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Mistakes create rework. Rework takes time and increases costs. The traditional software 
engineering methodology defines the ratio of Design:Code:Test as 40:20:40. As we can easily 
see that 40% time and efforts are used in testing phase in traditional approach, that means we 
have to perform rework again if we found some bugs in testing phase. This rework is being 
performed after Design and code phase. This rework will increase the cost exponentially.  The 
cleanroom software engineering methodology controls the exponential growth in cost by 
removing this rework. It says that “do the work correct in first attempt and move to next 
phase after getting the proof of correctness”.  
This new approach minimized the rework and reduces the cost in the exponential ratio. Due 
to the removal of testing phase, the COCOMO (COst COnstructive MOdel) used for the 
traditional engineering is not directly applicable in cleanroom software engineering. The 
traditional cost drivers used for traditional COCOMO needs to be revised. We have proposed 
the Extended version of COCOMO (i.e. E-COCOMO) in which we have incorporated some 
new cost drivers. This paper explains the proposed E-COCOMO and the detailed description 
of proposed new cost driver. 
Keywords: Cleanroom Software Engineering, COCOMO, Effort Estimation, Cost Drivers, 
SDLC. 
 

Introduction 
Harlan Mills and his colleagues from 

IBM developed the CSE (Cleanroom 
Software Engineering) methodology in 
the early 1980s. They were part of IBM’s 
Federal Defense System where software 
failures could mean millions of dollars 
and most importantly, human lives. In 
This software methodology they used the 
same analogy as used in cleanroom 
fabrication of semiconductors. Instead of 
trying to clean dirt off the semiconductor 
wafers after production, the object is to 
prevent the dirt from getting into the 
production environment in the first place. 
The reason for this is that defect 
prevention is more cost effective than 
defect removal. Therefore, in software 
development, the CSE methodology 
eliminates or avoids as many defects as 
possible before software execution using 
controlled and measurable statistics. 

Because of that reason they start the 
cleanroom software Development 
methodology for software development.  
The Constructive Cost Model 
(COCOMO) is an algorithmic software cost 
estimation model developed by Barry 
Boehm. The model uses a basic regression 
formula, with parameters that are derived 
from historical project data and current 
project characteristics. COCOMO was first 
published in 1981 Barry W. Boehm's Book 
Software engineering economic as a model 
for estimating effort, cost, and schedule for 
software projects. It drew on a study of 63 
projects at TRW Aerospace where Barry 
Boehm was Director of Software Research 
and Technology in 1981. The study 
examined projects ranging in size from 
2,000 to 100,000 lines of code, and 
programming languages ranging from 
assembly to PL/I. These projects were based 
on the waterfall model of software 
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development which was the prevalent 
software development process in 1981. 
  
2. Cleanroom Software Engineering 
(CSE) 

The cleanroom approach makes use of a 
specialized version of the incremental 
software model. A “pipeline of software 
increments” is developed by small 
independent software engineering teams. 
As each increment is certified, it is 
integrated in the whole. Hence, 
functionality of the system grows with 
time. The sequence of cleanroom tasks 
for each increment is illustrated in Figure 
1. Overall system or product 
requirements are developed using the 
system engineering methods. Once 
functionality has been assigned to the 
software element of the system, the 
pipeline of cleanroom increments is 

initiated. The following tasks occur in CSE: 

Increment planning. A project plan that 
adopts the incremental strategy is developed. 
The functionality of each increment, its 
projected size, and a cleanroom 
development schedule are created. Special 
care must be taken to ensure that certified 
increments will be integrated in a timely 
manner.  
Requirements gathering. Using traditional 
techniques, a more-detailed description of 
customer-level requirements (for each 
increment) is developed.  
Box structure specification. A 
specification method that makes use of box 
structures is used to describe the functional 
specification. Box structures “isolate and 
separate the creative definition of behavior, 
data, and procedures at each level of 
refinement.” 

 

 
 
Formal design. Using the box structure 
approach, cleanroom design is a natural 
and seamless extension of specification. 
Although it is possible to make a clear 
distinction between the two activities, 
specifications (called black boxes) are 

iteratively refined (within an increment) to 
become analogous to architectural and 
component-level designs (called state boxes 
and clear boxes, respectively). 
Correctness verification. The cleanroom 
team conducts a series of rigorous 
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correctness verification activities on the 
design and then the code. Verification 
begins with the highest-level box 
structure (specification) and moves 
toward design detail and code. The first 
level of correctness verification occurs by 
applying a set of “correctness questions”. 
If these do not demonstrate that the 
specification is correct, more formal 
(mathematical) methods for verification 
are used.  
Code generation, inspection, and 
verification. The box structure 
specifications, represented in a 
specialized language, are translated into 
the appropriate programming language. 
Standard walkthrough or inspection 
techniques are then used to ensure 
semantic conformance of the code and 
box structures and syntactic correctness 
of the code. Then correctness verification 
is conducted for the source code.  
Statistical test planning. The projected 
usage of the software is analyzed and a 
suite of test cases that exercise a 
“probability distribution” of usage are 
planned and designed Referring to Figure 
1, this cleanroom activity is conducted in 
parallel with specification, verification, 
and code generation.  
Statistical use testing. Recalling that 
exhaustive testing of computer software 
is impossible, it is always necessary to 
design a finite number of test cases. 
Statistical use techniques execute a series 
of tests derived from a statistical sample 
(the probability distribution noted earlier) 
of all possible program executions by all 
users from a targeted population.  
Certification. Once verification, 
inspection, and usage testing have been 
completed (and all errors are corrected), 
the increment is certified as ready for 
integration. Like other software process 
models discussed elsewhere in this book, 
the cleanroom process relies heavily on 
the need to produce high-quality analysis 
and design models. As we will see later 

in this chapter, box structure notation is 
simply another way for a software engineer 
to represent requirements and design. The 
real distinction of the cleanroom approach is 
that formal verification is applied to 
engineering models. 
Dyer alludes to the differences of the 
cleanroom approach when he defines the 
process: 
“Cleanroom represents the first practical 
attempt at putting the software development 
process under statistical quality control with 
a well-defined strategy for continuous 
process improvement. To reach this goal, a 
cleanroom unique life cycle was defined 
which focused on mathematics based 
software engineering for correct software 
designs and on statistics-based software 
testing for certification of software 
reliability.” 
Cleanroom software engineering differs 
from the conventional and object-oriented 
views because: 

 It makes explicit use of statistical 
quality control. 

 It verifies design specification using 
a mathematically based proof of 
correctness. 

 It relies heavily on statistical use 
testing to uncover high-impact 
errors. 

Obviously, the cleanroom approach applies 
most, if not all, of the basic software 
engineering principles and concept. Good 
analysis and design procedures are essential 
if high quality is to result. But cleanroom 
engineering diverges from conventional 
software practices by deemphasizing (some 
would say, eliminating) the role of unit 
testing and debugging and dramatically 
reducing (or eliminating) the amount of 
testing performed by the developer of the 
software. In conventional software 
development, errors are accepted as a fact of 
life. Because errors are deemed to be 
inevitable, each program module should be 
unit tested (to uncover errors) and then 
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debugged (to remove errors). When the 
software is finally released, field use 
uncovers still more defects and another 
test and debug cycle begins. The rework 
associated with these activities is costly 
and time consuming. Worse, it can be 
degenerative error correction can 
(inadvertently) lead to the introduction of 
still more errors. In cleanroom software 
engineering, unit testing and debugging 
are replaced by correctness verification 
and statistically based testing. These 
activities, coupled with the record 
keeping necessary for continuous 
improvement, make the cleanroom 
approach unique. 
 
3. Formal specification 

Formal methods allow a software 
engineer to create a specification that is 
more complete, consistent, and 
unambiguous than those produced using 
conventional or object oriented methods. 
Set theory and logic notation are used to 
create a clear statement of facts 
(requirements). This mathematical 
specification can then be analyzed to 
prove correctness and consistency. 
Because the specification is created using 
mathematical notation, it is inherently 
less ambiguous than informal modes of 
representation. A specially trained 
software engineer creates a formal 
specification. In safety-critical or mission 
critical systems, failure can have a high 
price. Lives may be lost or severe 
economic consequences can arise when 
computer software fails. In such 
situations, it is essential that errors are 
uncovered before software is put into 
operation. Formal methods reduce 
specification errors dramatically and, as a 

consequence, serve as the basis for software 
that has very few errors once the customer 
begins using it. The first step in the 
application of formal methods is to define 
the data invariant, state, and operations for a 
system function. The data invariant is a 
condition that is true throughout the 
execution of a function that contains a 
collection of data, The state is the stored 
data that a function accesses and alters; and 
operations are actions that take place in a 
system as it reads or writes data to a state. 
An operation is associated with two 
conditions: a precondition and a post 
condition. The notation and heuristics of sets 
and constructive specification set operators, 
logic operators, and sequences form the 
basis of formal methods. A specification 
represented in a formal language such as Z 
or VDM is produced when formal methods 
are applied. 
 
4. COCOMO (COnstructive COst 
MOdel) 

Boehm's COCOMO model is one of the 
mostly used model commercially. The first 
version of the model delivered in 1981 and 
COCOMO II is available now. 
COCOMO'81 is derived from the analysis of 
63 software projects in 1981. Boehm 
proposed three levels of the model :  

 Basic COCOMO 
 Intermediate COCOMO 
 Detailed COCOMO 

 
4.1 Basic COCOMO 
Basic COCOMO computes software 
development effort (and cost) as a function 
of program size. Program size is expressed 
in estimated thousands of lines of code 
(KLOC). COCOMO applies to three classes 
of software projects: 

 
 
 
 
 



Database Systems Journal vol. IV, no. 4/2013  7 

 

Table 1. Classes of Projects 

Project 
Class 

Project 
Size 

Nature of Project Deadline 
Development 
Environment 

Organic 

Typically 
2-50 

KLOC 
 

Small size project, experienced 
developers in the familiar 

environment. For example, pay 
roll, inventory projects etc. 

Not tight 
Simple/Familiar/ 

In-house 

Semi-
Detached 

Typically 
50-300 
KLOC 

 

Medium size project, Medium 
size team, Average previous 

experience on similar project. For 
example: Utility systems like 
compilers, database systems, 

editors etc. 
 

Medium Medium 

Embedded 

Typically 
over 

300 KLOC 
 

Large project, Real time systems, 
Complex interfaces, Very little 

previous experience. For 
example: ATMs, Air Traffic 

Control etc. 
 

Tight Complex 

 
Formula for Basic COCOMO 
 

 

where E is effort applied in Person-Months, 
and D is the development time in months. 
The coefficients ab, bb, cb and db are given in 
table 2: 
 

 
Table 2. Coefficients ab, bb, cb and db values 

 

Basic COCOMO is good for quick 
estimate of software costs. However it 
does not account for differences in 
hardware constraints, personnel quality 
and experience, use of modern tools and 
techniques, and so on. 

4.2 Intermediate COCOMO 
Intermediate COCOMO computes 
software development effort as function 
of program size and a set of "cost drivers" 

that include subjective assessment of 
product, hardware, personnel and project 
attributes. This extension considers a set of 
four "cost drivers", each with a number of 
subsidiary attributes: 
 Product attributes  

o Required software reliability 
o Size of application database 
o Complexity of the product 

 Hardware attributes  
o Run-time performance constraints 
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o Memory constraints 
o Volatility of the virtual machine 

environment 
o Required turn about time 

 Personnel attributes  
o Analyst capability 
o Software engineering capability 
o Applications experience 
o Virtual machine experience 
o Programming language 

experience 
 Project attributes  

o Use of software tools 
o Application of software 

engineering methods 
o Required development schedule 

Each of the 15 attributes receives a rating 
on a six-point scale that ranges from 

"very low" to "extra high" (in importance or 
value). An effort multiplier from the table 
below applies to the rating. The product of 
all effort multipliers results in an effort 
adjustment factor (EAF). Typical values for 
EAF range from 0.9 to 1.4. 
The Intermediate COCOMO formula now 
takes the form: 

 

where E is the effort applied in person-
months, KLoC is the estimated number of 
thousands of delivered lines of code for the 
project, and EAF is the factor calculated 
above. The coefficient ai and the exponent bi 
are given in the next table. 

 
Table 3. Coefficients ai, bi, ci and di values 

 

The Development time D calculation uses 
E in the same way as in the Basic 
COCOMO. 
 
4.3 Detailed COCOMO 
Detailed COCOMO is defined in Barry 
Boehm's book "Software Engineering 
Economics in 1981". Detailed COCOMO 
incorporates all characteristics of the 
Intermediate COCOMO version with an 
assessment of the cost driver's impact on 
each step (analysis, design, etc.) of the 
software engineering process. 
Detailed COCOMO offers a means for 
processing all the project characteristics 
to construct a software estimate. The 
detailed model introduces two more 
capabilities: 
The formula for detailed COCOMO is: 

 
 
5. E-COCOMO (Extended COst 
COnstructive MOdel) 

As we have discussed in intermediate 
COCOMO that there are 15 cost driver 
factors in traditional software engineering to 
calculate EAF. But as we are moving 
towards Cleanroom methodology in 
software development we need some new 
cost drivers which will be incorporated due 
to the inclusion of BSS and Formal 
Specification. The drivers should be added 
to the personal attribute category because 
the humans involve in CSE process should 
have the knowledge of these new included 
components. Due to the need to include 
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some new cost driver we found to add 
one new cost driver in Intermediate 
COCOMO that is “Formal Method 
Knowledge Capability(FMKC)”. It 
specify the knowledge experience of 
Formal Method and Formal Specification 
Language like ‘Z’ Specification 
language. Formal Method knowledge it 
must require for the cleanroom 
Development Mythology. Formal 
Methods used in developing computer 
systems are mathematically used 
techniques for describing system 
properties. The four phases used in the 

detailed COCOMO model are: requirements 
planning and product design (RPD), detailed 
design (DD), code and unit test (CUT), and 
integration and test (IT) that is based on 
Waterfall model if cleanroom development 
mythology used then these phase will 
changed. We proposed to use Four phase in 
Detailed COCOMO model are: Increment 
planning and Requirement gathering 
(IPRG), Box structure specification and 
Formal Design (BSSFD), Correctness 
verification and code 
generation(CVCG),Statistical Test planning 
and Use Testing(STPUT). 

 
Table 4. Table for multiplying factors for EAF  

(The values for new cost driver “FMKC” is highlighted) 

Cost Drivers 
Ratings 

Very 
Low Low Nominal High 

Very 
High 

Extra 
High 

Product attributes             
RELY 0.75 0.88 1 1.15 1.4   
DATA   0.94 1 1.08 1.16   
CPLX 0.7 0.85 1 1.15 1.3 1.65 

Hardware attributes             
TURN     1 1.11 1.3 1.66 
VIRT     1 1.06 1.21 1.56 
STOR   0.87 1 1.15 1.3   
TIME   0.87 1 1.07 1.15   

Personnel attributes             
ACAP 1.46 1.19 1 0.86 0.71   
LEXP 1.29 1.13 1 0.91 0.82   
VEXP 1.42 1.17 1 0.86 0.7   
PCAP 1.21 1.1 1 0.9     
AEXP 1.14 1.07 1 0.95     
FMKC 1.43 1.18 1 0.86 0.7 - 

Project attributes             
MODP 1.24 1.1 1 0.91 0.82   
SCED 1.24 1.1 1 0.91 0.83   
TOOL 1.23 1.08 1 1.04 1.1   

 
The values of the coefficient (i.e. Effort 
coefficient µp and Time Coefficient τp) 
used it will also change in Detailed 

COCOMO. The modified values have been 
shown in the following tables. 
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Table 5. Table for E-COOCMO µp  used for cleanroom engineering phases 

Mode & code size IRPG BSSFD CVCG STPUT 

Organic small 0.15 0.65 0.17 0.03 

Organic  medium 0.15 0.64 0.17 0.04 

Semidetached medium 0.16 0.64 0.16 0.04 

Semidetached  large 016 0.63 0.15 0.06 

Embedded  large 0.18 0.62 0.14 0.06 

Embedded extra large 0.18 0.61 0.14 0.07 

 
Table 6. Table for E-COOCMO τp used for cleanroom engineering phases 

Mode & code size IRPG BSSFD CVCG STPUT 

Organic small 0.14 0.66 0.17 0.03 

Organic Medium 0.14 0.65 0.17 0.04 

Semidetached Medium 0.15 0.65 0.16 0.04 

Semidetached Large 015 0.64 0.15 0.06 

Embedded Large 0.17 0.63 0.14 0.06 

Embedded extra large 0.17 0.62 0.14 0.07 
 
 

Conclusion & future work 

The software industries are adopting the 
new methodologies and leaving the 
traditional methodology far behind. Due 
to this transition the metrics and 
measurement based on the traditional 
methodology should also change. The old 
methods for effort and time calculation 
cannot apply on new development 
methodologies. To keep this transition in 
mind we have defined some new 
parameter those should be included in 
traditional COCOMO to calculate the 
effort and time for a software project. We 
have given a new name to this new 
version of COCOMO as E-COCOMO 
(i.e. Extended COst COnstructive 
MOdel). This model can be used to 
calculate effort and time for the projects 
those are adapting cleanroom software 
engineering methodology. 
In future the work will be extended for 
other development methodologies (i.e 
Agile Development, Object Oriented 
Development, Component Based 

Engineering etc.). These methodologies 
cannot use traditional COCOMO to 
calculate the efforts and time. Some 
enhancement is need in traditional 
COCOMO to calculate exact results. 
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