
Database Systems Journal vol. IV, no. 4/2013 3

E-COCOMO: The Extended COst Constructive MOdel for
Cleanroom Software Engineering

Hitesh KUMAR SHARMA

University of Petroleum and Energy Studies, India
hkshitesh@gmail.com

Mistakes create rework. Rework takes time and increases costs. The traditional software
engineering methodology defines the ratio of Design:Code:Test as 40:20:40. As we can easily
see that 40% time and efforts are used in testing phase in traditional approach, that means we
have to perform rework again if we found some bugs in testing phase. This rework is being
performed after Design and code phase. This rework will increase the cost exponentially. The
cleanroom software engineering methodology controls the exponential growth in cost by
removing this rework. It says that “do the work correct in first attempt and move to next
phase after getting the proof of correctness”.
This new approach minimized the rework and reduces the cost in the exponential ratio. Due
to the removal of testing phase, the COCOMO (COst COnstructive MOdel) used for the
traditional engineering is not directly applicable in cleanroom software engineering. The
traditional cost drivers used for traditional COCOMO needs to be revised. We have proposed
the Extended version of COCOMO (i.e. E-COCOMO) in which we have incorporated some
new cost drivers. This paper explains the proposed E-COCOMO and the detailed description
of proposed new cost driver.
Keywords: Cleanroom Software Engineering, COCOMO, Effort Estimation, Cost Drivers,
SDLC.

Introduction
Harlan Mills and his colleagues from

IBM developed the CSE (Cleanroom
Software Engineering) methodology in
the early 1980s. They were part of IBM’s
Federal Defense System where software
failures could mean millions of dollars
and most importantly, human lives. In
This software methodology they used the
same analogy as used in cleanroom
fabrication of semiconductors. Instead of
trying to clean dirt off the semiconductor
wafers after production, the object is to
prevent the dirt from getting into the
production environment in the first place.
The reason for this is that defect
prevention is more cost effective than
defect removal. Therefore, in software
development, the CSE methodology
eliminates or avoids as many defects as
possible before software execution using
controlled and measurable statistics.

Because of that reason they start the
cleanroom software Development
methodology for software development.
The Constructive Cost Model
(COCOMO) is an algorithmic software cost
estimation model developed by Barry
Boehm. The model uses a basic regression
formula, with parameters that are derived
from historical project data and current
project characteristics. COCOMO was first
published in 1981 Barry W. Boehm's Book
Software engineering economic as a model
for estimating effort, cost, and schedule for
software projects. It drew on a study of 63
projects at TRW Aerospace where Barry
Boehm was Director of Software Research
and Technology in 1981. The study
examined projects ranging in size from
2,000 to 100,000 lines of code, and
programming languages ranging from
assembly to PL/I. These projects were based
on the waterfall model of software

1

4 E-COCOMO: The Extended COst Constructive MOdel for Cleanroom Software Engineering

development which was the prevalent
software development process in 1981.

2. Cleanroom Software Engineering
(CSE)

The cleanroom approach makes use of a
specialized version of the incremental
software model. A “pipeline of software
increments” is developed by small
independent software engineering teams.
As each increment is certified, it is
integrated in the whole. Hence,
functionality of the system grows with
time. The sequence of cleanroom tasks
for each increment is illustrated in Figure
1. Overall system or product
requirements are developed using the
system engineering methods. Once
functionality has been assigned to the
software element of the system, the
pipeline of cleanroom increments is

initiated. The following tasks occur in CSE:

Increment planning. A project plan that
adopts the incremental strategy is developed.
The functionality of each increment, its
projected size, and a cleanroom
development schedule are created. Special
care must be taken to ensure that certified
increments will be integrated in a timely
manner.
Requirements gathering. Using traditional
techniques, a more-detailed description of
customer-level requirements (for each
increment) is developed.
Box structure specification. A
specification method that makes use of box
structures is used to describe the functional
specification. Box structures “isolate and
separate the creative definition of behavior,
data, and procedures at each level of
refinement.”

Formal design. Using the box structure
approach, cleanroom design is a natural
and seamless extension of specification.
Although it is possible to make a clear
distinction between the two activities,
specifications (called black boxes) are

iteratively refined (within an increment) to
become analogous to architectural and
component-level designs (called state boxes
and clear boxes, respectively).
Correctness verification. The cleanroom
team conducts a series of rigorous

Database Systems Journal vol. IV, no. 4/2013 5

correctness verification activities on the
design and then the code. Verification
begins with the highest-level box
structure (specification) and moves
toward design detail and code. The first
level of correctness verification occurs by
applying a set of “correctness questions”.
If these do not demonstrate that the
specification is correct, more formal
(mathematical) methods for verification
are used.
Code generation, inspection, and
verification. The box structure
specifications, represented in a
specialized language, are translated into
the appropriate programming language.
Standard walkthrough or inspection
techniques are then used to ensure
semantic conformance of the code and
box structures and syntactic correctness
of the code. Then correctness verification
is conducted for the source code.
Statistical test planning. The projected
usage of the software is analyzed and a
suite of test cases that exercise a
“probability distribution” of usage are
planned and designed Referring to Figure
1, this cleanroom activity is conducted in
parallel with specification, verification,
and code generation.
Statistical use testing. Recalling that
exhaustive testing of computer software
is impossible, it is always necessary to
design a finite number of test cases.
Statistical use techniques execute a series
of tests derived from a statistical sample
(the probability distribution noted earlier)
of all possible program executions by all
users from a targeted population.
Certification. Once verification,
inspection, and usage testing have been
completed (and all errors are corrected),
the increment is certified as ready for
integration. Like other software process
models discussed elsewhere in this book,
the cleanroom process relies heavily on
the need to produce high-quality analysis
and design models. As we will see later

in this chapter, box structure notation is
simply another way for a software engineer
to represent requirements and design. The
real distinction of the cleanroom approach is
that formal verification is applied to
engineering models.
Dyer alludes to the differences of the
cleanroom approach when he defines the
process:
“Cleanroom represents the first practical
attempt at putting the software development
process under statistical quality control with
a well-defined strategy for continuous
process improvement. To reach this goal, a
cleanroom unique life cycle was defined
which focused on mathematics based
software engineering for correct software
designs and on statistics-based software
testing for certification of software
reliability.”
Cleanroom software engineering differs
from the conventional and object-oriented
views because:

 It makes explicit use of statistical
quality control.

 It verifies design specification using
a mathematically based proof of
correctness.

 It relies heavily on statistical use
testing to uncover high-impact
errors.

Obviously, the cleanroom approach applies
most, if not all, of the basic software
engineering principles and concept. Good
analysis and design procedures are essential
if high quality is to result. But cleanroom
engineering diverges from conventional
software practices by deemphasizing (some
would say, eliminating) the role of unit
testing and debugging and dramatically
reducing (or eliminating) the amount of
testing performed by the developer of the
software. In conventional software
development, errors are accepted as a fact of
life. Because errors are deemed to be
inevitable, each program module should be
unit tested (to uncover errors) and then

6 E-COCOMO: The Extended COst Constructive MOdel for Cleanroom Software Engineering

debugged (to remove errors). When the
software is finally released, field use
uncovers still more defects and another
test and debug cycle begins. The rework
associated with these activities is costly
and time consuming. Worse, it can be
degenerative error correction can
(inadvertently) lead to the introduction of
still more errors. In cleanroom software
engineering, unit testing and debugging
are replaced by correctness verification
and statistically based testing. These
activities, coupled with the record
keeping necessary for continuous
improvement, make the cleanroom
approach unique.

3. Formal specification

Formal methods allow a software
engineer to create a specification that is
more complete, consistent, and
unambiguous than those produced using
conventional or object oriented methods.
Set theory and logic notation are used to
create a clear statement of facts
(requirements). This mathematical
specification can then be analyzed to
prove correctness and consistency.
Because the specification is created using
mathematical notation, it is inherently
less ambiguous than informal modes of
representation. A specially trained
software engineer creates a formal
specification. In safety-critical or mission
critical systems, failure can have a high
price. Lives may be lost or severe
economic consequences can arise when
computer software fails. In such
situations, it is essential that errors are
uncovered before software is put into
operation. Formal methods reduce
specification errors dramatically and, as a

consequence, serve as the basis for software
that has very few errors once the customer
begins using it. The first step in the
application of formal methods is to define
the data invariant, state, and operations for a
system function. The data invariant is a
condition that is true throughout the
execution of a function that contains a
collection of data, The state is the stored
data that a function accesses and alters; and
operations are actions that take place in a
system as it reads or writes data to a state.
An operation is associated with two
conditions: a precondition and a post
condition. The notation and heuristics of sets
and constructive specification set operators,
logic operators, and sequences form the
basis of formal methods. A specification
represented in a formal language such as Z
or VDM is produced when formal methods
are applied.

4. COCOMO (COnstructive COst
MOdel)

Boehm's COCOMO model is one of the
mostly used model commercially. The first
version of the model delivered in 1981 and
COCOMO II is available now.
COCOMO'81 is derived from the analysis of
63 software projects in 1981. Boehm
proposed three levels of the model :

 Basic COCOMO
 Intermediate COCOMO
 Detailed COCOMO

4.1 Basic COCOMO
Basic COCOMO computes software
development effort (and cost) as a function
of program size. Program size is expressed
in estimated thousands of lines of code
(KLOC). COCOMO applies to three classes
of software projects:

Database Systems Journal vol. IV, no. 4/2013 7

Table 1. Classes of Projects

Project
Class

Project
Size

Nature of Project Deadline
Development
Environment

Organic

Typically
2-50

KLOC

Small size project, experienced
developers in the familiar

environment. For example, pay
roll, inventory projects etc.

Not tight
Simple/Familiar/

In-house

Semi-
Detached

Typically
50-300
KLOC

Medium size project, Medium
size team, Average previous

experience on similar project. For
example: Utility systems like
compilers, database systems,

editors etc.

Medium Medium

Embedded

Typically
over

300 KLOC

Large project, Real time systems,
Complex interfaces, Very little

previous experience. For
example: ATMs, Air Traffic

Control etc.

Tight Complex

Formula for Basic COCOMO

where E is effort applied in Person-Months,
and D is the development time in months.
The coefficients ab, bb, cb and db are given in
table 2:

Table 2. Coefficients ab, bb, cb and db values

Basic COCOMO is good for quick
estimate of software costs. However it
does not account for differences in
hardware constraints, personnel quality
and experience, use of modern tools and
techniques, and so on.

4.2 Intermediate COCOMO
Intermediate COCOMO computes
software development effort as function
of program size and a set of "cost drivers"

that include subjective assessment of
product, hardware, personnel and project
attributes. This extension considers a set of
four "cost drivers", each with a number of
subsidiary attributes:
 Product attributes

o Required software reliability
o Size of application database
o Complexity of the product

 Hardware attributes
o Run-time performance constraints

8 E-COCOMO: The Extended COst Constructive MOdel for Cleanroom Software Engineering

o Memory constraints
o Volatility of the virtual machine

environment
o Required turn about time

 Personnel attributes
o Analyst capability
o Software engineering capability
o Applications experience
o Virtual machine experience
o Programming language

experience
 Project attributes

o Use of software tools
o Application of software

engineering methods
o Required development schedule

Each of the 15 attributes receives a rating
on a six-point scale that ranges from

"very low" to "extra high" (in importance or
value). An effort multiplier from the table
below applies to the rating. The product of
all effort multipliers results in an effort
adjustment factor (EAF). Typical values for
EAF range from 0.9 to 1.4.
The Intermediate COCOMO formula now
takes the form:

where E is the effort applied in person-
months, KLoC is the estimated number of
thousands of delivered lines of code for the
project, and EAF is the factor calculated
above. The coefficient ai and the exponent bi
are given in the next table.

Table 3. Coefficients ai, bi, ci and di values

The Development time D calculation uses
E in the same way as in the Basic
COCOMO.

4.3 Detailed COCOMO
Detailed COCOMO is defined in Barry
Boehm's book "Software Engineering
Economics in 1981". Detailed COCOMO
incorporates all characteristics of the
Intermediate COCOMO version with an
assessment of the cost driver's impact on
each step (analysis, design, etc.) of the
software engineering process.
Detailed COCOMO offers a means for
processing all the project characteristics
to construct a software estimate. The
detailed model introduces two more
capabilities:
The formula for detailed COCOMO is:

5. E-COCOMO (Extended COst
COnstructive MOdel)

As we have discussed in intermediate
COCOMO that there are 15 cost driver
factors in traditional software engineering to
calculate EAF. But as we are moving
towards Cleanroom methodology in
software development we need some new
cost drivers which will be incorporated due
to the inclusion of BSS and Formal
Specification. The drivers should be added
to the personal attribute category because
the humans involve in CSE process should
have the knowledge of these new included
components. Due to the need to include

Database Systems Journal vol. IV, no. 4/2013 9

some new cost driver we found to add
one new cost driver in Intermediate
COCOMO that is “Formal Method
Knowledge Capability(FMKC)”. It
specify the knowledge experience of
Formal Method and Formal Specification
Language like ‘Z’ Specification
language. Formal Method knowledge it
must require for the cleanroom
Development Mythology. Formal
Methods used in developing computer
systems are mathematically used
techniques for describing system
properties. The four phases used in the

detailed COCOMO model are: requirements
planning and product design (RPD), detailed
design (DD), code and unit test (CUT), and
integration and test (IT) that is based on
Waterfall model if cleanroom development
mythology used then these phase will
changed. We proposed to use Four phase in
Detailed COCOMO model are: Increment
planning and Requirement gathering
(IPRG), Box structure specification and
Formal Design (BSSFD), Correctness
verification and code
generation(CVCG),Statistical Test planning
and Use Testing(STPUT).

Table 4. Table for multiplying factors for EAF

(The values for new cost driver “FMKC” is highlighted)

Cost Drivers
Ratings

Very
Low Low Nominal High

Very
High

Extra
High

Product attributes
RELY 0.75 0.88 1 1.15 1.4
DATA 0.94 1 1.08 1.16
CPLX 0.7 0.85 1 1.15 1.3 1.65

Hardware attributes
TURN 1 1.11 1.3 1.66
VIRT 1 1.06 1.21 1.56
STOR 0.87 1 1.15 1.3
TIME 0.87 1 1.07 1.15

Personnel attributes
ACAP 1.46 1.19 1 0.86 0.71
LEXP 1.29 1.13 1 0.91 0.82
VEXP 1.42 1.17 1 0.86 0.7
PCAP 1.21 1.1 1 0.9
AEXP 1.14 1.07 1 0.95
FMKC 1.43 1.18 1 0.86 0.7 -

Project attributes
MODP 1.24 1.1 1 0.91 0.82
SCED 1.24 1.1 1 0.91 0.83
TOOL 1.23 1.08 1 1.04 1.1

The values of the coefficient (i.e. Effort
coefficient µp and Time Coefficient τp)
used it will also change in Detailed

COCOMO. The modified values have been
shown in the following tables.

10 E-COCOMO: The Extended COst Constructive MOdel for Cleanroom Software Engineering

Table 5. Table for E-COOCMO µp used for cleanroom engineering phases

Mode & code size IRPG BSSFD CVCG STPUT

Organic small 0.15 0.65 0.17 0.03

Organic medium 0.15 0.64 0.17 0.04

Semidetached medium 0.16 0.64 0.16 0.04

Semidetached large 016 0.63 0.15 0.06

Embedded large 0.18 0.62 0.14 0.06

Embedded extra large 0.18 0.61 0.14 0.07

Table 6. Table for E-COOCMO τp used for cleanroom engineering phases

Mode & code size IRPG BSSFD CVCG STPUT

Organic small 0.14 0.66 0.17 0.03

Organic Medium 0.14 0.65 0.17 0.04

Semidetached Medium 0.15 0.65 0.16 0.04

Semidetached Large 015 0.64 0.15 0.06

Embedded Large 0.17 0.63 0.14 0.06

Embedded extra large 0.17 0.62 0.14 0.07

Conclusion & future work

The software industries are adopting the
new methodologies and leaving the
traditional methodology far behind. Due
to this transition the metrics and
measurement based on the traditional
methodology should also change. The old
methods for effort and time calculation
cannot apply on new development
methodologies. To keep this transition in
mind we have defined some new
parameter those should be included in
traditional COCOMO to calculate the
effort and time for a software project. We
have given a new name to this new
version of COCOMO as E-COCOMO
(i.e. Extended COst COnstructive
MOdel). This model can be used to
calculate effort and time for the projects
those are adapting cleanroom software
engineering methodology.
In future the work will be extended for
other development methodologies (i.e
Agile Development, Object Oriented
Development, Component Based

Engineering etc.). These methodologies
cannot use traditional COCOMO to
calculate the efforts and time. Some
enhancement is need in traditional
COCOMO to calculate exact results.

References
[1] M. Wolak , Taking the Art out of

Software Development. An In-Depth
Review of Cleanroom software
Engineering by Chaelynne.

[2] Linger, R.C., "Cleanroom Process
Model," IEEE Software. March 1994,
pp. 50–58.

[3] Hevner, A.R. and H.D. Mills, “Box
Structure Methods for System
Development with Objects,” IBM
Systems Journal, vol. 31, no.2, February
1993, pp. 232–251.

[4] Linger, R.M. and H.D. Mills, “A Case
Study in Cleanroom Software
Engineering: The IBM COBOL
Structuring Facility,” Proc. COMPSAC
’88, Chicago, October 1988.

Database Systems Journal vol. IV, no. 4/2013 11

[5] Poore, J.H. and H.D. Mills,
“Bringing Software Under Statistical
Quality Control,” Quality Progress,
November 1988, pp. 52–55.

[6] Dyer, M., The Cleanroom Approach
to Quality Software Development,
Wiley, 1992.

[7] Harlan D. Mills, Michael Dyer and
Richard C. Linger, "Cleanroom
Software Engineering", IEEE
software, September 1987.

[8] Robert Oshana and Frank P. Clyle
"Implementing cleanroom Software
engineering into a mature CMM-
based software organization"
Proceedings of the 1997
International Conference on
Software Engineering, Boston
United States, pp: 572-573, May
1997.

[9] Richard C. Linger "Cleanroom
Software engineering for zero-defect
software",Proceedings of the 15th

international conference on software
engineering, Baltimore.

[10] Boehm, B.W. (1981). Software
Engineering Economics. Prentice Hall.

[11] K. K. Agarwal. “Software
Engineering”.

[12] R. Pressman , “A practioner approach
for software engineering”. Fifth Edition.

[13] Mills, H.D., M. Dyer, and R. Linger,
“Cleanroom Software Engineering,”
IEEE Software, vol. 4, no. 5, September
1987, pp. 19–24.

[14] Wohlin, C. and P. Runeson,
“Certification of Software
Components,” IEEE Trans. Software
Engineering, vol. SE-20, no. 6, June
1994, pp. 494–499.

[15] Hausler, P.A., R. Linger, and C.
Trammel, “Adopting Cleanroom
Software Engineering with a Phased
Approach,” IBM Systems Journal, vol.
33, no.1, January 1994, pp. 89–109.

Hitesh KUMAR SHARMA is an Assistant Professor in University of Petroleum & Energy
Studies, Dehradun. He has published 8 research papers in National Journals and 5 research
papers in International Journal. Currently He is pursuing his Ph.D. in the area of database
tuning.

