocked applications;

- If an inquiry includes the IN predicate
which contains a list of constant values
(instead of a minor inquiry) order the
values according to the release
frequency in the exterior inquiry, more
over when you know data tendencies.
A common solution is alphabetical or
numerical ordering of values but these
may not be optimal. Because the
predicate returns TRUE as soon as it
reaches a resemblance for any of its
values, moving on the first positions of
the list the values which are released
frequently should accelerate the
inquiry, especially in the case when the
column where the searching is done, is
not indexed;

- It is recommended choosing algorithms
despite of imbricated minor inquiries.
A minor inquiry may need an
imbricated inquiry that is a cycle in a
cycle. In the case of imbricated error,

the lines of the interior table are
scanned for each line of the exterior
table. This thing works very good for
little tables and it was the only
algorithm strategy used in SQL Server
before 7.0 version, but as tables
become bigger and bigger this solution
becomes less and less efficient. It is
much better to do the normal
algorithms between tables and to let the
optimizer select the best way to
analyze them. Mostly the optimizer
will try to transform the pointless
minor inquiries in algorithms;

- When possible it is recommended to
avoid CROSS JOINT type algorithms.
With the exception of the case in which
one cannot avoid the need for Cartesian
product of two tables, it is used a more
efficient method of algorithms to chain
one table after the other. Returning an
unwanted Cartesian product and then
eliminating the duplicates generated by
it using DISTINCT and GROUP BY is
a problem which causes serious
damage to the inquiry;

- You may use TOP(n) extension to
restrict the number of lines returned by
an inquiry. This thing is useful mainly
when you may insert values using
SELECT, because you may view only
the values from the first part of the
table;

- You may use OPTIONS clause of the
SELECT instruction for influencing the
inquiry optimizer with inquiry
suggestions. As well you may select
suggestions for tables and specific
algorithms. As a rule the optimizer
should optimize the inquiries, but there
are cases in which the performing plan
chosen is not the best. Using
suggestions for inquiry, table or
algorithm, you may entail to a certain
type of algorithm, group or union to
use a certain index, so on and so forth.
These are called query hints; Here are
some of these:

o FAST number_of_lines – points
out that the inquiry is optimized

Database Systems Journal vol. V, no. 2/2014 39

to rapidly reclaim the first
“number of lines” After the first
“number of lines” are returned,
the inquiry goes on and
produces the complete result
set;

o FORCE ORDER – points out
that the syntax order of the
inquiry is enabled during the
inquiry optimization;

o MAXDOP processor_number –
overwrites the maximum
number of configurated
parallelism using sp_configure;

o OPTIMIZE FOR
(@variable_name) – points out
to the inquiry optimizer to use a
specific value to a certain local
variable when inquiry is
compiled and optimized;

o USE PLAN – impels the
inquiry optimizer to use an
existent inquiry plan. It can be
used with: insert, update, merge
and delete options.

- Beside query hints there are also table
hints, which influence the inquiry
optimizer in taking some decisions as:
using a blocking method for a table,
using a certain index, blocking lines,
etc. Here are some types:

o NOLOCK –
READUNCOMITTED and
NOLOCK hints are applied
only when data is blocked.
They obtain Sch-s (stability
scheme) blocked when
compelling and executing. This
indicates no blocking and
doesn’t stop other transactions
accession to data, including
their modification;

o INDEX – impels using an
index;

o READPAST – points out to the
system not to read the lines
which are blocked by other
transactions;

o ROWLOCK – a line is blocked;

o TABLOCK – points out that the
blocking is at a table level;

o HOLDLOCK – it’s the
equivalent of the
SERIALIZABLE isolation
level;

o TABLOCKX – points out an
exclusive blocking of the table.

- Testing and comparing two inquiries to
determine the most efficient way of
accessing data, one must be sure that
the mechanism of data placement in
cache memory of the SQL Server
doesn’t impair test results. One way of
doing this is by cycling the server
between inquiries rolling. Another way
is by using undocumented DBCC
commands to clean important cache
memories. DBCCFREEPROCACHE
extricates the memory for the
procedure. DBCC
DROPCLEANBUFFERS cleans all
cache memories.

5. Excessive blocking (deadlocks)
According to [2], SQL Server is a software
compliant with “ACID” rules where
“ACID” is an acronym for atomicity,
consistency, isolation and durability. This
assures that the variations made by the
simultaneous transactions are worthy
isolated one versus the other. Compliance
with the rules by the transactions is
mandatory for data safety.
- Atomicity: one transaction is atomic if

compliant with the principle “all or
nothing”. When a transaction is
successful all its variations become
permanent, when a transaction fails, all
the variations are canceled;

- Consistency: one transaction is atomic
if compliant with the principle “all or
nothing”. When a transaction is
successful all its variations become
permanent, when a transaction fails, all
the variations are canceled;

- Isolation: a transaction is isolated if it
doesn’t concern other transactions or it
isn’t concerned by other rival

40 Query optimization techniques in Microsoft SQL Server

transactions on same data (levels of
isolation);

- Durability: a transaction is durable if it
can be done or reversed despite of a
system breakdown.

SQL Server Blocking
When a session is doing an inquiry, the
system determines the resources of the data
base and gives data base blocking for the
respective session. The inquiry is blocked
in case that a session got blocked. Despite
all these, for offering isolation and rivalry
SQL Server offers different levels of
blocking as:
• Row (RID) – this blocking is done on a

single row in a table and is the smallest
blocking level. For example when an
inquiry changes a row in a table a RID
blocking is made for that inquiry.

• Key (KEY) – this is a blocking system
of a row in an index and is identified as
a blocking key. For example for a table
with a clustered index, data pages of
the table and data pages of the
clustered index are the same. Since
both rows are the same for the
clustered index table only a KEY type
blocking is obtained on the clustered
index row or the limited set of rows
while accessing the rows in the table;

• Page (PAG) – PAG blocking system is
kept only on a page of a table or index.
When an inquiry requires more rows in
a page, the consistency of all required
rows can be kept whether by RID or

KEY blocking on a row level or by
PAG blocking on a page level;

• Extent (EXT) – this type of blocking is
made after using ALTER INDEX
REBUILD command. This command is
used at a table level and the table pages
can be moved from one scale to
another scale. All this time the integrity
of the extent is protected by EXT
blocking;

• Heap or B-tree (HoBT) – a HEAP or
B-TREE blocking is used when data is
heaped on many file groups. Target
object may be a table without clustered
index or a B-TREE object. A setting in
ALTER TABLE offers a certain level
of control over the blocking mode
(lock escalation). Because the parts are
heaped in many file groups, each has to
have its own data assignation
definition. HoBT blocking type acts on
a partition level, not on a table level;

• Table (TAB) – this blocking type is the
highest blocking level. Books complete
access to the table and its indexes;

• File (FIL);
• Application (APP);
• MetaData (MDT);
• Allocation Unit (AU);
• Database (DB) – it is a blocking

system kept on a database level. When
an application gets access to a data
base, the blocking manager offers a
blocking at a data base level worthy to
a SPID (Speed Process ID).

Database Systems Journal vol. V, no. 2/2014 41

Table 1.10. The session (event session) for a database jams

Isolation levels of transactions
SQL Server accepts four types of isolation
of a transaction. As I mentioned earlier the
level of isolation of a transaction controls
the way in which it affects and is affected
by other transactions. In a level of isolation
it is always a reverse relation between data
consistency and users rivalry. Selecting a
more restrictive level of isolation amplifies
data consistency to the detriment of
accessibility. Selecting a less restrictive
level of isolation amplifies rivalry to the
detriment of data consistency. It is
important to balance these opposite
interests, so the needs of the application to
be assured.
- READ UNCOMMITTED - READ

UNCOMMITTED parameter
specification is essentially the same as
using NOLOCK option in each table
referenced by a transaction. This is the
least restrictive of the four isolation
levels in SQL Server. It allows "dirty
reads" (reading not completed changes

of other transactions) and readings that
cannot be repeated (data which changes
between readings during a transaction);

- READ COMMITTED - The default
isolation level in SQL Server, so if you
do not specify otherwise, you get the
READ COMMITTED level. READ
COMMITTED level avoids reading
"dirty", enforcing shared locks on
accessed data but allows modification
of basic data during a transaction, thus
the possibility of repeated readings and
/ or phantom data;

- REPEATABLE READ - The
REPEATABLE READ level generates
locks that prohibit other users to
modify data accessed by a transaction,
but does not prohibit the insert of new
rows, which may result in phantom
rows between readings during a
transaction;

- SERIALIZABLE - The level
SERIALIZABLE prevents "dirty
reads" and phantom lines by

42 Query optimization techniques in Microsoft SQL Server

introducing key-range locks on data
access. It is the most restrictive of the
four isolation levels in SQL Server.
This is equivalent to using the option
HOLDLOCK on each table referenced
by a transaction.

In order to enforce an isolation level for a
transaction, the command SET
TRANSACTION ISOLATION LEVEL
must be used. The valid parameters for the
isolation levels are READ
UNCOMMITTED, READ COMMITTED,
REPEATABLE READ and
SERIALIZABLE.

6. T -SQL operations that are not based
on a single set of results (cursors)
Given that Transact -SQL is a set based
language, we know that it operates on sets.
Writing non-set based code can lead to
excessive use of cursors and loops. To
improve performance, it is recommended
to use queries based on set, not the row by
row approach, as the latter leads to
hardware overloading, resulting in a much
higher data access time. Excessive use of
cursors increases the stress on SQL server
and results in reduced system performance.

Classification cursors
Based on the level of isolation, according
to [3] and [4] cursors may be:
- Read-only – the cursor cannot be

updated;
- Optimistic– updatable cursor and uses

the optimistic concurrency model (does
not lock rows of data);

- Scroll Locks – updatable cursor that
has a locking system for any row to be
updated.

Types of cursors
- Forward-only – the default cursor

type. It returns the rows from the data
set sequentially. No extra space needed
in tempdb and changes on data are
visible as soon as the cursor reaches it;

- Static – static cursors return a result set
that can only be read, which is
impervious to changes in data. They

are sometimes referred to as insensitive
and are the opposite of dynamic
cursors;

- Dynamic – as with forward- only
cursors, dynamic cursors type reflect
changes on rows as they reach them.
No extra space in tempdb is needed,
and unlike forward-only cursors they
are scrollable, which means they are
not restricted to sequential access on
rows. Sometimes these cursors are
called sensitive;

- Keyset – keyset cursors return a fully
scrollable result set, whose
membership and order are fixed. As
with static cursors, the unique-key
values set of the cursor lines is copied
to tempdb when opening the cursor.
This is why the cursor membership is
fixed.

Cost comparison
Read-Only cursors
The read-only model has the following
advantages:

- The lowest level of locking: the
read-only model introduces the
lock with the least impact and
database synchronization. Locking
on the base row while the cursor
loops the rows can be avoided by
using the NO_LOCK command in
the SELECT instruction, but the
dirty reads must be taken into
account;

- The highest level of concurrency:
as supplementary locks are not held
in the rows that form its base, the
read-only cursor does not block
other users from accessing the base
table.

The main disadvantage of the read-only
cursor refers to the lack of updates:
contents of the base table cannot be
modified by the cursor.

Optimistic cursors
The optimistic model has the following
advantages:

Database Systems Journal vol. V, no. 2/2014 43

- Low level of locking - Similar to
the read-only model, the optimistic
concurrency model does not have a
specific type of lock. In order to
further improve the concurrency,
the NOLOCK locking instruction
may also be used, as in the case of
the read-only concurrency model.
Using the cursor to update a row
requires exclusive rights on that
row;

- High concurrency - Since only a
shared lock is used on the rows
behind it, the cursor does not block
other users from accessing the base
table. Changing a baseline will
block other users from accessing
the row during the update.

Scroll Locks cursors
The scroll locks model has the following
advantages:
- Concurrency control: By blocking the

base row corresponding the last row of
the cursor, it ensures that the base row
cannot be changed by another user;

- For very large data sets, the use of
asynchronous cursors is recommended.
Returning a cursor allows further
processing while the cursor is
populated. Asynchronous cursors are
set as follows:

EXECsp_configure 'show
advanced options' , 1 ;
GO
RECONFIGURE
GO
EXECsp_configure 'cursor
threshold' , 0 ;
GO
RECONFIGURE
GO

- When configuring read-only result sets,

unidirectional, FAST_FORWARD
cursor option is recommended instead
of FORWARD_ONLY.
FAST_FORWARD option creates a
FORWARD_ONLY and a

READ_ONLY cursor with several
built in performance optimizations;

- It is recommended to avoid changing a
large number of lines using a cursor
cycle contained in a transaction
because each line that it changes may
remain locked until the end of the
transaction, depending on the
transaction isolation level.

7. Excessive index fragmentation
Normally, data is organized in an orderly
way. However, in the case in which the
pages contain fragmented data or contain a
small amount of data due to frequent page
division, the number of read operations
needed to return the data will be higher
than usual. Increasing the number of
readings is due to fragmentation.
Fragmentation occurs when table data is
changed .When executing instructions to
insert or update data (INSERT or
UPDATE statements), clustered indexes on
tables and nonclustered indexes are
affected. This issue can cause a tear in the
index leaf page when an index change
cannot be stored on the same page. A new
leaf page will then be added as part of the
original page in order to maintain the
logical order of rows in the index key.
Although the new leaf page maintains the
logical order of rows of data from the
original page, it usually will not be
physically adjacent to the original page on
disk. For example, suppose that an index
has nine key values (or rows in the index)
and average index rows size allows a
maximum of four rows in a leaf page. 8KB
leaf pages are connected to previous and
next pages to maintain the logical order of
the index In Figure 1.1, leaf pages layer 1
is shown. Since the key values of index
leaf pages are always sorted, a new row of
the index with a key value of 25 must
occupy a place between the extended key
values of 20 and 30. Since the leaf page
containing that existing index is filled with
four rows, the new index row will result in
dividing the page.

44 Query optimization techniques in Microsoft SQL Server

Fig 1.1. Layer leaf pages

A new page will be assigned to the index
and a part of the first page will be moved
on this new page so that the new index key
can be expressed in the correct logical
form. The links between indexed pages
will also be updated as the pages are
logically linked in index order. As it can be
seen in Figure 1.1, a new page, even if
linking it to the other pages id done in the
correct logical order, physically the linking
can sometimes be unordered.
Pages are grouped into larger units called
extents, which may include eight pages.
SQL Server uses unit as a physical unit of
disk allocation. Ideally, the physical order
of extensions contains leaf pages whose
key must be the same as the logical order
of the index. This reduces the number of
required switches between extents when
reading a series of rows in the index.
However, crevice in the pages can disturb
the pages within extensions physically and
can also cause physical disorder even
among extensions. For example, suppose
the first two leaf pages of the index are as
measure 1 and the third page is measure 2.
If measure 2 contains unallocated space,
then the new leaf page allocated to the
index causes page division. The page will
be measure 2, as shown in Figure 1.3.
With leaf pages distributed between two
extents, one would ideally expect a read of
a series of index rows with a maximum of
one switch between the two extents.
However, the disorganization of pages
between extents can cause more than one
switch during the read of a series of rows
in the index. For example, to retrieve a
number of rows in the index between 25
and 90, you will need three switches
between the two extents, as follows:
- Firstly, a measure switch to retrieve the

value of key 30 after the value of key
25;

- Secondly, a measure switch to retrieve
the value of key 50 after the value of
key 45;

- Thirdly, a measure switch to retrieve
the value of key 90 after the value of
key 80.

This type of fragmentation is called
external fragmentation. Fragmentation can
also occur in an index page. If an INSERT
or UPDATE operation creates a page
break, then free space will be left behind in
the original leaf page. Free space can also
be caused by a DELETE operation.
The net effect is the reduction of the
number of rows included in one leaf page.
For example, in Figure 1.3, the page split
caused by the INSERT operation has
created a gap in the first leaf page. This is
known as internal fragmentation.
For a highly transactional database, it is
preferable to deliberately leave space
inside the leaf pages to be able to add new
rows or change existing rows size without
causing a rift in the page. In Figure 1.3 the
free space of the first leaf page allows a
key value in the index of 26. This can be
added to the leaf page without causing a
rift.
Heap pages can become fragmented in
exactly the same way. Unfortunately,
because of the storage mechanism and
because every nonclustered index uses the
physical location of the data to retrieve
data from heap, defragmenting is quite
difficult. The ALTER TABLE command
using the REBUILD clause can be used to
perform a reconstruction.
SQL Server 2012 exposes leaf pages and
other data through a dynamic system view
management system called
sys.dm_db_index_physical_stats. It stores
both index size and degree of
fragmentation.

Database Systems Journal vol. V, no. 2/2014 45

According to Microsoft, the commands
ALTER INDEX REORGANIZE and
ALTER INDEX REBUILD are used

depending on the degree of fragmentation
of the system view as follows:

Table 1.11. Degree of fragmentation of the system

Value of avg_fragmentation_in_percent
column

T-SQL code

> 5% and <= 30% ALTER INDEX REORGANIZE
> 30% ALTER INDEX REBUILD

Rebuilding an index can be performed
either online or offline, but reorganization
can only be executed online.

Fig 1.2. Outside leaf page order

Fig 1.3. Outside leaf pages order distributed extensions

Note that this index fragmentation is
different from disk fragmentation. Index
fragmentation can’t be determined by
running the Disk Defragmenter tool,

because the order pages in a SQL Server
file is understood only by SQL Server, not
by the operating system.

46 Query optimization techniques in Microsoft SQL Server

Fig 1.4. Determining the degree of fragmentation of the index tables in schema "dbo" with
fragmentation greater than 10

Fig 1.5. The result of the query to determine the degree of fragmentation of indexes

8. Rebuilding Frequent Queries
The most common way to provide a
reusable execution plan, independently of
the variables used in a query, is to use a
stored procedure or parameterized query.
By creating a stored procedure to execute a
set of SQL queries, the database system
creates a parameterized execution plan
independently of the parameters during
execution. The execution plan generated
will be reusable only if SQL Server does
not have to recompile individual
statements from stored procedure each
time it is executed (e.g. sequences of
dynamic SQL). Rebuilding frequent query
execution causes time increases.
Optimizing stored procedures methods:
- Whenever possible it is recommended

to use stored procedures instead of ad-
hoc queries. In order to reuse the
execution plan of an ad hoc SQL query
you have to match exactly and must
fully qualify each object meant. If in
future use the query, everything is
different: the parameters, name objects,
key elements of SET, the plan will not
be reused. A good solution that avoids
the limitations of ad-hoc queries is to
use the system stored procedure

sys.sp_executesql. This is somewhere
between rigid stored procedures and ad
hoc Transact-SQL queries, allowing to
run ad-hoc queries with replaced
parameters. This facilitates reuse of ad-
hoc execution plans without the need
for precise consistency;

- For a small portion of a stored
procedure the query plan must be
rebuilt at every execution (e.g. due to
data changes that doesn’t make the
optimal plan), but we do not want the
overload associated with rebuilding
plan for the entire procedure each time,
that portion it should be moved in a
stand-alone procedure. This allows
reconstruction of its execution plan
every time a run, but without affecting
the procedure longer. If this is not
possible, try using EXEC() to call the
suspect code in the main procedure.
Because this subroutine it is
dynamically built we can generate a
new execution plan at every execution,
without affecting the whole stored
procedure query plan;

- When possible, it is better to use output
parameters of stored procedures instead
of set results. If you need to return the

Database Systems Journal vol. V, no. 2/2014 47

result of a calculation or to locate a
single value in a table, it is preferable
to return the output parameter of a
stored procedure instead of a set result
with a single line. Even if you return
multiple columns, output parameters of
stored procedures are more effective
than complete set results;

- When you need to return a set of lines
from a stored procedure to another, it is
better to use output parameters of the
cursor instead of set results. This
technique is considerably more flexible
and allows the second procedure to run
more quickly since it doesn’t work as
set results. Then the caller can process
the rows returned by the cursor as
desired;

- It is recommended to minimize the
number of network packets between
the client and server. A very effective
way to achieve this goal is to disable
DONE_IN_PROC messages. You can
disable it at the procedure level with
the SET NOCOUNT command or at
the server level with tracking indicator
3640. Doing so may lead to huge
differences in performance, especially
when relatively slow networks are used
such as WAN networks. When you
choose not to use the tracking indicator
3640, SET NOCOUNT ON should be
used at the beginning of any stored
procedures that you write;

- When adjusting query use
PROCCACHE DBCC command to list
information about cache memory
reserved for the procedure. Also use
the DBCC FREEPROCCACHE
command to clear the memory cache so
that multiple executions of a given
procedure not alter test results. DBCC
FLUSHPROCINDB used to force the
creation of new execution plans for
basic procedures.

Conclusions
Performance optimization is an ongoing
process. This process requires continuous
monitoring and improving database
performance. The purpose of this paper is
to provide a list of SQL scenarios to serve
as a quick and easy reference guide during
the development phase and maintenance of
the database. Transact-SQL language
provides a wide range of techniques for
updating query. On the top of the list are
found correct database design, adding
indexes and query interrogations.
Performance optimization is a complex
subject, which certainly could fill many
books. The secret to success is knowing
the instruments mentioned above in
relation to the available space, knowing
how the server works and the own the
required skills to solve problems using this
knowledge.

References
[1] Adam Jorgensen, Jorge Segarra,

Patrick Leblanc, Jose Chinchilla,
Aaron Nelson, Microsoft SQL Server
2012 Bible, Ed. Johs Wiley & Sons,
Inc., 2012, Indianapolis, Indiana -
USA, ISBN: 978-1-118-10687-7

[2] Ken Henderson, Transact-SQL (Titlul
original: The Guru’s Guide to
Transact-SQL), Ed. Teora, București,
România, 2002, ISBN: 973-20-0612-9

[3] Grant Fritchey, SQL Server 2012
Query Performance Tuning, Ed.
Apress, USA, 2012, ISBN: 978-1-
4302-4203-1

[4] Leonard Lobel, Andrew Brust,
Programming Microsoft SQL Server
2012, Ed. Microsoft Press, 2012,
ISBN-13: 978-0735658226

[5] Jason Strate, TedKrueger, Expert
Performance Indexing for SQL Server
2012, Ed. Apress, USA, 2012, ISBN:
978-1-4302-3741-9

48 Query optimization techniques in Microsoft SQL Server

Costel Gabriel CORLĂŢAN studies at Academy of Economic Studies,
Database for Business Support master program. Main technologies that he is
working with are: MS SQL Server, .NET Framework, ASP. NET, C#.

Marius Mihai LAZ ĂR: Database for Business Support masterand and
programmer in the area of database developing, tuning and optimization,
mainly Microsoft technologies like SQL Server and Visual Studio. Also he
develop web, desktop and mobile applications. In 2012 he published and
documented an application about “Elementary cellular automaton”.

Valentina LUCA graduated from the Faculty of Cybernetics, Statistics and
Economic Informatics of the Bucharest Universisty of Economic Studies in
2012. Currently she is a masterand enrolled in Databases for Business
Support program. Her fields of interest: databases, data warehouses,
business intelligence.

Octavian Teodor PETRICICĂ: graduated from the Faculty of
Mathematics and Informatics of the Hyperion University of Bucharest in
2012. He is currently a masterand of Database for Business Support
program. His scientific fields of interest include: Databases, Web
development and Application programming interfaces. At present he is a
Software Developer in the department of IT Applications at Cargus
International SA.

