
ACADEMY OF ECONOMIC STUDIES

I S S U E

1

Database Systems
Journal

ISSN: 2069 – 3230 Volume I (September 2010)

Journal edited by Economic
Informatics Department

Database Systems Journal vol. 1, no. 1/2010 1

DBJOURNAL BOARD

Director
Prof. Ion LUNGU, PhD - Academy of Economic Studies, Bucharest, Romania

Editors-in-Chief
Prof. Adela Bara, PhD - Academy of Economic Studies, Bucharest, Romania
Prof. Marinela Mircea, PhD- Academy of Economic Studies, Bucharest, Romania

Secretaries
Assist. Iuliana Botha - Academy of Economic Studies, Bucharest, Romania
Assist. Anda Velicanu Academy of Economic Studies, Bucharest, Romania

Editorial Board
Prof Ioan Andone, A. I. Cuza University, Iasi, Romania
Prof Emil Burtescu, University of Pitesti, Pitesti, Romania
Joshua Cooper, PhD, Hildebrand Technology Ltd., UK
Prof Marian Dardala, Academy of Economic Studies, Bucharest, Romania
Prof. Dorel Dusmanescu, Petrol and Gas University, Ploiesti, Romania
Prof Marin Fotache, A. I. Cuza University Iasi, Romania
Dan Garlasu, PhD, Oracle Romania
Prof Marius Guran, Polytehnic University, Bucharest, Romania
Prof. Mihaela I. Muntean, West University, Timisoara, Romania
Prof. Stefan Nithchi, Babes-Bolyai University, Cluj-Napoca, Romania
Prof. Corina Paraschiv, University of Paris Descartes, Paris, France
Davian Popescu, PhD., Milan, Italy
Prof Gheorghe Sabau, Academy of Economic Studies, Bucharest, Romania
Prof Nazaraf Shah, Coventry University, Coventry, UK
Prof Ion Smeureanu, Academy of Economic Studies, Bucharest, Romania
Prof. Traian Surcel, Academy of Economic Studies, Bucharest, Romania
Prof Ilie Tamas, Academy of Economic Studies, Bucharest, Romania
Silviu Teodoru, PhD, Oracle Romania
Prof Dumitru Todoroi, Academy of Economic Studies, Chisinau, Republic of Moldova
Prof. Manole Velicanu, PhD - Academy of Economic Studies, Bucharest, Romania
Prof Robert Wrembel, University of Technology, Poznań, Poland

Contact
Calea Dorobanţilor, no. 15-17, room 2017, Bucharest, Romania
Web: http://dbjournal.ro/
E-mail: editor@dbjournal.ro

http://dbjournal.ro/�
mailto:editor@dbjournal.ro�

Database Systems Journal vol. 1, no. 1/2010 3

Contents

Spatial Operations .. 5
Anda VELICANU

Database Access Through Java Technologies ... 9
Ion LUNGU, Nicolae MERCIOIU

Optimization of Data Requests Timing by Working with Matrixes under
MSAccess Environment ... 19
Alexandru ATOMEI

SEO Techniques for Business Websites ... 23
Alexandru ENACEANU

Solutions for improving data extraction from virtual data warehouses 27
Adela BÂRA

The Optimization of Algorithms in the Process of Temporal Data Mining Using
the Compute Unified Device Architecture ... 37
Alexandru PIRJAN

Database Systems Journal vol. 1, no. 1/2010 5

Spatial Operations

Anda VELICANU
Economic Informatics Department, Academy of Economic Studies

Bucharest, ROMANIA
anda.velicanu@ie.ase.ro

This paper contains a brief description of the most important operations that can be performed on
spatial data such as spatial queries, create, update, insert, delete operations, conversions,
operations on the map or analysis on grid cells. Each operation has a graphical example and some
of them have code examples in Oracle and PostgreSQL.
Keywords: Spatial operations, Querying operations, Spatial data.

Introduction
The values of the objects’ spatial

attributes represent the spatial data [1].
 Spatial data can be divided in point

data and regional data. The point data is a
point which is completely characterized by its
location in a multidimensional space. It may
come directly from measurements or by
transforming in order to be more easily stored
and retrieved [2]. The representation of spatial
data in Oracle is done according to the ANSI
standard.

Spatial operations are functions that form
important components of a spatial data model.
They allow the storage of input data, their
analysis and obtaining new data as output
information. There are special spatial
operations that depend as implementation of
the operators made available by the database
management system, in which the data is
stored. No matter who the producing company
is, there are certain operations that are
common to any spatial products and that are
based on queries. There are also regular
operations that can be found in other models’
data, such as create, insert, update, delete.

Intuitively, spatial operations represent
different aspects from the same real world
operation. Therefore, spatial operations have
space-invariant properties based on which
they can be describe [3].

The user views a system as an extended
relational database management system. In
addition to the usual attributes in relations, the
user can define spatial attributes in a
homogeneous way. The system supports four
types of spatial entities: points, line segments,
polygons, and regions. In addition to the
standard SQL commands, spatial operations
are augmented in order to process and query
spatial data. Spatial attribute data is stored in
suitable spatial data structures [4].

2 Querying operations
Query processes are generally made to

select specific data in order to measure the
information from data and to perform some
calculations. The queries performed on spatial
data can be: Local; Area; Neighborhood (the
most difficult because it requires the
evaluation of proximity – eg. determining the
road which passes closest to a specified
region).

There are two important categories of
special spatial operations, which satisfy the
retrieval requests and are very popular:
operations that determine the spatial relations
and spatial analysis operations.

Consider a and b, two spatial objects of the
same type or not (points, lines, polygons,
circles, etc.), that are represented the same
system (x0y axis system, latitudinally –
longitudinally system, a proper representation

1

mailto:anda.velicanu@ie.ase.ro�

6 Spatial Operations

system etc.). With these spatial operations we
can:
1. Find the equality between two spatial
objects a = b, which means that the two spatial
objects have only common points in the
system they are represented.

Fig. 1. Equality between two spatial
objects

2. Find the disjunction between two
spatial objects , which means that the
two spatial objects have no points in common.

Fig. 2. Disjunction between two spatial
objects

3. Calculate the minimum distance
between two spatial objects Dist(a,b) = No,
where No is calculated as the minimum
distance between the polygons which
minimum frame a and b objects

Fig. 3. The minimum distance between two

objects
4. Obtain the union of geometries (spatial

objects) aUb = c, where c is a spatial object
that contains only once all points of a and b
objects.

Fig. 4. The union of two spatial objects

5. Obtain the intersection of two or more
geometries = c, where c is an
intersection geometry, which all the common
points of a and b geometries.

Fig. 5. The intersection of two spatial

objects

6. Determine the closest spatial object
Close(a) = b, if Dist(a,b) is minimum, no
matter where the b object is situated in the
same system as a object.

Fig. 6. Determining the closest spatial

object

7. Calculate one object’s area A(a) = No,
where No is the area of a object.

8. Calculate the perimeter of an object
P (a) = No, where No is the sum of all sides of
the object

9. Calculate the centriod of an object
C (a) = p, where p is the central point of
object a
10. Calculate the closest geometric area
CloseArea (a) = A (b), where Close (a) = b

a,b

a b No

a

b

Database Systems Journal vol. 1, no. 1/2010 7

11. Determine the buffer zone around an
object

Buffer (a, No) = {b, c, d...}, where b, c, d
... is the set of points in the vicinity of the a
object, at a maximum distance equal to No

Fig. 7. Determining the buffer area around

an object

12. Determine the way two objects relate
RELATE(a,b) = true, if objects a and b have
common points on the edges or inside them.

Fig. 8. Example relations between spatial

objects

Determine the inclusion of a spatial object
in another spatial object ba ⊂ = true, if all
a’s points are contained in object b.

Fig. 9. Inclusion of a spatial object in

another spatial object

13. Determine the touch of two objects
Touch(a,b) = true, if and Dist(a,b) =
0

Fig. 10. The touch of two spatial objects

In order to exemplify I can briefly explain

the features of spatial operations implemented
in Oracle and PostgreSQL.
The spatial component of Oracle is called
Oracle Spatial and allows the implementation
of following special operators:
- SDO_RELATE operator, which evaluates
the topologic criterion (determines if two
spatial objects interact);
- SDO_WITHIN_DISTANCE operator,
which determines whether two spatial objects
are from each other at a distance;
- SDO_INTERSECTION operator, which
determines the topological intersection of two
spatial elements;

An example of implementing this operator
is given below, adapted from the book [5].

SELECT

SDO_GEOM.SDO_INTERSECTION(eg1.geom,eg2.ge
om, 0.005) as intersection FROM deposits
eg1, deposits eg2 WHERE eg1.ID='1' AND
eg2.ID='2';

- SDO_AREA operator, which calculates
the area of a geometric figure;

An example of implementing this operator
is given below, adapted from the book [5].

SELECT eg.name deposit,

SDO_GEOM.SDO_AREA(eg.geom, 0.005) area
FROM deposits eg;

- SDO_MAX_MBR_ORDINATE operator,
which determines the maximum value for
coordinates (x or y);

- SDO_LENGTH operator, that calculates
the perimeter of geometric figures;

- SDO_DIFFERENCE operator, which
determines the geometry resulting from
the difference of two spatial objects;

8 Spatial Operations

- SDO_CENTROID operator, which
determines the center of a polygon;

The spatial component of PostreSQL is called
PostGIS and allows the implementation of
following special operators:
- ST_INTERSECTION operator, which
returns a geometry that is the common for two
spatial elements;
- ST_AREA operator, that returns the

calculated area of a geometric figure;
- ST_LENGTH operator, that calculates the

perimeter of geometric figures;
- ST_DIFFERENCE operator, which

returns a geometry representing a part of a
spatial object that does not intersect
another object;

- ST_UNION operator, which returns a
geometry that represents the common part
of two spatial objects;

- ST_GEOMETRYTYPE operator, that
returns the geometric type of an object.

3 Create operations
Such operations generate new geometric

objects. An example would be generating a
buffer, which describes polygons at a specific
distance from points, lines or areas.
 4 Insert operations

This type of operations allows inserting
data in the system.

5 Update operations
These operations change the characteristics

of spatial objects.
6 Operations on the map
Such functions are used most often to

operations that change a map’s scale.
Thinning the coordinates of a line means to
reduce the number of coordinates that define a
line. Similarly it can be applied to a polygon.
Edge matching is bonding the maps and
arranging them in a single unitary map.
 7 Conversions

Conversions refer to rasterizing
(transforming vector data into raster data) and
vectorizing processes (transforming raster
data into vector data).

8 Analysis of grid cells
This type of operation applies only to raster

data. Handling grid cell consists of examining
one cell or a combination of cells. Basic
operations are: operations on a cell, matching
operations on two cells and studying the
neighbors of a cell. There can be performed
different functions: trigonometric,
exponential, statistical.

9 Delete operations
Involve the removal of objects from the

system.

Aknowledgement
This article is a result of the project

„Doctoral Program and PhD Students in the
education research and innovation triangle”.
This project is co funded by European Social
Fund through The Sectorial Operational
Program for Human Resources Development
2007-2013, coordinated by The Bucharest
Academy of Economic Studies.

References

[1] Velicanu A., Olaru S., “Optimizing spatial
databases”, Revista de Informatică
Economică, Vol. 14, Nr. 2 / 2010, pag. 61-71,
ISSN 1453-1305.
[2] Velicanu M., Lungu I., Muntean M.,
Ionescu S., “Sisteme de baze de date – Teorie
şi practică”, Editura Petrion, Bucureşti, 2003,
pg. no. 339, ISBN 973-9470-70-X.
[3] Karimipour F., Delava M. Frank A., “An
Algebraic Approach to Extend Spatial
Operations to Moving Objects”, World
Applied Sciences Journal 6 (10): 1377-1383,
2009, ISSN 1818-4952.
[4] Aref W., Samet H., “Extending a DBMS
with Spatial Operations”, Advances in Spatial
Databases{2nd Symposium, SSD'91, vol. 525
of Springer-Verlag Lecture Notes in
Computer Science, August 1991, pg. 299-318,
Zurich, Switzerland, ISBN 3-540-60153-8.
[5] Velicanu M., Lungu I., Botha I., Bâra A.,
Velicanu A., Rednic E., “Sisteme de baze de
date evoluate”, Editura ASE, 2009, nr. pg.
430, ISBN 978-606-505-217-8.

Database Systems Journal vol. 1, no. 1/2010 9

Database Access Through Java Technologies

Ion LUNGU, Nicolae MERCIOIU
 Faculty of Cybernetics, Statistics and Economic Informatics,

Academy of Economic Studies, Bucharest, Romania,
ion.lungu@ie.ase.ro , nicu.mercioiu@gmail.com

As a high level development environment, the Java technologies offer support to the

development of distributed applications, independent of the platform, providing a robust set of
methods to access the databases, used to create software components on the server side, as
well as on the client side. Analyzing the evolution of Java tools to access data, we notice that
these tools evolved from simple methods that permitted the queries, the insertion, the update
and the deletion of the data to advanced implementations such as distributed transactions,
cursors and batch files.

The client-server architectures allows through JDBC (the Java Database Connectivity) the
execution of SQL (Structured Query Language) instructions and the manipulation of the
results in an independent and consistent manner. The JDBC API (Application Programming
Interface) creates the level of abstractization needed to allow the call of SQL queries to any
DBMS (Database Management System). In JDBC the native driver and the ODBC (Open
Database Connectivity)-JDBC bridge and the classes and interfaces of the JDBC API will be
described.

The four steps needed to build a JDBC driven application are presented briefly,
emphasizing on the way each step has to be accomplished and the expected results. In each
step there are evaluations on the characteristics of the database systems and the way the
JDBC programming interface adapts to each one. The data types provided by SQL2 and
SQL3 standards are analyzed by comparison with the Java data types, emphasizing on the
discrepancies between those and the SQL types, but also the methods that allow the
conversion between different types of data through the methods of the ResultSet object.

Next, starting from the metadata role and studying the Java programming interfaces that
allow the query of result sets, we will describe the advanced features of the data mining with
JDBC. As alternative to result sets, the Rowsets add new functionalities that enhance the
flexibility of the applications. These are analyzed and the approach is described.

Keywords: Java, JDBC, Database access, SQL

Introduction

Java plays a dominant role in client-
server programming, in the presentation
layer of the websites, but also in the
business logic on the applications servers.
A large contributor to this success is
attributed to the ability to interact with
data. Starting from these advantages, a
description of the JDBC (Java Database
Connectivity) was needed, also the way
these instruments can be used,

emphasizing on the new features the latest
version have to offer.

The standardization of SQL (Structured
Query Language) did not block several
DBMS creators to develop proprietary
extensions to SQL, rezulting in the creation
of different interfaces for data
manipulation. However, JDBC technology
offers a consistent interface for
manipulating data, regardless of the format
in which the data is stored (fig. 1).

1

mailto:ion.lungu@ie.ase.ro�
mailto:nicu.mercioiu@gmail.com�

10 Database Access through Java Technologies

Fig. 1. The role of Java technologies to access data at enterprise level.

Derived from [4] , pag. 7

2. The Evolution of Data Access Java
Instruments
When Sun Microsystems released the

first JDBC API 1.0 (Application
Programming Interface) in 1997, it had
several shortcomings, for instance the
interface to access SQL databases. JDBC
2.0 arrived with new features such as
cursors and batch files. Also, the Optional
Package, javax.sql as well as other
advanced features such as distributed
transactions or the RowSet interface
arrived.

 JDBC 3.0 brought transactional
intermediate saving points and support for
SQL99 types of data. The optional
packages have been included in the Java
1.4 distribution. JDBC 4.0 provides
support for SQL 2003 but also extended
support for CLOB (Character Large
OBject) and BLOB (Binary Large OBject).

Currently, the Java API includes a
JDBC-ODBC driver (Open Database
Connectivity-Java Database Connectivity)
that allows the JDBC driver access to a
native system database, when an ODBC
native system driver exists for that
database. The Java API

does not include drivers for all

databases. The existence of a common
programming interface brings several
benefits. Otherwise, if any database creator
would built its own API, that would lead to
thousands of ways of programming
databases, so any interface would have to
be known. Luckily the software industry
has chosen the JDBC standard, easying the
work of developers, and allowing the
creation of robust and scalable
applications.

3. The Architecture

In client-server architecture the
databases reside on the same or on a
different machine on which the client
connects to the intranet or Internet. JDBC
allows to use SQL instructions and to
process results of the queries in an
independent and consistent manner. Using
a high level of abstractization represented
by the JDBC API, the situation of the
programmer to handle different SQL calls
to a certain DBMS (Database Management
System) is avoided. (fig. 2).

Database Systems Journal vol. 1, no. 1/2010 11

Fig. 2. The role of JDBC in accessing
data –Derived from [3] , pag. 442

In order to be able to connect to a

certain DBMS we only need to switch the
driver, operation that can be done
dynamically, even when the application
runs, without the recompilation of the
application.

The way those drivers are built is
standardized through the JDBC
specifications which describes the standard
interfaces that are to be implemented.
During time an evolution of those
specifications occured, and the
functionalities have been enhanced without
compromising the compatibility with
previous versions of the specifications.
Generally, the JDBC specifications
describe a series of interfaces that the
people who develop the drivers should
implement. Some databases do not allow
stored procedures or other functionalities
due to non-standard development of
databases in general. Therefore, the JDBC
specifications that have emerged from time
forced the drivers creators to implement a
reduced set of interfaces, other things
remaining optional, without restricting the
real posibilities of existing databases.

JDBC provides object-oriented access
to databases through the definition of
classes and interfaces that cover several
abstract concepts. Also, the JDBC standard
defines a series of interfaces that are to be
implemented by the drivers creators in
order to give the developers informations
about the queried database, the DBMS
used and so on. Those intels are also

known as metadata, which means „data
about data”.

JDBC programming covers many
aspects: client-server communication,
drivers, APIs, data types and SQL
instructions. The JDBC API releaves much
of the burden needed to create applications
with databases. It comprises many simple
and intuitive components that can work for
the programmer. In order to create an
application one just need to assemble these
components. Programming JDBC is also a
very methodical way. 90% of the JDBC
application uses the same objects and
methods.

The first step is to obtain, install and
configure the JDBC driver. Afterwards the
needed component can be utilized in all the
JDBC applications. After that compiling
takes place, running the application and
solving the eventual issues.

JDBC is an API that encapsulates calls
on two levels needed to access database
data and interacts through a common
interface. JDK (Java Development Kit) and
JRE (Java Runtime Environment) both
contain the standard API, the interfaces
and classes being contained in two major
packages java.sql and javax.sql. The first
package includes standard components,
whilst the second includes enterprise level
components.

The entire communication with the
database occurs through the JDBC drivers.
This driver converts the SQL instructions
into a database server comprehensible
format, using the correct networking
protocols. JDBC abstracts the specific
communication with the database. (fig. 3).

Fig. 3. The relationship between the

application-JDBC-database
Derived from [4] , pag. 31

12 Database Access through Java Technologies

The Java SDK includes the ODBC-
JDBC driver, thus allowing the access to
ODBC drivers to database. Instead of

accessing directly the database, JDBC
“talks” to the ODBC drivers, which, in its
turn communicates with the database.

Fig. 4. The relationship application-JDBC-ODBC-database

Derived from [4] , pag. 31

Installing the JDBC driver is similar to

installing any other Java API. You only
have to add the path of the driver in the
CLASSPATH variable when compiling
and running the application. When using
the ODBC-JDBC bridge driver, this step is
not required, however other additional
settings have to be done.

First of all, the application should be
able to communicate with the database.
Afterwards, the application has to be able
to establish connections with the database
to create a communcation channel in order
to send SQL commands and retrieve
results. Finallz, the application has to have
a mechanism to deal with the errors. In
order to accomplish all these things, the
JDBC API provides the following
interfaces and classes:

- Driver – this interface controls the
communication with the database server.
Rarely one should need to interact with
objects of the Driver type. Given this, the
DriverManager objects can be used
instead. These have an abstract
representation of the details associated to
the work with Driver objects.

- Connection – instantiating objects of
this interface represents the physical
connection to the database. The result set
and tranzactions can be controlled using
Connection objects.

- Statement – objects created with this
interface in order to send SQL commands
to the database. Some derived interfaces
accept supplemental parameters in order to
execute stored procedures.

- ResultSet – these objects contain the
retrieved data from the database after the
query has been performed using Statement
object. These objects allow the browsing of
the data like an iterator.

- SQLException – a class that traps any
error that is encountered in the application

Any Java application that uses
databases works directly or indirectly with
those four components described earlier.

4. Steps in Writing a Jdbc Application

Practically, the steps that are to be
followed when writing a JDBC application
are:

1. The registration of the JDBC driver
with Class.forName().newInstance().

2. The connection to the database is
open with
DriverManager.getConnection().

3. A Statement type object is created in
order to send SQL commands using the
method Connection.createStatement() and
afterwards execute(), executeUpdate() or
executeQuery()

4. The connection is closed using the
method close().

The first step that is to be made in order
to use a JDBC driver is the exact
determination of the class for the driver
provided by the creator. Usually, the
producers respect the naming conventions
of the packages when naming the drivers.
The java.sql.Driver interface and the
java.sql.DriverManager class are the tools
to work with drivers. Registering a driver
means the registration with a

Database Systems Journal vol. 1, no. 1/2010 13

DriverManager object. There are several
techniques to register JDBC drivers:

- Class.forName(String
driverName).newInstance()

- DriverManager.registerDriver(Driver
driverName)

- jdbc.drivers property
In JDBC, an instance object of the type

Connection represents a physical
connection to the database. The method
Driver.connect() can be used, being
prefered though the getConnection()
method of the DriverManager class
because it allows the choose of the right
driver. Also, the method can be overriden
in order to allow opening of different
menas o open connections. JDBC needs a
special name system to be used when
connecting to a database. The general
format is jdbc:<subprotocol>:<subname>
where <subprotocol> represents the
specific protocol of the producer and
<subname> is the source of the data (the
logical name of the database we’re trying
to connect to).

To open connections, the
getConnection() from the DriverManager
class returns a valid Connection type
object. If the method fails, DriverManger
throws a SQLException containing the
specific database error.

Closing the connection means the
mandatory usage of the close() method.
The method Connection.isClosed() does
not check whether the connection is stil
open or closed, but returns true if the
method close() has been used. The best
way to check a connection is to try a JDBC
operation and the trap of the exception to
determine whether the connection is still
valid.

For the beginning we must be sure that
the client’s session has been closed on the
database server. Some databases cleanse
the remains if the sessions terminate
unexpectadely. Then, the database sees that
the user’s session failed and executes a
rollback to all the changes between the
execution of the programme (for instance
sessions that ended in the middle of the

tranzaction). Explicitly closing the
connections ensures that the client-server
medium has been cleansed completely and
makes the database administrator happier,
conserving the resources used by the
DBMS, for instance free licenses used on
open sessions. Also RAM and CPU is
spared on the server on which the database
resides.

We can interact with the database in
two ways. This way we can send a SQL
query to obtain data about the database
schema or to “learn” the values stored in
some database fields, all these taking place
at runtime. In that case we would need to
create parametric JDBC or stored
procedures. In this case we need to create.
Regardless of what we want to do, the
Statement, PreparedStatement and
CallableStatement object provides the
sufficient tools in order to attain our goals.

The corresponding interfaces define
models and properties that allow sending
commands and receiving data from and to
the data database, as well as methods that
help creating a bridge between different
types of data defined in Java and specific
to each type of SQL database types. For
instance, the data types that have NULL
values in the database in contrast with the
int type in Java, or the different
representation of date and time data
between Java and SQL-92. There are
methods that allow conversion of data
from Java into JDBC. Statement objects
offer DBMS interaction. They allow all the
types of DML (Data Manipulation
Language), DDL (Data Definition
Language) commands to be executed, as
well as other specific commands, batches
and tranzaction management commands.

The three methods of the Statement
objects are execute(), executeUpdate() and
executeQuery() that allow sending
commands to the database and retrieving
results. Execute() processes DML
instructuions, or DML or other specific
database commands. It can return one or
more ResultSet type objects. The method
has flexibility, but the processing of the

14 Database Access through Java Technologies

results is a little bit difficult.
executeUpdate() is used for INSERT,
UPDATE, DELETE or DDL instructions
and returns the number of records affected
by the sent command. executeQuery()
queries the database and returns a result set
(a ResultSet object).

A ResultSet type object contains data
returned by the SQL queries, run with one
of the methods: executeQuery() sau
execute(). Given the fact that many
databases use a query language that have
supplemental commands other than the
DML or DDL, Java has support for a
special type of commands format– JDBC
SQL escape that allows access to specific
functions of the database. When used this
feature, the driver translates the commands
in the specific format of the database. The
execute() method is the most flexible way
to interact with the database because it cas
process result sets or number of records.
The disadvantage here is that when used
you cannot anticipate the type of the results
returned – sets of results, number of
records, or both.

The next figure shows the way the
results returned by the execute() method
are processed.

The interface set Statement can be used
to process batches, i.e. sending multiple
DML instructions (executed as one
command) in a single call, that allows
using a tranzactional control over the
database. This control allows, for instance,
the return to the initial state of all changes
if one of the change failed, and by that
insuring integrity and database
consistency.

The tranzactions allow control of
whether and when the changes are applied
to the database. They allow the
representation of a single instruction or a
group of SQL instructions to be treated as
a single logical unit, and if just one
instruction within fails, the whole
tranzaction fails. Tranzactions present both
advantages and disadvantages. One
advantage is that they allow consistency
and integrity of the data. The disadvantage

is that the blocking system for each
database is different from database to
database and the effect of initial blocking
of the data initiated by the tranzaction can
be sometimes surprising.

Fig. 5. The process of returning results

from the execute() method - [4] , pag. 68

With JDBC tranzactions can be

administered through the Connection type
objects; for instance using the auto-commit
module and the usage of rollback()
method. A saving point is actually a logical
tranzaction rollback point within the
tranzaction. If an error occurs between the
last saving point, the rollback method can
be used to restablish the state of the data at
that saving point.

The PreparedStatement interface offers
some advantages over the classic Statement
especially because of the feature of adding

Database Systems Journal vol. 1, no. 1/2010 15

parameters dynamically. Still, not all the
databases support this feature. Also, all the
commands of this type remain in memory
in this open session or until the
PreparedStatement object is closed. This
PreparedStatement allows input and output
stream, allowing us to store files in the
database as values.

The CallableStatement object allows us
to execute stored procedures in the
database from the application. These
objects utilize parameters as OUT or
INOUT. The result sets are nothing more
than rows and columns obtained from the
ResultSet objects, creating a logical view
of the data from the database. JDBC
provides a class that implements the
ResultSet interface that offers method to
allow data interactivity.

Although a result set contains multiple
records, at a time it is possible to get
access to only one record, the “active”
record. Accessing this record means
moving the cursor with specific methods.
Populating a set of results, the cursor
initially is positioned before the first
record. Obviously, in order to access data,
the cursor has to be moved onto this first
record. The set of records can be browsed
forwards and backwards, also beyond the
last records. Depending on the type of the
result set, it is possible or not to go back to
a previous record. If not possible, in order
to access data again it is necessary to
recreate the result set by executing a SQL
query.

There are several types of results:
The predefined type Standard that

allows only sequential and forward browse
of the set. The data cannot be updated. It is
useable to populate a simple list or other
simple operations.

The second type would be Scrollable,
which allows the browsing of the results
forth and back and jumping to a specific
records. This one reflects the changes in
the database, so it can be used in real-time
applications.

The third type would be Updateable
that allows the update of the result set
without additional SQL instructions.

The Scrollable and Updateable must be
used only when really needed as they can
affect the application’s performance.

5. Main Types of Data
Generally, the databases support a

limited types of data. If SQL2 (SQL92)
offered support for limited standard types,
SQL3 allows customized built types, the
dimension of data that can be accomodated
in a column is now bigger than 1GB of
binary or character data. Also, SQL offers
complex object support in business
modelling and multimedia applications as
well as object identifiers, abstract data and
inheritance. However, not all the databases
support SQL3 standard.

There are discrepancies between Java
types and known database types, that
requires the conversion of those Java types
into SQL types and viceversa. These
conversions are made through the
getXXX(), setXXX() and updateXXX()
methods that belong to the ResultSet
object. It is important to know that every
JDBC data type has a corresponding
recommended Java type. Still, these
methods are not very strict, they allow
conversions from more precise into more
loose types of data and even into other
types (for instance: getString()).

Given the fact that primite Java types do
not have to be defined, they store directly
information, remaining constant from one
application to another and from one virtual
machine to another. Because primitive
objects cannot be instantiated, Java offers
the wrapper class that allows treating the
primitive values as objects.

In SQL, NULL represents a data with
unknown or undefined value. In Java, this
NULL can present a problem, especially
for numeric data types. For instance, the
integer type from Java cannot have NULL
values. Using the ResultSet.getInt() method
JDBC will translate this NULL value into

16 Database Access through Java Technologies

0, which untreated can lead to an erroneous
interpretation of the data. Objects, on the
other hand, can have NULL values in Java.
The ResultSet.wasNull() methods
determines whether the last column read
from the database returned a NULL value.

Data returned from SQL queries must
be formatted as JDBC types. The
conversion to Java types must be made
before assignation to variables.

SQL UDTs (User-Defined Types)
allows the developers to create their own
definition of data types in the database.
These are exlusively defined with SQL
instructions, but JDBC offers support for
UDT in Java applications. The custom
types are materialized on the client, so the
access is not directly to the value, but
through an intermediate LOCATOR that
references a value in the database. The
UDTs allow the usage of large data and the
way those can be used will be presented
later on.

The DISTINCT data type allows the
assignation of the new custom data type
with another type of data, in a similar
manner classes are extended in Java.

STRUCT is a data type built that has
several members, named attributes, each of
them carrying different types of data. A
Java class without methods is an analogical
representation of a STRUCT. In SQL3
STRUCT types of data can be constructed,
each being able to hold any type of data,
including other STRUCT.

Example: Declaring a STRUCT:
CREATE TYPE Sal_DATA(
CNP Number(9),
Nume VARCHAR(20),
Prenume VARCHAR(20),
Salariu NUMBER(9,2))
JDBC allows the creation of Java

classes to mirror UDTs on the database
servers. The process of creation and usage
of a Java class is called mapping of types.
The advantages are: control of access
through classes, data protection, the
possibility to add new methods and
attributes.

6. Data Mining With Jdbc

Understanding the concept of data
mining implies the knowledge of the role
of the metadata.

These are data about data. In databases,
metadata represents information about data
and structure and applications that deal
with data. An example would be tables and
attributes of the columns.

The JDBC API allows the descovery of
the metadate about a database through the
query of the result set using the
DatabaseMetaData and
ResultSetMetaData interfaces. The first
one allows gathering information about the
database attributes and allows taking
decision at runtime upon these
information. The second interface allows
gathering the attributes such as number of
columns, name and type of data of the
result set. This information can be used, for
instance, to populate a report with the
name of the column and to determine
which kind of getXXX() method should be
used.

A ResultSetMetaData object can be
used to create a generic method for
processing result sets. This way, the types
of the data from the column of the result
set and the correct version of getXXX()
methods to obtain data.
DatabaseMetaData allows the creation of
tools which database administrators can
use to inspect databases, the structure of
the tables and the users schemas.

JDBC 3.0 defines a new interface for
metadata - ParameterMetaData. This one
describes the number, type and properties
of the parameters used in prepared
statements.

The ResultSetMetaData provides
information about the columns in the result
set, such as number and type. The interface
does not provide information about the
number of records in the set of results.

The DatabaseMetaData interface is
useful when inspecting the structure of the
database. Creating a DatabaseMetaData
object can be done by using the
getMetaData() method of the Connection
object. A DatabaseMetaData object has

Database Systems Journal vol. 1, no. 1/2010 17

many methods and properties, all those can
be grouped in two categories: refering to
the characteristics of the database, or
refering to the structure of the database.

The first category of methods and
properties answers to questions such as:
- Does the database support batches?
- What is the user which I am connected to

the database?
- What kind of SQL data types does the

database support?
- What are the SQL keywords supported

by the database?
The methods from this category refer to

information about the database return
String results; the ones that offer
information about database limitations
return int.

The methods from the second category
return a ResultSet object which depends on
the method used to query the database. The
majority of the methods are simple and
allow the usage of replacement wildcards:
“_” is used to replace a single character,
while “%” can be used to replace zero, one
or more characters.

Information pertaining to the tables and
columns can be obtained only if sufficient
access rights are given. It is recommended
to use pattern of strings to avoid obtaining
a result set that is too big and unusable.
The getUDT() method offers information
about the UDTs in the database.
getPrimaryKeys() and getImportedKeys()
provide information about the primary key
and the foreign keys. The getProcedures()
and getProcedureColumns() methods
provide information about the stored
procedures in the database.

7. Rowsets
Rowsets represent an alternative to

result sets. The RowSet interface extends
the ResultSet offering the same
functionalities for viewing and
manipulating data, but adds among
features, functionalities that enhance the
flexibility and the power of the application.
Rowsets implement the JavaBean

architecture, can operate without a
coninuous connection to the data source
and can offer tabulary data about any data
source being in constrast with result sets
that can only work with databases.

Extending the ResultSet interface, the
RowSet allows access to the same methods
and properties. A RowSet object can obtain
data from a source in many other ways.
The main differences betwessn these two
interfaces are:

- The RowSet interface supports the
JavaBean component model, allowing the
developers to use the visual tools for
Beans. RowSet can inform the “listeners”
about events that appear.

- The row sets can operate connected or
disconnected. The first way is similar to
the result sets, but the disconnected stores
the rows and the columns in memory,
allowing the manipulaton of data in this
manner.

Because the RowSet is in the javax.sql
package, Sun Microsystems does not
provide a standard implementation. Still, in
JDBC 2.0 there are some implementations
like: JdbcRowSet, CachedRowSet and
WebRowSet.

The development of RowSet object
based applications implies a different
technique than the one with standard
components. Mainly we need a single
object to implement the RowSet interface.
The steps to be pursuit when using a row
set are:

1. Registering the JDBC driver.
2. Setting the connection parameters.
3. Populating the row set.
Because the RowSet object supports the

JavaBean model it is impossible to access
the properties of the object directly, which
requires the usage of the methods get and
set to configure the properties of the class
that implements the RowSet interface.

RowSet objects can generate JavaBean
events and allow the notification of other
components the events that appear in the
RowSet object. A row set, acts differently
than a result set, because it automatically

18 Database Access through Java Technologies

connects to the data source when it has to
retrieve or update data.

Both DDL and DML commands can be
used with RowSet objects but the execution
is different than in standard JDBC. First of
all, it is not necessary to instantiate
Statement, PreparedStatement or
CallableStatement objects to execute SQL
instructions. The object determines if there
is a parametrized query or a stored
procedure to be executed.

The retrieve of the data from the row
sets is done with the getXXX() methods,
where XXX refers to the Java type of data
in which we store the value.

Since the RowSet interface extends the
ResultSet interface, for browsing the rows
the same methods exposed by the ResultSet
can be used. Also, the properties can be
controlled with scrollable and updateable
by the setType() method.

After usage, the RowSet object must be
closed in order to free the database
resources used. The RowSet.close() method
frees all the resources of the database.
Closing the object is critical when this is of
JdbcRowSet type, because this object
maintains an open connection to the server
once the execute() method is called.
Objects of type CachedRowSet and
WebRowSet connect to the data source
when needed. However to eliminate the
possibility of unwanted closing by the
garbage collector, they must be explicitly
closed.

Using a JdbcRowSet object is simple
because it is a JavaBean component. Once
the row set is populated, the methods
inherited from ResultSet can be used to
work on data. This object does not require
a JDBC driver, or an open connection to
the database.

The CachedRowSet object provides a
disconnected and serializable
implementation of the RowSet interface.
Once the object is populated, it can be
made serialized so we can share
information with other users. It is not
recommended for large amounts of data
since it can exhaust the system memory.

The WebRowSet can work independent
and is able to serialize data. This object is
able to generate an XML (eXtensible
Markup Language) file which can be used
as it is or use an XML file to repopulate
itself. Having a row set represented as an
XML file, the data can be presented on
various devices and browsers. The
WebRowSet class works great with HTTP
(HyperText Transfer Protocol). The client
and the server exchange XML documents
that represent WebRowSet objects. The
construction of such an object is not trivial,
but the browsing and he manipulation of
the data set is done in a similat manner to
the other types of objects presented earlier.

Conclusions
The designers of IT systems choose the

combination of Java and JDBC because it
allows the disemination of the information
contained within databases in a simple and
economic way. The operations within the
organization can go on by utilizing existing
databases even if these are used on
different operating systems. The time used
to develop new applications is shorter and
the installation and versioning control is
simplified. All these advantages
determined us to try to describe in a non-
exhaustive manner the concepts, the
methods and the techniques related to
JDBC technology to access databases,
offered by the Java platform from Sun
Microsystems.

References

[1] Leţia T., Programare avansată în Java,
Editura Albastră, 2002;

[2] Patel P., Java Database Programming
with JDBC, The Coriolis Group, 1996;

[3] Tanasă Ş., Olaru C., Andrei Ş., Java de
la 0 la expert, Polirom, 2003;

[4] Thomas T., Java Data Access JDBC,
JNDI, and JAXP, M&T Books, 2002;

[5] Văduva C., Programare în Java,
Editura Albastră, 2002;

[6] Sun Microsystems, JDBC Data Access
API, http://java.sun.com/products/jdbc;

Database Systems Journal vol. 1, no. 1/2010 19

Optimization of Data Requests Timing by Working with Matrixes under
MSAccess Environment

Alexandru ATOMEI

Accountancy and Management Information Systems Faculty
Academy of Economic Studies, Bucharest, Romania

Abstract: This paper is going to emphasize an optimised code in order to manage matrix
calculus under MSAccess. The economic impact of using such a method is the optimal cost-
benefit solution, and optimised timing for data management. As well, matrix calculus is the base
of Variance-Covariance method used by financial corporations as an advanced method for
estimation of market risk movements with direct impact over the capital required by prudential
bodies.
Keywords: Visual Basic, DAO (Data Access Objects) Recordset, System DSN (Data Source Name) driver,
Variance-Covariance Matrix, Value at Risk.

 Optimization of data requests timing by
working with matrixes under MSAccess
Environment

A. Current stage of matrix calculus facilities
In order to use the matrixes for economic

purposes, there are a series of software
solutions more or less integrated in
executive management of the financial
corporations.

The proposed method for optimised
management of data requests by working
with matrixes is a similar method to the
UNIX concept, which deals with its
platform as a core base, and whose
interation with other applications is
performed through shells. Similarly, in this
paper it will be presented this facility
developed under Windows environment.

The econometric softwares (Matlab,
SAS, Eviews, SPSS) offer some flexible
solutions, but the complete integrated
solutions require, in initial phase, licences,
implementation projects and testing
procedure, which exceed the forecasted
budgets of most of up-to-medium financial
corporations, and on a daily basis, a
proffessional team permanently available.

The development of integrated solutions
require a business study, whose
implementation could not be done fastly, in
order to generate advanced calculus for
executive management.

A database permits the transfer of data
through a XML (Extensible Markup
Language) file, but there is needed a
transformation of XML file into an
Standardised XML file. Nowadays, last
verisons of MSAccess and Oracle offers a
good interaction with XML files, so that,
XML files could be an alternative to the
present solution presented in this paper.

The matrixes could be easily developed,
also, in MSExcel programs. The MSAccess
offers good database facilities, but, in terms
of calculus is not so powerful compared
with MSExcel. In this paper, we shall
present how the MsAccess and MSExcel
could be linked dinamically for serving a
Variance-Covariance matrix determination.

B. The role of matrixes in
accountancy

The fair value concept is often invoked in
International Accountancy Standards. The
fair value (market value in most of the
cases) generates volatility for a certain type
of asset. This volatility represents the base
for a specific modeling requiring a matrix
calculus.

A simple covariance between two series
of data could be calculated as follows
(formula 1):

Formula 1- Covariance of two series of
data

1

20 Optimization of Data Requests Timing by Working with Matrixes under
MSAccess EnvironmentDatabase Access through Java Technologies

∑
=

 −

 −

=
N

i

aiai

N

yyxx
YX

1
),cov(

Where:
Cov(X,Y) = covariance between two

series of data (‘xi’ and ‘yi’);
 xa = average of ‘x’ seria;
ya= average of ‘y’ seria;
N = number of observations.
A Variance-Covariance matrix is

formalised as follows (formula 2):
Formula 2 – Variance-Covariance

matrix

COV
 =

Ó
x1

2 /
N

Ó
x1 x2 /
N

.
.

.

Ó
x1 xc /

N

Ó
x2 x1 /
N

Ó
x2

2 /
N

.
.

.

Ó
x2 xc /

N

. .
.

. .
.

.
.

.
. . .

Ó
xc x1 /
N

Ó
xc x2 /
N

.
.

.

Ó
xc

2 / N

Where:
COV = Variance-Covariance matrix

xi = deviation from the ith data set
Ó xi

2 / N = variance of elements from the ith
data set
Ó xi xj / N = covariance of elements from the
ith and jth data sets

N = number of observations for each of
the c data sets

The using of matrixes into an integrated
economic application of a financial
corporation is required for at least two main
purposes: a) Determination of market value
(by multiplying the vector line of cash-flows
with column vector of discount factors); b)
Determination of Value at Risk ratios
through Variance- Covariance method.

The Variance-Covariance method is used
for Value at Risk ratio determination, being
the reference element of integrated financial
reporting under the International Financial
Reporting Standards (IFRS) 7 of IASB
(International Acccounting Standard Board).

The capital adequacy process of financial
corporations is directly influenced by the
type of models used for potential losses
determination. The usage of matrixes will
introduce a better estimation of potential
losses rather than roughly applying a pre-
determined coefficient which is oftenly too
high, in order to be conservative.

C. Case study
Is is supposed a MSAccess application

storing data about financial assets, eg.
equities / indexes listed on Stock Exchange.
The database have daily recordings for one
year period for 8 types of stock-exchange
indexes.

The Variance-Covariance matrix requires
two series of data. In our case, the series of
data are represented by one seria of daily
yields against the average of daily yields and
second seria consisting from transposed data
of previous seria.

The reason of transposed seria
introduction is given by the neccessity for
introduction of an random factor in daily
yields seria, having the same average,
standard deviation and normal distribution.
The random factor is founded on the
supposition that a certain evolution could be
contrary to the trend.

The first step in our calculation consist of
using the DAO recordset facilities in order
to transform the daily prices in daily yields.
The second step deals with average yields
calculation. The third step is performing the
deduction of average yield from each daily
yield.

There is presented hereinafter, the Visual
Basic Code from MSAccess in order to
generate the calculation of daily yields
against average:

Function eq_delta() ‘Calculation of
daily yields against average’

Dim r As DAO.Recordset, t As
DAO.Recordset, q As DAO.Recordset

Dim strSQL As String
'Local variables

Database Systems Journal vol. 1, no. 1/2010 21

 Dim data As Date
 Dim deltaBETI, deltaBETC,

deltaBETFI, deltaVAB, deltaROTXUSD,
deltaROTXEUR, deltaRSQALL As Double

 Dim BETI, BETC, BETFI, VAB,
ROTXUSD, ROTXEUR, RSQALL As Double

Set r =
CurrentDb.OpenRecordset("SELECT * FROM
information_indexes, local_time WHERE
(((information_indexes.data)<[end] And
(information_indexes.data)<>#12/31/2008#
))")

Set t =
CurrentDb.OpenRecordset("local_eq_delta"
)

Set q =
CurrentDb.OpenRecordset("information_ind
exes")

DoCmd.SetWarnings False
DoCmd.RunSQL "Delete * From

local_eq_delta"
DoCmd.SetWarnings True

 ‘First step - Daily yields

determination
Do While Not r.EOF
 t.AddNew
 t!data = r!data
 t!deltaBETI = r!BETI / q!BETI - 1
 t!deltaBETC = r!BETC / q!BETC - 1
 t!deltaBETFI = r!BETFI / q!BETFI

- 1
 t!deltaVAB = r!VAB / q!VAB - 1
 t!deltaROTXUSD = r!ROTXUSD /

q!ROTXUSD - 1
 t!deltaROTXEUR = r!ROTXEUR /

q!ROTXEUR - 1
 t!deltaRSQALL = r!RSQALL /

q!RSQALL - 1
 t.Update
 q.MoveNext
 r.MoveNext
Loop
 t.Close
 q.Close
 r.Close
Set t = Nothing
 Set q = Nothing
 Set r = Nothing
Dim m As DAO.Recordset
Set t =

CurrentDb.OpenRecordset("local_eq_delta"
)

Set m =
CurrentDb.OpenRecordset("local_eq_varian
ce")

‘ Second step – average daily yields
DoCmd.SetWarnings False
DoCmd.RunSQL "Delete * From

local_eq_variance"
DoCmd.SetWarnings True
DoCmd.SetWarnings False
DoCmd.RunSQL "SELECT

Avg(local_eq_delta.deltaBETI) AS
AvgOfdeltaBETI,
Avg(local_eq_delta.deltaBETC) AS
AvgOfdeltaBETC,

Avg(local_eq_delta.deltaBETFI) AS
AvgOfdeltaBETFI,
Avg(local_eq_delta.deltaVAB) AS
AvgOfdeltaVAB,
Avg(local_eq_delta.deltaROTXUSD) AS
AvgOfdeltaROTXUSD,
Avg(local_eq_delta.deltaROTXEUR) AS
AvgOfdeltaROTXEUR,
Avg(local_eq_delta.deltaRSQALL) AS
AvgOfdeltaRSQALL INTO local_eq_delta_avg
FROM local_eq_delta"

DoCmd.SetWarnings True

 ‘Third step - daily yields against

average’
Do While Not t.EOF
 m.AddNew
 m!data = t!data
 m!deltaBETI = t!deltaBETI -

AvgOfdeltaBETI
 m!deltaBETC = t!deltaBETC -

AvgOfdeltaBETC
 m!deltaBETFI = t!deltaBETFI -

AvgOfdeltaBETFI
 m!deltaVAB = t!deltaVAB -

AvgOfdeltaVAB
 m!deltaROTXUSD = t!deltaROTXUSD -

AvgOfdeltaROTXUSD
 m!deltaROTXEUR = t!deltaROTXEUR -

AvgOfdeltaROTXEUR
 m!deltaRSQALL = t!deltaRSQALL -

AvgOfdeltaRSQALL
 m.Update
 t.MoveNext
Loop

 m.Close
 t.Close
Set m = Nothing
 Set t = Nothing
End Function
The user of MSAccess application is

performing a visualition of a specific
report in order to see the final figures
of Value of Risk. When clicking to open
a specific file, the previous code is
run as a macro (Table 2 – first command)
and is stored in local tables.

Secondly, after the macro is run,
there is generated a new procedure as
follows:

Private Sub
Command58_Click()‘Transfer of daily
yields ag. Average in Excel, refresh
driver, report visualisation’

On Error GoTo Err_Command58_Click
Dim stDocName As String

 ‘MSAccess macro launch
 stDocName = "create_eq_variance"
 DoCmd.RunMacro stDocName

 ‘MSExcel launch
Dim xlApp As Excel.Application
Dim xlWb As Excel.workBook
Dim xlWk As Excel.workSheet
DoCmd.SetWarnings False
Set xlApp = New Excel.Application

22 Optimization of Data Requests Timing by Working with Matrixes under
MSAccess EnvironmentDatabase Access through Java Technologies

xlApp.Application.DisplayAlerts =
False

xlApp.Visible = False
Set xlWb =

xlApp.Workbooks.Open("d:\a\equity_var.xl
s")

Set xlWk = xlWb.Worksheets("eq_var")
 xlWk.Range("a1").Select

xlWk.Range("a1").QueryTable.Refresh

xlWk.Range("a1").QueryTable.BackgroundQu
ery = False

 xlWk.Calculate
 xlWb.Save
 xlWb.Close
 xlApp.Quit
 Set xlWb = Nothing
 Set xlApp = Nothing

‘Report visualitation
 stDocName = "local_eq_var"
 DoCmd.OpenReport stDocName,

acPreview
Exit_Command58_Click:
 Exit Sub
Err_Command58_Click:
 MsgBox Err.Description
 Resume Exit_Command58_Click
End Sub

At the refresh stage of previous code
there is downloaded into an Excel file
(which is opened in invisible mode), through
a system DSN driver, the daily yields
against average that have been calculated
through the procedure explained in Table 1.

The calculus for Variance-Covariance
Matrix are performed due to Excel function
‘CoVar’. As well, there is calculated in
MSExcel the Correlation Matrix and Value
at Risk figures. Each of these data are
defined with names and linked to MSAccess
application. Finally, the report is seeing data
from a local MSAccess table which is linked
to a MSExcel file, which is refreshed
through a specific press of a button. The
process is performed in real-time and is
optimised from the cost-benefit purpose and
timing of access to information compared
with generation of data exclusively through
SQL, or by other engines.

D. Conclusions
The results of matrixes calculus are

generated each time the request is perfomed
by each user. The intermediary data is not
stored, so that database storage facilities are
not affected.

This operation of dinamically transfer of
data between MSAccess and MSExcel could
create an integrated environment of
exploiting the database facilities by
MSExcel or other MSOffice application and,
on other hand, of calculus facilities by the
the MSAccess.

The data requests when working with
matrixes is crucial. This solution of complex
calculus generation in real-time is a real
benefit for the end user, basically a financial
modeller, who needs to solve and adjust
frequently market data and formulas.

I. References
[1] Gheorghe Sabău, Vasile Avram, Ramona

Bologa, Mihaela Muntean, Marian
Dardal, Răzvan Bologa - Baze de date,
Editura Matrix Rom, Bucureşti, 2008

[2] Manole Velicanu, Ion Lungu, Iuliana
Botha, Adela Bâra, Anda Velicanu,
Emanuil Rednic - Sisteme de baze de
date evoluate, editura ASE, Bucureşti,
2009

[3] Marin Fotache, Cătălin Strâmbei, Liviu
Creţu - Oracle – Ghidul dezvoltării
aplicaţiilor profesionale , Editura
Polirom, Iaşi, 2003

[4] Philippe Jorion - Financial Risk
Management Handbook, John Wiley and
Sons, 2005

[***] IASB (2009) Standardele
Internaţionale de Raportare Financiară,
CECCAR.

Database Systems Journal vol. 1, no. 1/2010 23

SEO Techniques for Business Websites

Alexandru ENACEANU
Romanian-American-University

In the world of website marketing, search engines are an essential key to success. They are the most
important way to bring traffic to websites. Understanding how search engines work and what they
require is an important first step to harnessing their marketing power. There are proven methods to
search engine marketing involving website design, content adaptation, and keyword strategy. The
primary goal of these methods is to bring traffic to your site. The secondary goal is for that traffic to
be targeted to your product. In the internet marketing game, exposure is essential. But marketing
efficiency requires effective exposure to the right prospects.
Keywords: SEO, search engine optimization, pagerank, business website, Internet

Introduction
When first building a website, you

are excited to get it up on the web. You
are anticipating how to handle all the new
business that will be generated by thousands
and thousands of visitors. Cut to a few weeks
later, and you realize that no one is finding
you!

Surely, by the time you have made the
plans for the new website, you have heard that
you must use some technique named search
engine optimization to be found on Google or
Yahoo.

Concepts :
SEO (Search Engine Optimization) – a

subset of search engine marketing that seeks
to improve the number and quality of visitors
to a web site from "natural" ("organic" or
"algorithmic") search results.

PR (PageRank) - a link analysis algorithm
which assigns a numerical weighting to each
element of a hyperlinked set of documents,
such as the World Wide Web, with the
purpose of "measuring" its relative importance
within the set. The algorithm may be applied
to any collection of entities with reciprocal
quotations and references.

Web directory - a web directory is a
directory on the World Wide Web. It
specializes in linking to other web sites and
categorizing those links. Web directories often
allow site owners to directly submit their site

for inclusion, and have editors review
submissions for fitness.

The most common methods of SEO
include on-page optimization or utilizing
keywords and meta tags and link strategies.
Here are some steps to take in order from not
being listed far away from the top or not being
listed at all:

2. Search Engine Submission
The first thing to do is submitting the
website’s homepage. Many search
engines will promise to find and crawl the rest
of your website automatically. But if they
don't disagree from doing so, submitting
several of the important pages will help. For
example, a site map is definitely something to
submit, since it should have direct links to the
rest of the website.
Also, it is recommended to ask for another
webmaster to link the new site to his already
submitted website. That way the search
engines will recognize that this resource has
changed.

WHERE TO SUBMIT
It is recommended to submit your home

page to the major search engines individually,
at least initially :

- Submit to Google
http://www.google.com/addurl/?continue/add
url

- Submit to Yahoo

1

http://www.google.com/addurl/?continue/addurl�
http://www.google.com/addurl/?continue/addurl�

24 SEO Techniques for Business Websites

http://submit.search.yahoo.com/free/re
quest

- Submit to MSN
http://beta.search.msn.com/docs/submi
t.aspx?FORMWSUT

A Yahoo account is needed to submit to the
Yahoo search engine. Immediate results
should not be seen immediately. Your site
should normally exist in MSN within about 6
weeks, in Yahoo in 8-12 weeks, and in
Google within about 3 months.
In the long run, Google will normally give
you about 60 - 70% of the search engine
traffic if you follow the hereafter steps.

There are several services that do groups of
them for you - and is a big time saver for the
rest of your site. The following is one of the
free and well-known website submitter:
http://www.freewebsubmission.com/.

3. Directory Submission
A web directory is not a search engine,

and does not display lists of web pages based
on keywords, instead it lists web sites by
category and subcategory. The categorization
is usually based on the whole web site, rather
than one page or a set of keywords, and sites
are often limited to inclusion in only one or
two categories.

The first directory to submit into is
DMOZ (http://www.dmoz.com/add.html)
which is closed for submission for the
moment, but all people hope it will come up
again . The Open Directory Project is the
largest, most comprehensive human-edited
directory of the Web.

This is a massive directory that is
republished in several other websites. It is
managed by volunteer humans, and is
therefore considered to be of special relevance
by other search engines (especially Google).

Read all their rules before submitting - and
follow them closely. Make sure that you try to
get listed in only one category - the most
relevant one for your business. It can take a
month or two to get listed, but it really helps

with your backlinks and overall accuracy as a
website.

After DMOZ, here are the most important
list of directories to be listed in :

• Yahoo Directory website
submission ($299 annual fee)
https://ecom.yahoo.com/dir/reference/submit/

• Business.com website submission
($199 annual fee)

 http://www.business.com/
• Best of Web website submission

($40 annual fee)
 http://www.botw.org/
• wowdirectory.com website

submission ($25 lifetime fee)
http://www.wowdirectory.com/howtoadd.php

• LOCAL directories from your own
country

There are specialized directories that focus
on a particular category of links. These can be
valuable - you will just have to do a bit of
searching to find them. These may be
considered as part of your overall strategy.

Being listed in a search engine doesn't
guarantee that you will have a good ranking -
this is just the first step - letting them know
that you exist.

4. Technical recomandations

a.Site Design
Use the "Keep It Simple" principle.

Employ an external CSS file, clean
up any Java Scripts by referring to them

off the page in an external file, don't use
frames, use flash the way you would an
image, and no matter what, do not create a
flash site.

Page Size - Your web page's speed is
important to your visitors and the search
engines, because the robots will be able to
spider your web page faster and easier. Try
your best to keep your web page over 5k and
under 15k in size.

b. Validate your site

http://submit.search.yahoo.com/free/request�
http://submit.search.yahoo.com/free/request�
http://beta.search.msn.com/docs/submit.aspx?FORMWSUT�
http://beta.search.msn.com/docs/submit.aspx?FORMWSUT�
http://www.freewebsubmission.com/�
http://www.dmoz.com/add.html�
https://ecom.yahoo.com/dir/reference/submit/�
http://www.business.com/�
http://www.botw.org/�
http://www.wowdirectory.com/howtoadd.php�

Database Systems Journal vol. 1, no. 1/2010 25

Run a website validator on the pages
intended for submitting - to keep the search
engine spiders from choking on your website.
(http://validator.w3.org/)

c. HEAD part of the page
Title Tag - The title tag is the most

powerful on-site SEO technique you have, so
use it creatively! What you place in the title
tag should only be one thing, the exact
keyword you used for the web page that you
are trying to optimize. Every single web page
should have it's own title tag.

Keyword Density - This is also vital and
should be used with research. You should use
the keyword(s) once in the title tag, once in
the heading tag, once in bold text, and get the
density between 5% to 20% (Don't over do
it!). Also use your keyword(s) both low and
high on the web page, keyword(s) should be
in the first sentence and in the last one.

d. Internal links
Internal links are the easiest to attain links.

That would be, the ones right there on your
own site and those which you have total and
complete control of. Properly used internal
links can be a useful weapon in your SEO
arsenal.

The internal linking structure can:
- Insure that your website gets properly

spidered and that all pages are found by
the search engines

- Build the relevancy of a page to a
keyword phrase

- Increase the PageRank of an internal page
Your web pages should be no more than

three clicks away from the home page. Link to
topic related quality content across your site.
This will also help build you a better theme
through out your web site. On every page you
should link back to your home page and your
main service(s).

e. External links
External links are links coming from other

websites to your pages.

External links could be reciprocal or one-
way links. Reciprocal links should be
avoided, because of the Google’s new policy
to ignore reciprocal linking – named
JAGGER.

There are a number of tactics for building
one-way links: articles, press releases, paid
links.

Digging for External links
 Instead of looking around for nice

sites, and then asking if they're interested in a
link exchange with you, just scout around and
look at where other people are getting links
from. Visit a site that's similar in topic to your
site (competitors).

Go to Google.com and type
"link:www.nameofyourcompetitor.com” (this
will list all the pages that have links pointing
to the current page).

Click on every link, opening each one in a
new window. Close all the pages with Page
Rank less than 5.

Visit the remaining sites and see if they
accept subscription or paid advertising.

f. Site Map
Build a site map with a link to each of

your pages. Keep it up to date. This will allow
the spiders to get to every page. Do not
include session IDs in the links advertised.
Session IDs confuse search engines.

Submit it to search engines or put a text
link to the site map on the main pages.

g. Short URLS
Keep the URLs short with page names

having the keywords that best reflect page’s
content. Use a delimiter like underscore or
dash to separate the keywords or products
model from each other.

h. Fresh content
Add a new product/service or a new

review every 2-3 days: 200-500 words. Create
original content, don't copy others. The more
original and useful it is, the more people will

26 SEO Techniques for Business Websites

read it, link to it, and most importantly of all
keep coming back for more.

i. NO Spam
Stay away from black hat optimizing

techniques. Black hat optimization
consists of using any method to get higher

rankings that the search engines would
disapprove of, such as keyword stuffing,
doorway pages, invisible text, cloaking and
more. Stick to white hat methods for long-
term success. People who use black hat
optimization are usually there for the short-
term (just look at your email spam for more
black hat markets). These black hat industry
sites are usually around just long enough to
make quick incomes.

j. Statistics
Make sure your server has a good statistics

program. If you
don't have access to a good program, then

pay for one. Without the
knowledge of who is coming to your site,

where from, and how often, you
will be missing out on some essential tools

to improve your site.

k. RSS Feeds
RSS (Real Simple Syndication or Rich

Site Summary) is becoming a powerful tool
for Internet marketers. You can quickly and
easily add fresh content to your website.
Article feeds are updated frequently, so you
can give your visitors (and the search engines)
what they want - fresh content! You can use
RSS to promote any new content, such as new
products, special offers, articles or reviews.

l. Text browser
The final step is to use a text browser like

Lynx (http://lynx.isc.org).
This helps you to see how your website

“looks like” for search engines. Try to find
good keywords within the pages.

Conclusion
80 to 90% of Internet users turn to search

engines such as Google, Yahoo, msn to find
information they need. Therefore, the
importance of search engines should be
treated accordingly in the marketing
campaign. Even if the exact formulae that the
top search engines use to calculate rankings
are usually a closely guarded secret, you can
apply SEO techniques because it is free, it is
easy, it is targeted marketing, and do not need
to be constantly monitored or funded as they
are self-sustaining once you set them into
motion.

Bibliography

[1]SeoPedia Forum - http://forum.seopedia.ro/
[2] Aaron Wall's SEO Book.com –

http://www.seobook.com/
[3] WikiPedia – http://www.wikipedia.com
[4]EzineArticles –

http://www.ezinearticles.com
[5] SEO Company Canada -

http://www.seocompany.ca/
[6] Fallows, Deborah; Rainie, Lee, The

Popularity and Importance of Search
Engines, Pew Internet&American Life
Project, 2004

[7] Foster, Peter, The perils of the keyword
search, http://www.telegraph.co.uk ,
June 16, 2006

[8] Thurow, Shari, Search Engine Visibility,
Macmillan Computer Pub 2003

[9] Brad, Konia, Search Engine Optimization
W/webposition, WWPD Library

http://lynx.isc.org/�
http://forum.seopedia.ro/�
http://www.seobook.com/�
http://www.wikipedia.com/�
http://www.ezinearticles.com/�
http://www.seocompany.ca/�
http://www.telegraph.co.uk/�

Database Systems Journal vol. 1, no. 1/2010 27

Solutions for improving data extraction from virtual data warehouses

Adela BÂRA
Economic Informatics Department, Academy of Economic Studies

Bucharest, ROMANIA
bara.adela@ie.ase.ro

Abstract: The data warehousing project’s team is always confronted with low performance in
data extraction. In a Business Intelligence environment this problem can be critical because the
data displayed are no longer available for taking decisions, so the project can be compromised.
In this case there are several techniques that can be applied to reduce queries’ execution time
and to improve the performance of the BI analyses and reports. Some of the techniques that can
be applied to reduce the cost of execution for improving query performance in BI systems will be
presented in this paper.
Keywords: Virtual data warehouse, Data extraction, SQL tuning, Query performance

Introduction
The Business Intelligence (BI)

systems manipulate data from various
organizational sources like files, databases,
applications or from the Enterprise Resource
Planning (ERP) systems. Usually, data from
these sources is extracted, transformed and
loaded into a primary target area, called
staging area which is managed by a
relational database management system.
Then, in order to build analytical reports
needed in a BI environment, a second ETL
(extract, transform and load) process is
applied to load data into a data warehouse
(DW). There are two ways to implement a
DW: to store data in a separate repository
which is the traditional method and to
extract data directly from the relational
database which manages the staging
repository. The last solution is usually
applied if the ERP system is not yet fully
implemented and the amount of data is not
as huge as the queries can be run in a
reasonable time (less than 30 minutes). The
implementation of a virtual data warehouse
is fastest and requires a low budget then a
traditional data warehouse. Also this method
can be applied in a prototyping phase but
after the validation of the main
functionalities, data can be extracted and
loaded into a traditional data warehouse. It’s
a very good practice to use the staging area

already build for the second ETL process to
load data into the data warehouse.

This paper presents some aspects of the
implementation of a virtual data warehouse
in a national company where an ERP was
recently setup and a set of BI reports must
be developed quickly. Based on a set of
views that collects data from the ERP
system, a virtual data warehouse based on an
ETL process was designed. The database
management system (DBMS) is Oracle
Database 10g Release 2 and the reports were
developed in Oracle Business Intelligence
Suite (OBI). After the development of the
analytical BI reports, the project team run
several tests in a real organizational
environment and measured the performance
of the system. The main problem was the
high cost of execution. These reports were
over 80% resource consuming of the total
resources allocated for the ERP and BI
systems. Also, the critical moment when the
system was breaking down was at the end of
the month when all transactions from
functional modules were posted to the
General Ledger module. After testing all
parameters and factors, the team concluded
that the major problem was in the data
extraction from the relational database. So,
in order to improve the query performance,
some of the main optimization techniques
are considered.

1

mailto:bara.adela@ie.ase.ro�

28 Solutions for improving data extraction from virtual data warehouses

2 An overview of the SQL execution
process

The query performance depends on one

side on the technology and the DBMS that
are used and on the other side on the way
queries are executed and data are processed.
So, first let’s take a look on the way Oracle
Database manages the queries. There are
two memory structures which are
responsible with SQL processing: the
System Global Area (SGA) - a shared
memory area that contains data and control
information for the instance and the Program
Global Area (PGA) - a private memory
region containing data and control
information for each server process.

The main component in the SGA that
affect query optimization process is the
Shared pool area which caches various SQL
constructs that can be shared among users
and contains shared SQL areas, the data
dictionary cache, and the fully parsed or
compiled representations of PL/SQL blocks.
A single shared SQL area is used by
multiple users that issue the same SQL
statement. The size of the shared pool
affects the number of disk reads. When a
SQL statement is executed, the server
process checks the dictionary cache for
information on object ownership, location,
and privileges and if it is not present, this
information is loaded into the dictionary
cache through a disk read. The disk reads
and parsing are expensive operations; so it is
preferable that repeated executions of the
same statement find required information in
memory, but this process require a large
amount of memory. So in conclusion, the
size of the shared pool leads to better SQL
management by reducing disk reads, shared
SQL queries, reducing hard paring and
saving CPU resources and improving
scalability.

The PGA is a non-shared memory area
that is allocated for each server process that
can read and write to it. The Oracle
Database allocates a PGA when a user
connects to an Oracle database. So, a PGA
area contains the information about: the user

session that initiated it, the cursor that is
executed in the PGA and the SQL work
areas. The main components which affect
the query execution are the SQL work areas.
A SQL query is executed in a SQL work
area based on an execution plan and
algorithm: hash, sort, merge. Thus, the SQL
work area allocates a hash area or a sort area
or a merge area in which the query is
executed. These algorithms are applied
depending on the SQL operators, for
example a sort operator uses a work area
called the sort area to perform the in-
memory sort of a set of rows. A hash-join
operator uses a work area called the hash
area to build a hash table from its left input.
If the amount of data to be processed by
these two operators does not fit into a work
area, then the input data is divided into
smaller pieces. This allows some data pieces
to be processed in memory while the rest are
spilled to temporary disk storage to be
processed later. But the response time
increases and it affects the query
performance. The size of a work area can be
controlled and tuned, but in general bigger
database areas can significantly improve the
performance of a particular operator at the
cost of higher memory consumption. The
best solution that can be applied is to use
Automated SQL Execution Memory (PGA)
Management which provides an automatic
mode for allocating memory for SQL
working. Thus the working areas that are
used by memory-intensive operators (sorts
and hash-joins) can be automatically and
dynamically adjusted. This feature of Oracle
Database offers several performance and
scalability benefits for analytical reports
workloads used in a BI environment or
mixed workloads with complex queries. The
overall system performance is maximized,
and the available memory is allocated more
efficiently among queries to optimize both
throughput and response time [1].

Another important component of the
Oracle Database is the Query optimizer that
creates the execution plan for a SQL
statement. The execution plan can greatly
affect the execution time of a SQL query

Database Systems Journal vol. 1, no. 1/2010 29

and it consists in a series of operations that
are performed in sequence to execute the
specified statement. The Query optimizer
considers many factors related to the objects
referenced and the conditions specified in
the statement such as: statistics gathered for
the system related to the I/O operations,
CPU resources and schema objects;
information in the data dictionary;
conditions in WHERE clause; execution
hints supplied by the developers. Based on
the evaluation of these factors the Query
optimizer decides which is the most efficient
path to access data and how to join tables
(full-scan, hash, sort, and merge algorithms).
In conclusion the execution plan contains all
information of a SQL statement execution
and in order to improve query performance
we have to analyze this plan and to try to
eliminate some of the factors that affect the
performance.

3 Optimization solutions
3.1. Materialized views
To reduce the multiple joins between

relational tables in a virtual data warehouse,
the first solution was to rewrite the views
and build materialized views and semi-
aggregate tables on the staging area. Data
sources are loaded in these tables by the
ETL (extract, transform and load) process
periodically, for example at the end of the
week or at the end of the month after posting
to the General Ledger. A benefit of this
solution is that it eliminates the joins from
the views and the ETL process can be used
to load data in a future data warehouse that
will be implemented after the prototype
validation.

After re-write the queries in terms of
materialized views, the project team re-test
the system under real conditions. The time
for data extraction was again too long and
the costs of executions consumed over 50%
of total resources. So, on these materialized
views and tables some of optimization
techniques must be applied. These
techniques are: table partitioning, indexing,
using hints and using analytical functions
instead of data aggregation in some reports.

3.2 Partitioning
The main objective of the partitioning

technique is to decrease the amount of disk
activity and limiting the amount of data to
be examined or operated on and enabling
parallel execution required to perform
queries against virtual data warehouses.
Tables are partitioning using a partitioning
key that is a set of columns which will
determine by their conditions in which
partition a given row will be store. Oracle
Database 10g on which our ERP is
implemented provides three techniques for
partitioning tables [1]:

• Range Partitioning - specify by a
range of values of the partitioning key;

• List Partitioning - specify by a list of
values of the partitioning key;

• Hash Partitioning - a hash algorithm
is applied to the partitioning key to
determine the partition for a given row;

Sub partitioning techniques can be
applied and first tables are partitioned by
range/list/hash and then each partition is
divided in sub partitions:

• Composite Range-Hash Partitioning
– a combination of Range and Hash
partitioning techniques, in which a table is
first range-partitioned, and then each
individual range-partition is further sub-
partitioned using the hash partitioning
technique;

• Composite Range-List Partitioning -
a combination of Range and List partitioning
techniques, in which a table is first range-
partitioned, and then each individual range-
partition is further sub-partitioned using the
list partitioning technique.

• Index-organized tables can be
partitioned by range, list, or hash.

In our case we consider evaluating each
type of partitioning technique and choose
the best method that can improve the
queries’ performance. Some of our research
can be found also in [2] and [3].

For the loading process we created two
tables based on the main table and compare
the execution cost obtained by applying the
same query on them. First table TEST_A

30 Solutions for improving data extraction from virtual data warehouses

contained un-partitioned data and is the
target table for an ETL process. It counts
100000 rows and the structure is shown
below in the scripts. The second table
TEST_B is a range partitioned table by
column T_DATE which refers to the date of
the transaction. This table has four partitions
as you can observe from the script below:

create table test_b
(T_DATE date not null,
 PERIOD varchar2(15) not null,
 DEBIT number,
 CREDIT number,
 ACCOUNT varchar2(25),
 DIVISION varchar2(50),
 SECTOR varchar2(100),
 UNIT varchar2(100))
partition by range (T_DATE)
(partition QT1 values less than
(to_date('01-APR-2009', 'dd-mon-
yyyy')),
partition QT2 values less than
(to_date('01-JUL-2009', 'dd-mon-
yyyy')),
partition QT3 values less than
(to_date('01-OCT-2009', 'dd-mon-
yyyy')),
partition QT4 values less than
(to_date('01-JAN-2010', 'dd-mon-
yyyy')));

Then, we create the third table which is
partitioned and that contained also for each
range partition four list partitions on the
column “Division” which is very much used
in data aggregation in our analytical reports.
The script is showed below:

create table TEST_C

(T_DATE date not null,
 PERIOD varchar2(15) not null,
 DEBIT number,
 CREDIT number,
 ACCOUNT varchar2(25),
 DIVISION varchar2(50),
 SECTOR varchar2(100),
 UNIT varchar2(100))
partition by range (T_DATE)
subpartition by list (DIVISION)
(partition QT1 values less than
(to_date('01-APR-2009', 'dd-mon-
yyyy'))
(subpartition QT1_OP values
('a.MTN','b.CTM','c.TRS','d.WOD','e.DM
A'),
 subpartition QT1_GA values ('f.GA
op','g.GA corp'),
 subpartition QT1_AFO values ('h.AFO
div','i.AFO corp'),

 subpartition QT1_EXT values
('j.EXT','k.Imp')),
partition QT2 values less than
(to_date('01-JUL-2009', 'dd-mon-
yyyy'))
(subpartition QT2_OP values
('a.MTN','b.CTM','c.TRS','d.WOD','e.DM
A'),
 subpartition QT2_GA values ('f.GA
op','g.GA corp'),
 subpartition QT2_AFO values ('h.AFO
div','i.AFO corp'),
 subpartition QT2_EXT values
('j.EXT','k.Imp')),
partition QT3 values less than
(to_date('01-OCT-2009', 'dd-mon-
yyyy'))
(subpartition QT3_OP values
('a.MTN','b.CTM','c.TRS','d.WOD','e.DM
A'),
 subpartition QT3_GA values ('f.GA
op','g.GA corp'),
 subpartition QT3_AFO values ('h.AFO
div','i.AFO corp'),
 subpartition QT3_EXT values
('j.EXT','k.Imp')),
partition QT4 values less than
(to_date('01-JAN-2010', 'dd-mon-
yyyy'))
(subpartition QT4_OP values
('a.MTN','b.CTM','c.TRS','d.WOD','e.DM
A'),
 subpartition QT4_GA values ('f.GA
op','g.GA corp'),
 subpartition QT4_AFO values ('h.AFO
div','i.AFO corp'),
 Subpartition QT4_EXT values
('j.EXT','k.Imp')));

After loading data in these two

partitioned tables we gather statistics with
the package DBMS_STATS. Analyzing the
decision support reports we choose a sub-set
of queries that are always performed and
which are relevant for testing the
optimization techniques. We run these
queries on each test table A, B and C and
compare the results in table 1.

In conclusion, the best technique in our

case is to use table C instead table A or table
B, that means that partitioning by range of
T_DATE and then partitioning by list of
DIVISION with type VARCHAR2 is the
most efficient method. Also, we obtained
better results with table B partitioned by
range of T_DATE than table A non-
partitioned.

Table 1 Comparative analysis results for simple queries
TABLE: TES TEST_B TEST_C

Database Systems Journal vol. 1, no. 1/2010 31

T_A

QUERRY:

Not
partitioned

Partition range
by date on column

“T_DATE”

Partition range by date
with four list partions on column

“DIVISION”
Wit

hout
partition
clause

Par
tition
(QT1)

Wit
hout

partition
clause

Par
tition
(QT1)

Su
b-partition
(QT1_AF

O)
Select * from

TEST_
170 184 - 346 - -

where extract
(month from T_date) =1;

183 197 91 357 172 172

… and
division='h.AFO divizii'

173 199 91 25 12 172

select sum(debit)
TD, sum(credit) TC from
test_
where extract (month from
t_date) =1
and division='h.AFO
divizii'

173 199 91 25 12 172

… and unit ='MTN' 173 199 91 350 172 172
Note: The grey marked ones have the best execution cost of the current query

3.3 Using hints and indexes
When a SQL statement is executed the

query optimizer determines the most
efficient execution plan after considering
many factors related to the objects
referenced and the conditions specified in
the query. The optimizer estimates the cost
of each potential execution plan based on
statistics in the data dictionary for the data
distribution and storage characteristics of
the tables, indexes, and partitions accessed
by the statement and it evaluates the
execution cost. This is an estimated value
depending on resources used to execute the
statement which includes I/O, CPU, and
memory [1]. This evaluation is an
important factor in the processing of any
SQL statement and can greatly affect
execution time.

We can override the execution plan of
the query optimizer with hints inserted in
SQL statement. A SQL statement can be
executed in many different ways, such as
full table scans, index scans, nested loops,
hash joins and sort merge joins. We can

set the parameters for query optimizer mode
depending on our goal. For BI systems, time
is one of the most important factor and we
should optimize a statement with the goal of
best response time. To set up the goal of the
query optimizer we can use one of the hints
that can override the OPTIMIZER_MODE
initialization parameter for a particular SQL
statement [1]. The optimizer first determines
whether joining two or more tables having
UNIQUE and PRIMARY KEY constraints
and places these tables first in the join order.
The optimizer then optimizes the join of the
remaining set of tables and determinates the
cost of a join depending on the following
methods:

• Hash joins are used for joining large
data sets and the tables are related with an
equality condition join. The optimizer uses
the smaller of two tables or data sources to
build a hash table on the join key in memory
and then it scans the larger table to find the
joined rows. This method is best used when
the smaller table fits in available memory.
The cost is then limited to a single read pass
over the data for the two tables.

32 Solutions for improving data extraction from virtual data warehouses

• Nested loop joins are useful when
small subsets of data are being joined and
if the join condition is an efficient way of
accessing the second table.

• Sort merge joins can be used to join
rows from two independent sources. Sort
merge joins can perform better than hash
joins if the row sources are sorted already

and a sort operation does not have to be done.
We compare these techniques using hints

in SELECT clause and based on the results in
table 2 we conclude that the Sort merge join is
the most efficient method when table are
indexed on the join column for each type of
table: non-partitioned, partitioned by range
and partitioned by range and sub partitioned
by list.

Table 2. Comparative analysis results using hints
TABLE: TEST_A TEST_B TEST_C

QUERRY:

Not
partitioned

Partition range by
date on column

“T_DATE”

Partition range by date with
four list partions on column

“DIVISION”
Withou

t partition
clause

Partitio
n (QT1)

Withou
t partition

clause

Partitio
n (QT1)

Sub-
partition

(QT1_AF
O)

select /*+ USE_HASH
(a u)*/ a.*,
u.location,u.country,
u.region
from TEST_t a
, d_units u
where a. unit=u. unit
and extract (month from
T_date) =1

176 182 95 294 152 152

… and a.division =
'h.AFO divizii'

175 181 94 28 19 150

…/*+ USE_NL (a u)*/ 281 287 151 170 18 171
…/*+ USE_NL (a u)*/
--WITH INDEXES

265 235 110 120 12 143

…/*+ USE_MERGE (a
u)*/

--WITH INDEXES

174 180 94 27 18 150

…and u. unit ='MTN' 174 180 94 151 19 150
…/*+ USE_NL (a u)*/ 174 180 94 21 18 150
…/*+ USE_NL (a u)*/
--WITH INDEXES

172 178 86 21 12 144

…/*+ USE_MERGE (a
u)*/

--WITH INDEXES

172 178 86 21 12 144

Database Systems Journal vol. 1, no. 1/2010 33

The significant improvement is in sub
partitioned table in which the cost of
execution was drastically reduce at only 12
points compared to 176 points of non-
partitioned table. Without indexes the most
efficient method is hash join with best results
in partitioned table and sub partitioned table.

3.3 Using analytical functions
In the latest versions in addition to

aggregate functions Oracle implemented
analytical functions to help developers
building decision support reports [1].
Aggregate functions applied on a set of
records return a single result row based on
groups of rows. Aggregate functions such as
SUM, AVG and COUNT can appear in
SELECT statement and they are commonly
used with the GROUP BY clauses. In this
case Oracle divides the set of records into
groups, specified in the GROUP BY clause.
Aggregate functions are used in analytic
reports to divide data in groups and analyze
these groups separately and for building
subtotals or totals based on groups. Analytic
functions process data based on a group of
records but they differ from aggregate
functions in that they return multiple rows for
each group. The group of rows is called a
window and is defined by the analytic clause.
For each row, a sliding window of rows is
defined and it determines the range of rows
used to process the current row. Window sizes
can be based on either a physical number of
rows or a logical interval, based on conditions
over values [4]

Analytic functions are performed after
completing operations such joins, WHERE,
GROUP BY and HAVING clauses, but before
ORDER BY clause. Therefore, analytic
functions can appear only in the select list or
ORDER BY clause [1].

Analytic functions are commonly used to
compute cumulative, moving and reporting
aggregates. The need for these analytical
functions is to provide the power of
comparative analyses in the BI reports and to

avoid using too much aggregate data from the
virtual data warehouse. Thus, we can apply
these functions to write simple queries
without grouping data like the following
example in which we can compare the amount
of current account with the average for three
consecutive months in the same division,
sector and management unit, back and
forward:

select period, division, sector,
unit, debit,

avg(debit) over (partition by
division, sector, unit

order by extract (month from
t_date)

range between 3 preceding and 3
following) avg_neighbours

from test_a

3.4. Object oriented implementation
A modern RDBMS environment, such as

Oracle Database 10g, supports the object type
concepts that can be used to specify the
multidimensional models (MD) constrains. An
object type differs from native SQL data types
in that it is user-defined, and it specifies both
the underlying persistent data (attributes) and
the related behaviours (methods).

The object type is an object layer that can
map the MD model over the database level,
but data is still stored in columns and tables.
Internally, statements about objects are still
basically statements about relational tables
and columns, and you can continue to work
with relational data types and store data in
relational tables. But we have the option to
take advantage of object-oriented features too.
Data persistency is assured by the object
tables, where each row of the table
corresponds to an instance of a class and the
table columns are the class’s attributes. Every
row object in an object table has an associated
logical object identifier. There can be use two
types of object identifiers: a unique system-
generated identifier of length 16 bytes for
each row object assigned by default by Oracle
in a hidden column, and primary-key based
identifiers specified by the user and in which
we have the advantage of enabling a more

34 Solutions for improving data extraction from virtual data warehouses

efficient and easier loading of the object table
[1].

The object oriented implementation can be
used to reduce the execution cost by avoid the
multiple joins between the fact and the
dimension tables. For exemplification we’ll
present here only the classes of management
unit dimension (table unit in our previous
examples) and the fact table – balance_R.

We’ll use a super type class to define the
management unit dimension. We’ll call it as
UnitSpace_OT. For hierarchical levels of the
dimension, as you can observe, there are two
major hierarchies:

• geographical locations
(H1): zone->region->country-
>location-> unit

• organizational and
management (H2): division-
>sector-> unit.

So, the final object in both hierarchies is
unit which will have two REFs, one for H1
and one for H2 hierarchies. The script is
shown below:

For the first hierarchy (H1):

create or replace type unitspace_ot as
object (unitspace_id number,
unitspace_desc varchar2 (50),
unitspace_type varchar2 (50)) not
instantiable not final;

create or replace type zone_o under
unitspace_ot (/*also add other
attributes and methods*/) not final;

create or replace type region_o under
unitspace_ot (zone ref zone_o /*also add
other attributes and methods*/) not
final;

create type country_o under
unitspace_ot (region ref region_o /*also
add other attributes and methods*/) not
final;

create type location_o under
unitspace_ot (country ref country_o
/*also add other attributes and
methods*/) not final;

The second hierarchy (H2):
create or replace type division_o

under unitspace_ot (/*also add other
attributes and methods*/) not final;

create type sector_o under
unitspace_ot (division ref division_o
/*also add other attributes and
methods*/) not final;

create or replace type unit_o under
unitspace_ot (sector ref sector_o,
location ref location_o /*also add other
attributes and methods*/) final;

The orders’ fact is implemented also as an

object type INSTANTIABLE and NOT
FINAL:

create or replace type balance_r as

object

(T_DATE date not null,
 PERIOD varchar2(15) not null,
 DEBIT number,
 CREDIT number,
 ACCOUNT varchar2(25),
 DIVISION varchar2(50),
 SECTOR varchar2(100),
 UNIT_ID varchar2(100)));

The methods of each MD object type are

implemented as object type bodies in
PL/SQL language that are similar with
package bodies. For example the unit_o
object type has the following body:

create or replace type body unit_o as
static function f_unit_stat(p_tab

varchar2,p_gf varchar2, p_col_gf
varchar2, p_col varchar2, p_val number)
return number as

 /* the function return the aggregate
statistics from fact tables for a
specific unit */

 v_tot number;
 text varchar2(255);
 begin
 text:= 'select '|| p_gf || '

('||p_col_gf||') from '||p_tab||' cd
where '||p_col||'= '||p_val;

 execute immediate text into v_tot;
 return v_tot;
 end f_unit_stat;
/*others functions or procedures*/
end;
/

We can use this function to get different
aggregate values for a specific unit, such as
the total amount of quantity per unit or the
average value per unit. Data persistency is
assured with object tables that will store the
instances of that object type, for example:

CREATE TABLE unit_t OF unit_o;

Database Systems Journal vol. 1, no. 1/2010 35

For example the static function f_unit_stat
from the unit_o class can be use to retrieve
the total debit value for each unit:

(1) select unit_id, description,

unit_o.f_unit_stat(‘balance_rt’, ‘SUM’,
‘debit’, ‘unit_id’, unit_id) total

from unit_t;

instead of using the join between the

unit_t and the balance_r tables:

(2) select t.unit_id, t.description,

SUM(debit) total_debit

from unit t, balance_r b
where t.unit_id=b.unit_id

We’ll use for testing two types of tables:
object tables (unit_t and balance_rt) and
relational tables (unit and balance_r). The
cardinality of these tables is about 100000
records in balance and about 100 in unit
tables.

We analyze the impact of calling the
function in the SQL query in different
situations, as we present in the following
table:

Table 3. The execution costs of the queries
No Query Cost

 select unit_id, description, unit_o.f_unit_stat(‘balance_rt’, ‘SUM’,
‘debit’, ‘unit_id’, unit_id) total

from unit_t

35

 select t.unit_id, t.description, SUM(debit) total
from unit t, balance_r b
where t.unit_id=b.unit_id

171

 Example (1) with an index on unit_id on both object tables 30
 Example (2) with an index on unit_id on both relational tables 171
 Example (1) with an index on unit_id on both relational tables

with use_nl hint
79

We analyze the execution cost of the
function’s query, it has 35 units, but the SQL
Tuning Advisor makes a recommendation:
“consider collecting statistics for this table
and indices”. We used DBMS_STATS
package to collect statistics from both object
and relational tables. Then we re-run the
queries and observe the execution plans;
there is no change and the Tuning Advisor
doesn’t make any recommendation.

By introducing these types of functions we
have the following advantages:

• The function can be used in many
reports and queries with different types of
arguments, so the code is re-used and there is
no need to build another query for each
report;

• The amount of joins is reduced; the
functions avoid the joins by searching the
values in the fact table;

• Soft parsing is used for the function’s
query execution instead of hard parsing in the
case of another SQL query.

The main disadvantage of the model is
that the function needs to open a cursor to
execute the query which can lead to an
increase of PGA resources if the fact table is
too large. But the execution cost is
insignificant and does not require a full table
scan if an index is used on the corresponding
foreign key attribute.

Through an ETL (extract, transform and
load) process data is loaded into the object
tables from the transactional tables of the
ERP organizational system. This process can
be implemented also through object types’
methods or separately, as PL/SQL packages.
Our recommendation is that the ETL process
should be implemented separately from the
object oriented implementation in order to
assure the independency of the MD model.

36 Solutions for improving data extraction from virtual data warehouses

4 Conclusions
The virtual data warehouse is based on a

set of objects like views, packages and
program units that extracts, joins and
aggregates rows from the ERP system’s
database. In order to develop a BI system we
have to build analytical reports based on this
virtual data warehouse. But the performance
of the whole system can be affected by the
data extraction process which is the major
time and cost consuming job. A possible
solution is to apply the optimization
techniques that can improve the performance.
Some of these techniques are presented in this
paper. The results that we’ve obtained are
relevant for decreasing the execution cost.
Also, for developing BI reports an important
option is to choose analytic functions for
predictions, subtotals over current period,
classifications and ratings. Another issue
discussed was the OO implementation which
is very flexible and offer a very good
representation of the business aspects that are
essential for BI projects. Classes like
dimensions or fact tables can be implemented
together with the attributes and methods,
which can be a very good and efficient
practice concerning both the performance and
business modelling.

References

[1] Oracle Corporation - Database
Performance Tuning Guide 10g Release
2 (10.2), Part Number B14211-01, 2005

[2] Ion Lungu, Manole Velicanu, Adela
Bâra, Vlad Diaconita, Iuliana Botha –
Practices for designing and improving
data extraction in a virtual data
warehouses project, Proceedings of
ICCCC 2008, International conference
on computers, communications and
control, Baile Felix, Oradea, Romania,
15-17 May 2008, pag 369-375,
published in International Journal of
Computers, Communications and
Control, volume 3, 2008, ISSN 1841-
9836

[3] Adela Bâra, Ion Lungu, Manole
Velicanu, Vlad Diaconiţa, Iuliana Botha
– Improving query performance in
virtual data warehouses, WSEAS
TRANSACTIONS ON
INFORMATION SCIENCE AND
APPLICATIONS, May 2008, ISSN:
1790-0832

[4] Ion Lungu, Adela Bara, Anca Fodor -
Business Intelligence tools for building
the Executive Information Systems,
5thRoEduNet International Conference,
Lucian Blaga University, Sibiu, June
2006

[5] Donald K. Burleson, Oracle Tuning,
ISBN 0-9744486-2-1, 2006

Database Systems Journal vol. 1, no. 1/2010 37

The Optimization of Algorithms in the Process of Temporal Data Mining
Using the Compute Unified Device Architecture

Alexandru PIRJAN

The Bucharest Academy of Economic Studies, Romania
alex@pirjan.com

Considering the importance and usefulness of real time data mining, in recent years the concern
of researchers to discover new hardware architectures that can manage and process large
volumes of data has increased significantly. In this paper the performance of algorithms for
temporal data mining that are implemented in the new Compute Unified Device Architecture
(CUDA) from the latest generation of graphics processing units (GPU) will be analyzed and
reviewed. The performance will be evaluated taking into account the type of algorithm, data
access, the problems` size, the GPU’s processor generation, the number of threads processed.
Keywords: Temporal data mining, MapReduce, CUDA, GPU, Fermi, thread, kernel.

Introduction

Real time data mining will enable

scientists to develop researches on a scale
that seemed unimaginable until recently.
Both hardware architectures and data mining
algorithms must properly manage and
process huge volumes of data, otherwise
data analysis risks becoming irrelevant in
certain fields such as that of neuroscience. A
possible solution to overcome these
difficulties is the development and
implementation of new parallel processing
algorithms and novel hardware
architectures.
New techniques and data mining methods
have been developed in recent years, used to
discover new patterns, clusters and to
classify different types of data. In order to
optimize a data mining algorithm one should
aim to improve the quality of the data
extraction process and to streamline it by
reducing the response time.

Parallel hardware architectures have
proved to be viable solutions in this respect.
Graphics processing units (GPUs) have a
real potential in optimizing the data mining
process, as they are multithreaded and
multicore processing units. Unlike central
processing units (CPU’s), the cores of a
GPU are virtualized at a hardware level and
its threads are hardware managed, so the
programs’ scalability and portability
improves substantially. A GPU has a

computational capacity and memory
bandwidth far beyond than those of a CPU,
which help accelerate most of the databases
operations and streamline the entire data
mining process. These graphics processing
units combine hundreds of simplified
parallel processing cores, which can be very
useful in the data mining process, reducing
the necessary time for extracting knowledge
from data analysis. This high computational
power is currently being used successfully in
various scientific fields: image processing,
geometric processing and database,
overcoming the most powerful CPUs.
Another essential aspect is the performance
per watt consumed, obtained from the GPU
when compared to the CPU processors.

Based on their high performance, low
cost and on the increasing number of
features offered, GPU processors are
powerful tools capable of solving an
increasingly wide range of applications. In
this paper, the research is focused on the
study of the temporal data mining process.
This technique is becoming increasingly
important and widely used in applications
from different fields such as: financial data
prediction, telecommunication control,
neuroscience, medical data analysis, even if
temporal data mining is a relatively new
field.

For example, researchers in neuroscience
may determine how neurons are connected
and related to each other in the human brain.

1

mailto:alex@pirjan.com�

38 The Optimization of Algorithms In The Process Of Temporal Data
Mining Using the Compute Unified Device Architecture

For this purpose, besides traditional
methods, whose main disadvantages are the
restricted area of the brain on which you can
get information, modern fast methods can be
used, which offer real-time images and
information. These lead to a series of huge
opportunities, patients can be screened,
diagnosed and operated by extremely rapid
procedures, based on huge GPU processing
performance.

In this paper the performance of
algorithms for temporal data mining will be
analyzed and reviewed considering that the
algorithms are implemented on the new
Compute Unified Device Architecture
(CUDA) from the latest generation of
graphics processing units (GPU). The
performance will be evaluated taking into
account the type of algorithm, data access,
the problems` size, the GPU’s processor
generation and the number of threads
processed.

Research shows that GPU processors can
provide the desired performance, but it is
required to address specific technical issues
for each temporal data mining problem.
Taking into account the size of the problem
and the type of the algorithm implemented
on the GPU, one can determine the optimal
algorithm, the data access model and the
number of threads that are necessary to
achieve the desired performance. These
results confirm but also contrast with
previous research about the temporal data
mining, implemented on graphics
processors, such as research on MapReduce
algorithms [1]. While most papers provide
conclusions based on optimum choice of
configurations, this article presents some
general characterizations that help explain
how data mining applications can benefit
from the parallel architecture of the latest
graphics processors.

2. Compute Unified Device Architecture

For a long time, GPU processors have

been used to accelerate graphics rendering
on computers. Following the increasing need
for improved three-dimensional rendering at

a high resolution and a large number of
frames per second, the GPU has evolved
through specialized architecture, from one-
purpose components to multiple purposes
complex architectures, able to do much
more than just provide video rendering. This
development allowed the acceleration of a
broad class of applications. The architecture
and characteristics of NVIDIA GPUs are
summarized in Figure 1.

Fig. 1. NVIDIA Compute Unified Device

Architecture (CUDA) [2]

CUDA is a software and hardware
architecture that allows the NVIDIA
graphics processor to execute programs
written in C, C++, FORTRAN, OpenCL,
Direct Compute and other languages. A
CUDA program calls parallel program
kernels. A kernel executes in parallel a set of
parallel threads. The programmer or
compiler organizes these threads into thread
blocks and grids of thread blocks. The GPU
processor instantiates a kernel program on a
grid containing parallel thread blocks. Each
thread from the block executes an instance
of the kernel and has an unique ID
associated to registers, to thread’s private
memory from the thread block [2].

The Compute Unified Device
Architecture hierarchy of threads is mapped
to the hierarchy of the graphics processing
units hardware processor; a GPU executes
one or more kernel grids; a streaming
multiprocessor (SM) executes one or more
thread blocks; the CUDA cores contained in
the SM run the threads within blocks. SM
can perform up to 32 groups of threads
called warp. Regarding memory hierarchy,
each multiprocessor contains a set of 32-bit
registry with a zone of shared memory,

Database Systems Journal vol. 1, no. 1/2010 39

which is easily accessible for each core of
the multiprocessor but hidden from other
multi-processors. Depending on the
generation of a GPU, the number of registry
and the size of shared memory varies.
Besides shared memory, a multiprocessor
contains two read-only memory cache, one
for texture and another one for constants.

3. The Optimization of Algorithms In

the Process Of Temporal Data
Mining Using the Compute Unified
Device Architecture

When algorithms are developed in the

CUDA programming model, the basic
concern of developers is to divide the work
required in fragments that can be processed
by a x number of thread blocks, each
containing n threads. For optimum
performance, it is recommended that the
number of thread blocks matches the
number of processors, although the threads
within a block will be executed by more
cores within a multiprocessor SM. The
repartition of tasks to be performed between
the x thread blocks is the most important
factor in achieving performance.

A single thread block can be considered
as equivalent to a PRAM model (parallel
random-access-machine) which allows
processors to behave arbitrarily
asynchronous CRCW (concurrent-read,
concurrent-write) [3].

Thus, PRAM algorithms are most
efficient at block level [4] and they have to
be decomposed into separate kernels
because of the need for global
synchronization of data flows,
synchronization that can be achieved only
by successive calls of the kernel.

The technique of data mining through
association is an usual method used to
discover how certain subsets of elements are
associated with other subsets. Temporal data
mining is a restricted version of that
technique, in which temporal relationships
between elements are taken into account.

A specific problem of temporal data
mining is the mining of frequent episodes in

which we find sequences of frequent items
(episodes) appearances in a timed ordered
database.

An episode is defined as a partially
ordered set of events for consecutive time
intervals, embedded in a sequence [4]. The
frequent episode mining is defined below
[5]:
• },...,,{ 21 ndddD = is a database of

ordered items;

• id is an element of the alphabet

},...,,{ 21 niiiI = ;

• an episode jA is a sequence of k

elements ><
kjjj iii ,...,,

21
;

• it is defined an appearance in the
database D of the episode jA if there is

a sequence of indices >< krrr ,...,, 21 in
ascending order so that

kk rjrjrj dididi === ,...,,
2211

;

• the total number of appearances of jA in

D is called the count of an episode,
)(jANumber ;

• the purpose of frequent episodes mining
is to find all episodes jA

for which

)(jANumber /n is greater than a

threshold α .

In the following, the standard
algorithm for frequent episodes mining is
presented.
• Input: the threshold α and the sequential

database },...,,{ 21 ndddD = ;

• Output: the set of frequent episodes

mAAAA ,...,, 21= ;

• Stages:

40 The Optimization of Algorithms In The Process Of Temporal Data
Mining Using the Compute Unified Device Architecture

1. on generate candidate episode for each
level

 φ←← Sk ,1
 level }){},...,{},{{',1 21 mk iiiAk ←←
2. the count of candidate episodes

 doAwhile φ≠'
 is calculated)'(

jkANumber for all

episodes
jkA' of kA'

3. non-frequent episodes are eliminated

 α≤nANumber j /)]'([from the set

kA'

4. frequent episodes are stored in the set
AS :

kAA ASS '∪←

5. on generate candidate episode for next
level

1,' +←+← kkAAA
end while

6. it is returned the set AS which contains
frequent episodes:

return AS
While the elimination phase and

generating steps include only the relevant
subsets, the counting step may increase
exponentially in respect with the size of a
subset jA and the alphabet I . So, the
potential number of episodes of length k is

)!(
!
kn

n
−

 for every },...,2,1{ nk ∈ .

Run time can be reduced by the use
of advanced algorithms and hardware,
implemented on parallel processing
architectures in order to increase
computational power. Although a number of
data mining algorithms have already been
implemented on graphics processing units,
very few are for temporal data mining. An
example is presented in [6].

In the following four algorithms
based on CUDA programming model [6]

will be presented. They are based on the
MapReduce programming model (which
will be presented below) and for each of
them some kind of parallelism is
implemented. In Algorithm 1, each thread is
looking for a single episode using data
stored in graphics memory. In Algorithm 2,
each thread is looking for a single episode,
but uses shared memory to create first a data
buffer. In Algorithm 3, threads in a block are
looking for the same episode, but different
blocks are looking for different episodes
using data from the graphic card memory.
In Algorithm 4, threads in a block are
looking for the same episode and different
blocks are looking for different episodes
using shared memory to create first a data
buffer.

MapReduce is a software framework
developed and implemented by Google [1],
which provides programmers the necessary
means to process large sets of data using
large parallel systems. It is not necessary for
the programmers, which use the MapReduce
framework to have advanced knowledge in
the field of parallel systems. In achieving
real-time data mining, the ability to process
data sets in parallel is extremely useful.

The MapReduce algorithm uses two
functions: "map" and "reduce." The first
one, the function "map" applies to a set of
input, which consists of a key/value pair in
order to create a set of pairs of intermediate
key/value. The function "reduce" applies to
all pairs of intermediate key/value
containing the same key intermediate to
produce a set of outputs. Each of the two
functions "map" and "reduce" can be
parallel executed in order to use the
available resources in large data centers
(Figure 2).

Database Systems Journal vol. 1, no. 1/2010 41

Fig 2. The parallelism in MapReduce
algorithm.

MapReduce was originally developed
and optimized by Google to run on its
private computer data centers. Currently
there are different versions of the
MapReduce framework for multicore
processors, for the Cell processor and for
graphics processing units as well. Achieving
high performance in these frameworks is
quite difficult.

The four algorithms analyzed in this
article follow the MapReduce programming
model to efficiently benefit from the parallel
processing advantage. The "map" function
returns the number of appearances of an jA
within a database D . The "reduce" is applied
differently, considering if parallelism of
threads or parallelism of thread blocks is
used.

The first two algorithms implement
thread level parallelism to assign a thread
for searching an episode jA in the database
D . Using a thread for searching an episode
makes the “reduce” function to become the
identical application, which returns the value
given by the “map” function itself as an
output.

Algorithm 1 (without buffering). As each
thread will scan the entire database, the first
algorithm places the database in the texture
memory, so each thread can use the high
bandwidth of the GPU. Consequently,
threads are allocated in thread blocks one by
one until the maximum number of threads
per block is reached. For example, if the
maximum number of threads per block is
256, then threads from 1 to 256 are allocated
to the first block of threads, those from 257
to 512 correspond to the second block of
threads and so on until all threads have been
used.

 Algorithm 2 (with buffering). The
second algorithm also uses thread level
parallelism, but instead using the texture
memory, this algorithm loads a block of data
from the database into a buffer of shared
memory, processes data from the buffer,
then loads another block of data in the buffer

and the process is repeated until the entire
database has been processed. Thread
allocation within the thread blocks is
achieved in the same way as in Algorithm 1.

The Compute Unified Device
Architecture programming model
implements also a block level parallelism.
The two algorithms assign a block of threads
to find an episode. Within a block, threads
collaborate in searching so every thread is
looking in a portion of the database.

Algorithm 3 (without buffering). Similar
to Algorithm 1, threads within each block
access data through the texture memory.
Unlike the first algorithm, threads within a
block are starting at different positions
within the database, while threads with the
same ID from different blocks are starting
from the same position.

Algorithm 4 (with buffering). The fourth
algorithm analyzed in this article uses block-
level parallelism with shared memory
database buffering. The starting point for
each thread of Algorithm 4 depends on
buffer size and not on the size of the
database (as in Algorithm 3). A thread will
always access the same shared memory area
during all searches, but data from the shared
memory will change when buffer updates.

4. Experimental results

In order to analyze the performance of

implementing the characteristics of
MapReduce algorithms within the graphics
processing units, the various existing
NVIDIA CUDA properties should be taken
into account.

Table 1. Characteristics of graphics cards
used.

Graphics Card
8800
GTS
512

9800
GX2

GTX
280

GTX
480

GPU G92 2xG92 GT280 GF100
Memory (MB) 512 2x512 1024 1536

Memory
Bandwidth

(GBps)
57.6 2x64 141.7 177.4

Multiprocessors 16 16 30 48
Cores 128 128 240 480

Processor
Clock (MHz) 1625 1500 1296 1401

42 The Optimization of Algorithms In The Process Of Temporal Data
Mining Using the Compute Unified Device Architecture

Compute
Capability 1.1 1.1 1.4 2

Registers per
Multiprocessor 8196 8196 16384 32768

Registers per
thread 10 10 16 21

Threads per
Block (Max) 512 512 512 512

Active Threads
per

Multiprocessor
(Max)

768 768 1024 1536

Active Warps
per

Multiprocessor
(Max)

24 24 32 48

For this purpose four different NVIDIA

GeForce graphics cards have been subjected
to a series of tests. These cards were chosen
to represent the latest developed
technologies nowadays. A brief description
of the chosen graphics cards is presented in
Table 1.

The most relevant experimental results on
the performance of algorithms (presented in
the previous section), implemented on
CUDA architecture, running on the four
graphics cards in Table 1, are presented
below [6], [7]. This article aims to study,
compare and analyze these results,
highlighting the specific characteristics of
each selection.

In tests the following configuration has
been used: E4500 Intel Core2 Duo operating
at 2.2 GHz with 4 GB (2x2GB) of 200 MHz
DDR2 SDRAM (DDR2-800). Programming
and access to the GPUs used the CUDA
toolkit and SDK 2.0 with NVIDIA driver
version 197.75. In addition, all processes
related to graphical user interface have been
disabled to reduce the external traffic to the
GPU.

The experimental results and
interpretations on the performance of
algorithms mentioned above, using different
graphics cards for episodes at different
levels with different numbers of threads per
block are presented below.

At the L level of an episode, an algorithm
searches an episode of length L. In the
considered cases, L can be 1, 2 or 3.

The alphabet in which the searching is
performed consists of capital English
alphabet letters and the database contains
393,019 letters. Different scenarios have
been chosen: the first level contained 26
episodes, level 2 contained 650 episodes and
level three contained 15,600 episodes [6].

A test consists of selecting an episode’s
level, an algorithm, a graphics card and the
block size. The execution period (measured
in milliseconds) is considered the period of
time between the moment when the kernel is
invoked and the moment when it returns the
answer.

Although the GPU’s access to graphics
has been limited by disabling all non-
essential services, each test was performed
ten times and the average time obtained
during the tests was calculated.

In the following some characteristics that
result from these tests on the three criteria
(the chosen level, the algorithm and graphics
card used) and their impact on the execution
time are presented.

The effect of level selection on execution
time

To assess the impact of the problem’s

size on execution time, a series of tests have
been done, in which the hardware and the
algorithm remained stable and the level L
was varied. Because the number of episodes
that must be searched increases
exponentially when L increases (as noted
earlier), the scalability of an algorithm
regarding the problem’s size is important
(Figure 3).

Database Systems Journal vol. 1, no. 1/2010 43

Fig. 3. The effect of level selection on

execution time.

a) Parallel thread algorithms
provide constant time per episode. This is
the case of Algorithms 1 and 2. Regardless
of the number of searches, the time required
to complete each individual search is
essentially the same. A search for each
episode is completely independent of other
searches and every search is assigned to a
thread. The complexity of searching a single
episode in a set of data remains constant
regardless of the chosen level. For this
reason, the execution time is spent entirely
for the execution of the "map" function
across the entire database. Since these
algorithms require a constant time per
search, if we consider the parallel processing
capability, one can observe that time
remains constant even if a large number of
searches are executed via the graphics

processing unit. Even if there are 30 or 700
or thousands of searches, the process
requires the same period.

b) The increasing time in parallel
thread processing caused by buffering
may be amortized. Algorithm 2 uses a
buffer zone to combine the memory
bandwidth of all threads in a memory block
to reduce the texture load. This implies a
long execution time because only one block
can be resident on a multiprocessor at a time
during the loading phase and other
processing cannot be done. As more threads
are added to a block, the execution time for
Algorithm 2 decreases exponentially. This
feature shows that Algorithm 2 is able to use
the processing power of a large number of
threads. As the number of threads increases,
more results will be quickly calculated since
all threads can access the shared memory
block without additional resource
consumption (until the moment when
planning a large number of processes on the
multiprocessor exceeds the total calculation
time).

c) The execution time increases
along with the number of threads, when
using Algorithm 4 and the 3rd level.
Unlike Algorithm 2, Algorithms 3 and 4 lose
performance per episode as they increase the
number of threads per block and the
episode’s length. Studying the experimental
results, we can observe an increase in the
execution time along with the number of
threads when using Algorithm 4 and the
level 3. Therefore, the execution time
increases when switching from the first to
the second level and from the second to the
third. These two trends are due to the
complexity of finding the episodes and due
to the increased resources consumption

44 The Optimization of Algorithms In The Process Of Temporal Data
Mining Using the Compute Unified Device Architecture

when loading more blocks that can be active
simultaneously on the graphics card.

4.2. The effect of algorithm selection on
execution time

 It is very important that the chosen
algorithm matches the size of the considered
problem. However, a programmer often
wants to solve a problem of a certain size
but has access only to a certain type of
hardware. The programmer can modify only
the algorithm and the number of threads that
he uses within this algorithm. In this
situation, he will want to use the fastest
algorithm for the problem. Tests were done
on GTX480 graphics card, because from all
the tested cards, it has the highest
computational capability (Figure 4).

d) One thread per episode is not
enough for small problems (L = 1). When
small lower levels problems are assessed,
there are not enough episodes to generate
sufficient threads to use the graphic card’s
resources. As the number of episodes is
fixed and there is just one thread per
episode, in the case of Algorithms 1 and 2
one can observe the tendency to increase the
execution time along with the number of
threads. Therefore, for these algorithms, the
search time slowly decreases. Algorithm 4
on GTX480 obtains a search time of a
milliseconds order. Therefore, it is noted that
when using the GTX480, real-time data
mining can be achieved and this becomes a
certainty for servers incorporating more of
these parallel cards and for future GPU
architectures, when dealing with significant
size databases.

e) Block level depends on its size
for medium size problems (L = 2).
Algorithms 1 and 2 describe the number of
blocks while the number of threads per
block increases, because there are a fixed
number of episodes and thus a fixed number
of threads, so the number of blocks changes
in the same time with the number of threads
per block. At the second Level, the number

of blocks will vary depending on the number
of threads per block.

Figure 4. The effect of algorithm selection

on execution time

f) Thread level parallelism is
enough for large problems (L = 3). The
graphic card used, GTX480 has 48
microprocessors, a maximum number of
1,536 active threads per multiprocessor and
a total of 73,728 active threads available.
For L = 3, there are 25,230 episodes to
search. Parallel thread processing algorithms
(Algorithms 1 and 2) are much faster than
block-level algorithms (Algorithms 3 and 4)
because the Algorithms 1 and 2 have to
search simultaneously for more episodes
than Algorithms 3 and 4 for a certain
number of threads per block. Algorithms 3
and 4 are limited to 384 episodes that can be
searched due to the limitation of eight
blocks per each of the 48 available multi-
processors in GTX480 and each block is
searching for a single episode. Algorithms 1

Database Systems Journal vol. 1, no. 1/2010 45

and 2 may search more episodes because
each thread within a block will look for one
episode. Practical resources used by each
thread and the available resources per each
multiprocessor determine the number of
active episodes for Algorithms 1 and 2.

4.3.The effect of graphics card selection

on execution time

The hardware configuration is one of
the major influencing factors of the
algorithms’ performance (Figure 5).

Fig. 5. The effect of graphics card selection

on execution time.

g) The frequency of CUDA
processors implemented in GPU influence
performance for small and medium
problems. Algorithms 1 and 2 depend
heavily on the CUDA processing cores
frequency for small or medium size
problems. The frequencies of the four
graphic cards in question are 1401 MHz (for
GTX480), 1296 MHz (for GTX280), 1500
MHz (for 9800GX2) and 1625 MHz (for
8800 GTS512). For the first two levels,
there are no important differences, but
starting from the third level, the 480 cores of
the GTX480 significantly exceed those 256
of GX2 and those 128 of 8800GTX.

h) Block-level algorithms are
affected by memory bandwidth.

Algorithm 3 is considerably affected by the
memory requirements when large sets of
data are processed. The total number of
threads that require memory is given by the
total number of episodes related to the total
number of threads in a block. The algorithm
needs to store a large number of threads per
multiprocessor over a long period of time
and this produces a huge memory
consumption. GTX480 gets the highest
performance due to the 177.4 Gbps
bandwidth followed by GTX280 with a
bandwidth of 141 Gbps.

5. Conclusions

In this article, we analyzed and compared

temporal data mining algorithms
implemented on the latest NVIDIA CUDA
architectures. As expected, the best
execution time for the analyzed algorithms
is the one obtained on the latest architecture,
Fermi, that was released by NVIDIA on
March 26, 2010. As experimental results
outlined, an implementation based on the
MapReduce framework must dynamically
adapt the type and parallelism level in order
to obtain an increased performance.

In order to design efficient temporal data
mining algorithms implemented on CUDA
parallel processing architectures, one must
take into account the eight criteria
mentioned above:

• parallel thread algorithms provide
constant time per episode;

• the increasing time in parallel thread
processing caused by buffering may be
amortized;

• the execution time increases along
with the number of threads, when using
Algorithm 4 and the 3rd level;

• one thread per episode is not enough
for small problems (L = 1);

• block level depends on its size for
medium size problems (L = 2);

46 The Optimization of Algorithms In The Process Of Temporal Data
Mining Using the Compute Unified Device Architecture

• thread level parallelism is enough for
large problems (L = 3);

• the frequency of CUDA processors
implemented in GPU influence
performance for small and medium
problems;

• block-level algorithms are affected
by memory bandwidth.

There are many difficulties regarding the
practical implementation of data mining
algorithms on a GPU architecture. A CUDA
programmer must have thorough knowledge
of how threads work and how thread blocks
are mapped, must know in detail six
different areas of memory and especially
inter-threading communication. Software
development for the CUDA architecture
began to be facilitated by new development
environments such as NEXUS, but
programmers are still forced to write source
code for low-level resources and kernels
control for each processing operation that is
implemented on the GPU, which requires a
large amount of time.

There are also other limitations on the
performance of data mining algorithms
described above. Most important of them are
the limitations in memory size and the
transfer time between the GPU and the
memory. Current NVIDIA cards support
memory sizes up to 6 GB, the size being
extended from 4GB with the launch of the
new Fermi architecture, but even this is far
below from the required size when it comes
to huge dimensions data warehouses.
Transfer of memory blocks between the
CPU and GPU still consume a considerable
amount of execution time which influences
the performance when applying temporal
data mining algorithms.

Although the results offer a much
improved performance compared to
conventional architectures based on CPUs
and a tremendous potential for improving
the performance of temporal data mining
process, there are hardware issues that have
obviously limited the implemented

algorithms’ performance, limitations that
can be overcome since the new Fermi
hardware architecture has been launched. An
important limitation that has a direct impact
on algorithms runtime performance happens
when dealing with dynamically accessed
arrays (which cannot be accessed directly by
an index at compile time). Dynamically
accessed arrays are automatically stored in
local memory and cannot be stored in the
registry memory within the CUDA
programming model. Since local memory is
an abstraction that refers to memory in the
scope of a single thread, it has the same
latency time as global memory of GPU and
is up to about 140 times slower than registry
memory [8]. In the above presented
algorithms, this type of arrays addressing is
frequently needed and the fact that the
registry memory cannot be used is a
significant restriction.

Also, certain functions in CUDA, such as
"atomicAdd ()” are implemented only for
integer values. The support for other types
of data would facilitate communication
between thread blocks.

 Considering the possibilities offered
by CUDA (depicted in the official
documentation "Official CUDA
Programming Guide" [2]) the limitation of
memory can be managed in two ways. The
first option is the memory paging technique
used in the algorithms above, successively
moving portions of memory and then
processing them. Another way to manage
memory limitation is to use the CUDA
direct access memory option, “zero-copy ".

Besides the fact that the bandwidth
available for this technique is very low, the
memory should be declared "pinned", thus
allowing the memory pages to be maintained
in real memory all the time. In practice, both
the GPU and the operating system have
limits concerning the pinned memory that is
under 4 GB and thus makes this method less
effective than the paging one.

Fermi, the new generation of NVIDIA
architecture, can overcome all the
limitations mentioned above. Even when
writing this article significant efforts are

Database Systems Journal vol. 1, no. 1/2010 47

made to develop the CUDA programming
environment to provide the necessary
facilities for the typical programmer. An
unified memory hierarchy address space
makes it possible to run genuine C++ code
on Fermi GPUs. Dynamic arrays can also be
accessed in registry memory. Enhancements
made in this new architecture allow
improved execution times for the
algorithms.

The small size of the memory supported
by the GPU is a significant limitation of the
hardware, which is indeed increased but the
6GB is still insufficient considering that in
practice many databases` sizes are of the
order of terabytes or even petabytes. TESLA
products based on the new Fermi
architecture use 40 bits of space address and
thus allow addressing of up to a terabyte of
memory, but until the first benchmarks will
be available, it remains only a theoretical
statement. Real time temporal data mining
becomes slowly but surely a reality.

References

[1] J. Dean, S. Ghemawat - MapReduce:
Simplified Data Processing on Large
Clusters, OSDI'04: Sixth Symposium
on Operating System Design and
Implementation, San Francisco, CA,
2004.

[2] NVIDIA CUDA Compute Unified
Device Architecture - Programming
Guide, Version 3.1, 2010.

[3] C. Martel, R. Subramonian, A. Park
http://portal.acm.org/author_page.cfm?i
d=81363604006&coll=GUIDE&dl=G
UIDE&trk=0&CFID=89531225&CFT
OKEN=84483493 - Asynchronous
PRAMs are (almost) as good as
synchronous PRAMs, Proceedings of
the 31st Annual Symposium on
Foundations of Computer Science,
Pages: 590-599 vol.2, 1990.

[4] N. Satish, M. Harris, M. Garland -
Designing Efficient Sorting Algorithms
for Manycore GPUs, Proc. 23rd IEEE
International Parallel and Distributed
Processing Symposium, 2009.

[5] R. Agrawal, T. Imielinski, A. N. Swami
- Mining Association Rules between
Sets of Items in Large Databases, Proc.
ACM SIGMOD International
Conference on Management of Data,
1993.

[6] J. Archuleta, Y. Cao, W. Feng, T.
Scogland - Multi-Dimensional
Characterization of Temporal Data
Mining on Graphics Processors,
Technical Report TR-09-01, Computer
Science, Virginia Tech, 2009.

[7] W. Fang, K. Lau, M. Lu, X. Xiao,
C.Lam, P. Yang Yang, B. He1, Q. Luo,
P.Sander, K. Yang - Parallel Data
Mining on Graphics Processors,
Technical Report HKUSTCS0807,
2008.

[8] P. Bakkum, K. Skadron - Accelerating
SQL Database Operations on a GPU
with CUDA, Vol. 425, Proc. of the 3rd
Workshop on General-Purpose
Computation on Graphics Processing
Units, pg. 94-103, 2010.

http://portal.acm.org/author_page.cfm?id=81452608618&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�
http://portal.acm.org/author_page.cfm?id=81332530097&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�
http://portal.acm.org/author_page.cfm?id=81363604006&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�
http://portal.acm.org/author_page.cfm?id=81363604006&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�
http://portal.acm.org/author_page.cfm?id=81363604006&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�
http://portal.acm.org/author_page.cfm?id=81363604006&coll=GUIDE&dl=GUIDE&trk=0&CFID=89531225&CFTOKEN=84483493�

	Spatial Operations
	Anda VELICANU

	Database Access Through Java Technologies
	Ion LUNGU, Nicolae MERCIOIU

	Optimization of Data Requests Timing by Working with Matrixes under MSAccess Environment
	Alexandru ATOMEI

	SEO Techniques for Business Websites
	Alexandru ENACEANU

	Solutions for improving data extraction from virtual data warehouses
	Adela BÂRA

	The Optimization of Algorithms in the Process of Temporal Data Mining Using the Compute Unified Device Architecture
	Alexandru PIRJAN
	alex@pirjan.com

